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Abstract
Mitochondrial impairment is a well-established pathological pathway implicated in Parkinson’s disease (PD). Defects of the
complex I of the mitochondrial respiratory chain have been found in post-mortem brains from sporadic PD patients. Furthermore,
several disease-related genes are linked to mitochondrial pathways, such as PRKN, PINK1, DJ-1 and HTRA2 and are associated
with mitochondrial impairment. This phenotype can be caused by the dysfunction of mitochondrial quality control machinery at
different levels: molecular, organellar or cellular. Mitochondrial unfolded protein response represents the molecular level and
implicates various chaperones and proteases. If the molecular level of quality control is not sufficient, the organellar level is
required and involves mitophagy and mitochondrial-derived vesicles to sequester whole dysfunctional organelle or parts of it.
Only when the impairment is too severe, does it lead to cell death via apoptosis, which defines the cellular level of quality control.
Here, we review how currently known PD-linked genetic variants interfere with different levels of mitochondrial quality control.
We discuss the graded risk concept of the most recently identified PARK loci (PARK 17–23) and some susceptibility variants in
GBA, LRRK2 and SNCA. Finally, the emerging concept of rare genetic variants in candidates genes for PD, such as HSPA9,
TRAP1 and RHOT1, complete the picture of the complex genetic architecture of PD that will direct future precision medicine
approaches.
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Introduction

Patients with Parkinson’s disease (PD) experience motor im-
pairments such as resting tremor, bradykinesia, rigidity and
postural instability but also non-motor symptoms such as
sleep perturbations, constipation, cognitive impairment or de-
pression (Krüger et al. 2017). The diversity of symptoms in-
dicates that, beyond the degeneration of dopaminergic neu-
rons in the substantia nigra responsible for the typical move-
ment disorder, other neuronal subtypes like cholinergic, sero-
tonergic and noradrenergic neurons are also affected in the

central and enteric nervous system (Krüger et al. 2017).
However, the molecular mechanisms underlying this neuronal
cell death are still not fully understood. The identification of
rare monogenic forms of PD and subsequent functional stud-
ies related to disease-causing mutations have substantially ad-
vanced our understanding of the cellular dysfunction driving
neurodegeneration during the last 20 years (Antony et al.
2013). Indeed, studying individual genetic mutations allows
the definition of cellular phenotypes linked to impaired mo-
lecular signalling pathways related to a specific gene. By
linking the cellular phenotypes discovered in patient-based
models of monogenic forms of PD, common molecular pat-
terns have emerged. These phenotypes may subsequently
serve as cellular prototypes for typical sporadic form of the
disease (Antony et al. 2013).

One pathway that is well established among all these
disease-associated pathological pathways involves mitochon-
drial dysfunction as a shared feature between sporadic and
monogenic PD. The finding of defects of specific complexes
of the mitochondrial respiratory chain, i.e., complex I deficien-
cy, in post-mortem brains from sporadic PD patients (Parker
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et al. 2008; Schapira et al. 1990) indicated an important role of
mitochondria in the pathogenesis of the disease. These find-
ings were recently substantiated by the identification of muta-
tions in several PD-linked genes that have been shown to
specifically induce mitochondrial impairment. Consistently
across different models, mitochondrial dysfunction was ob-
served for autosomal recessively inherited forms of PD caused
by mutations in the genes coding for PINK1, Parkin and DJ-1
proteins (Valente et al. 2004; Lücking et al. 2000; Bonifati
et al. 2003) (Fig. 1).

Based on linkage studies and next-generation sequencing
technologies like whole-exome or whole-genome sequencing,
more recently an increasing number of genes has been linked
to monogenic PD, expanding the current total of PARK loci to
23 (Lill 2016). Moreover, common variants in PARK loci
(e.g., polymorphisms in SNCA) or other disease-associated
genes (e.g., GBA) arise as risk factors and relate hereditary
to the more common sporadic form of PD (Schiesling et al.
2008; Sidransky et al. 2009). Studying pathological pathways
in the frame of these PD-linked mutations further underscored
the central role played by mitochondria at different levels of
quality control and energy supply to ensure normal function of
the cell. Here, we review how currently known PD-linked
genetic variants may impact mitochondrial function due to
interference with the different levels of mitochondrial quality
control. In this context, we refer to the graded risk concept
representing the complex genetic architecture of PD (Fig. 1)
and focus on the most recently identified PARK loci (PARK
17–23) and susceptibility variants for sporadic PD (such as
GBA, LRRK2) including common risk factors such as SNCA
polymorphisms.

Relevance of mitochondria for cellular
homeostasis

Mitochondria are highly dynamic organelles that are essential
to maintain cellular function. These organelles maintain neu-
ronal function and integrity via sustained energy supply for
important cellular functions including synaptic activity or cal-
cium buffering after depolarisation (reviewed in Bingol and
Sheng 2016). Consequently, a tight regulation of mitochon-
drial homeostasis especially in neurons is necessary to main-
tain cellular processes. For example, reactive oxygen species
(ROS) play a role in mitochondrial signalling but if the con-
centration gets out of range, oxidative stress might arise and
damage biological molecules and structures like DNA, pro-
teins or lipid membranes (Bingol and Sheng 2016). The pro-
duction of adenosine triphosphate (ATP) by oxidative phos-
phorylation in the mitochondrial electron transport chain
(ETC) is one of the key mitochondrial functions to provide
energy. This process is accompanied by the passage of protons
in the inter-membrane space, which subsequently creates the

mitochondrial membrane potential (MMP) (Fernie et al.
2004). In case of an imbalanced MMP, production of a high
level of ROS such as superoxide may arise due to electron
leakage. Thus, the mitochondrion has to ensure a balance to
efficiently produce ATP without releasing a pathological level
of ROS.

The MMP also regulates calcium (i.e., Ca2+) entry in the
mitochondria via the mitochondrial Ca2+ uniporter. The bal-
ance between Ca2+ accumulation in mitochondria and release
via mitochondrial Na+/Ca2+ and H+/Ca2+ exchangers allows
mitochondria to have a high capacity of buffering cytosolic
Ca2+ (Rizzuto et al. 2012). Particularly in neurons, the regu-
lation of Ca2+ is necessary for neurotransmitter release, me-
tabolism and cell survival. Mitochondria are creating tight
contacts with the main Ca2+ stock in the cell, the endoplasmic
reticulum (ER), in domains called mitochondrial associated
membranes (MAM). Release of Ca2+ taken up by the mito-
chondria physiologically increases ATP production. However,
Ca2+ overload may lead to mitochondrial membrane
permeabilisation, followed by cytochrome c release and sub-
sequent apoptotic cell death (Kroemer et al. 2007). The role of
Ca2+ as an essential secondary messenger within the cell but
also as a trigger of cell death, shows the importance of a well-
balanced Ca2+ homeostasis.

Mitochondrial dynamics play an important role in the
maintenance of organellar homeostasis (Burbulla and Krüger
2011). Particularly in neurons, mitochondria need to be very
mobile to furnish ATP at sites of energy consumption but also
to buffer Ca2+ necessary for neurotransmission at the synap-
ses. Mitochondria can travel along microtubules via associa-
tion to kinesin-1 via the Miro–Milton complex (reviewed in
Cai and Sheng 2009). Another way for mitochondria to be-
come distributed in the cell in response to local energy de-
mand is undergoing fission. Fission and fusion events control
mitochondrial morphology and need to be well balanced for
the mitochondrial network to work properly. These events
regulate respiration, calcium homeostasis, clearance and dis-
tribution of mitochondria (reviewed in Bingol and Sheng
2016). The fusion machinery involves three GTPases: Mfn1,
Mfn2 and OPA1. Mfn1 and Mfn2 mediate outer-membrane
fusion whereas OPA1 is implicated in inner-membrane fusion
(Mishra and Chan 2016). Fusion of two mitochondria is in-
volved in the quality control process. In neurons, the fusion
rate is very important as mitochondrial damage can lead to the
loss of respiratory chain activity and in the long term to neuro-
degeneration (Chen et al. 2007). Fusion events can cope with
minor damage to mitochondrial DNA or slight disequilibrium
of the homeostasis (reviewed in Twig and Shirihai 2011).
Indeed, the fusion of two mitochondria allows the mix of their
content that will dilute the damaged elements. If this phenom-
enon is not sufficient to cope with the damage, mitochondria
can undergo fission. Fission defines the symmetric or asymmet-
ric cleavage of a mitochondrion into two parts and is also
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implicated in quality control as it can be the first step towards
the clearance of fragments of mitochondria via the lysosomal
pathway (Fig. 2b). Fission enables to sequester damaged parts
of the mitochondria. It requires the GTPase Drp1 (Dynamin-
related protein 1) that is recruited to the mitochondrial outer
membrane. During fission, mitochondria endures a drop of
membrane potential. Drp1 is then forming a spiral around the
mitochondria in order to perform the division into two daughter
mitochondria (Fig. 2b). If the depolarisation goes below a cer-
tain level, these daughter mitochondria will go towards the
mitophagy fate (Twig and Shirihai 2011).

Slight changes inmitochondrial homeostasismay have a sub-
stantial impact on organellar function and even on the integrity of
thewhole cell. For this reason,mitochondrial homeostasis is fine-
ly regulated and the mitochondria need an effective quality con-
trolmachinery thatcanbesubdivided into three levels:molecular,
organellar and cellular quality control (Baker et al. 2011). When
mitochondrial homeostasis is unbalanced, the molecular level is
the first quality control step to be involved. It implicates themito-
chondrial unfoldedprotein response (mtUPR)withproteases and
chaperones such as mtHsp60 (mitochondrial Heat shock protein
60), TRAP1 (TNF receptor associated protein 1) and mortalin
(HSPA9), which re-fold damaged proteins or ultimately cleave
and clear them from the mitochondria (Burbulla and Krüger
2011) (Fig. 3a, b).

If the deregulation becomes more severe, an organellar
quality control level is required to sequester damaged mito-
chondria in part or as a whole (Jin and Youle 2013) (Fig. 2).

This involves mitochondrial-derived vesicles (MDVs) to
eliminate larger amounts of misfolded proteins or excessive
ROS (Soubannier et al. 2012, b; McLelland et al. 2014) (Fig.
2c) or mitophagy to eliminate greater fragments or even the
whole organelle (Rakovic et al. 2013) (Fig. 2a, b). The
PINK1/Parkin pathway is critically involved in both mecha-
nisms (Sugiura et al. 2014; Narendra et al. 2008).

Finally, if mitochondrial homeostasis cannot be rescued, the
permeability transition pore opens and leaks cytochrome c into
the cytoplasm that activates the apoptosis pathway (Kroemer
et al. 2007) (Fig. 3c). This defines the cellular level of quality
control and prevents ultimate damage to the organism.

Mitochondrial dysfunction caused
by PD-related genes: the role of organellar
quality control

Organellar quality control is critically related to the term
Bmitophagy ,̂ which is defined as the selective lysosomal
clearance of dysfunctional mitochondria (reviewed in
Lemasters 2005). This critical step in the fate of a damaged
mitochondrion has been only identified in the context of func-
tional characterisation of genes related to autosomal recessive
forms of PD (PARK6 and PRKN/PARK2), which encode the
proteins PINK1, a mitochondrial localised kinase and Parkin,
a ubiquitin-E3 ligase (Narendra et al. 2008, Youle and van der
Bliek 2012). Indeed, a variety of loss of function mutations of
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genes related to mitochondrial
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dysfunction). Figure adapted
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PINK1 (PARK6, OMIM: 605,909) and Parkin (PRKN/PARK2,
OMIM: 602,544) have been found in juvenile PD patients
(Valente et al. 2004; Kitada et al. 1998). Under physiological
conditions, PINK1 is translocated to the inner membrane by
the translocase of outer membrane (TOM) and the translocase
of inner membrane (TIM) complexes where it is cleaved by
the mitochondrial inner membrane rhomboid protease
presenilin-associated rhomboid-like protein (PARL) that inac-
tivates it (Baker et al. 2011). Upon depolarisation of mito-
chondria or ROS accumulation, the mitochondrial import is
disrupted, PINK1 cannot be translocated to the mitochondrial
inner membrane (MIM) and stays in the mitochondrial outer
membrane (MOM) where it accumulates and autophosphoryl-
ates, which leads to its activation. Activated PINK1 will then
recruit Parkin as a second executioner of mitophagy (Narendra

et al. 2010) (Fig. 2). PINK1 phosphorylates Parkin on the S65
of the ubiquitin like domain that leads to an open and active
conformation of Parkin.Moreover, PINK1 phosphorylates the
ubiquitin itself on the residue S65 (Fiesel et al. 2015; reviewed
in Truban et al. 2017). Parkin then ubiquitinates various mi-
tochondrial outer membrane proteins, e.g., Mfn2 (Chen and
Dorn 2013). This accumulation of ubiquitinated proteins trig-
gers the recruitment of p62 on the mitochondrial surface
(Okatsu et al. 2010). p62 in turn triggers the engulfment of
damaged mitochondria in the autophagosome that will lead to
its degradation by the autophagy pathway (Okatsu et al.
2010).

The PINK1/parkin pathway is involved as well in the bal-
ance between fusion and fission. Indeed, Mfn2 is a substrate
of PINK1 and Parkin. Its ubiquitination and phosphorylation
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Fig. 2 Organellar quality control. (a) Major mitochondrial dysfunction
leads to a global MMP reduction (red). Miro1 ensures the arrest of
mitochondrial transport along the microtubules (MT) by sensing the
calcium concentration. PINK1 accumulates on the mitochondria and
recruits Parkin. Parkin ubiquitinates various mitochondrial proteins that
leads to the engulfment of mitochondria by the autophagosome. The
autophagosome fuse with the lysosome and mitochondrial proteins
become degraded by lysosomal enzymes. This process is called
mitophagy. b Global mitochondrial dysfunction can be avoided by

fission, induced by Drp1. The impaired daughter mitochondria (red)
will then undergo mitophagy as well. c Mitochondria can also have a
localised MMP reduction due to local increase of oxidised proteins
(OxProt) or ROS. This leads to a budding of mitochondria-derived ves-
icles (MDVs) implicating a local activation of PINK1/Parkin pathway
and recruitment of VPS35. MDVs then fuse with the lysosome. Healthy
mitochondria (physiologicalMMP) are represented in blue, dysfunctional
mitochondria (decreased MMP) are represented in red. Proteins in bold
are linked to PD
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lead to its degradation.Which means that upon depolarisation,
PINK1 and Parkin accumulate on the MOM in their active
form, Mfn2 becomes degraded and mitochondria subsequent-
ly fragmented (Chen and Dorn 2013).

Besides PINK1 and Parkin, another PD-linked protein re-
lated to juvenile forms of the disease is associated with mito-
chondrial quality control: DJ-1 (PARK7; OMIM: 606,324).
Loss of function mutations in the DJ-1 gene have been asso-
ciated with autosomal recessive early onset PD and are far
rarer than PINK1 or Parkin mutations (Bonifati et al. 2003).
DJ-1 has been described as a sensor of cellular oxidative
stress. When stress occurs, DJ-1 is oxidised and subsequently
translocated to the mitochondria (Canet-Aviles et al. 2004).
The PD-associated loss of DJ-1 function is related to mito-
chondrial damage and to an increased vulnerability to com-
plex I inhibition, as has been shown in vivo (Meulener et al.
2006). Moreover, DJ-1 associates with molecular chaperones
such as mortalin to protect cells against stress-induced apo-
ptosis (Lev et al. 2008; Li et al. 2005; Yokota et al. 2003). The
loss of DJ-1 function has been linked to reduced lysosomal
activity and reduced basal autophagy with an accumulation of
dysfunctional mitochondria in patient-based cellular models
(Krebiehl et al. 2010). This indicates a convergence of DJ-1-
related pathogenic pathways with the PINK1/Parkin-mediated
mitophagy, as the major cellular degradation pathway for dys-
functional mitochondria.

Recently, another structure has been shown to be implicat-
ed in the organellar quality control: theMDVs (Fig. 2c). These
vesicles are constituted of a double membrane and are about
70–150 nm in diameter. These vesicles are formed by the
mitochondria without the involvement of the fission protein
Drp1 (Neuspiel et al. 2008). Two distinct types ofMDVs have
been described: the ones directed to the peroxisome (Braschi
et al. 2010) and the ones directed to the lysosome (Soubannier
et al. 2012, b).

Only one protein has been described to travel to the perox-
isome from mitochondria, a mitochondrial-anchored protein
ligase (MAPL or Mul1) (Braschi et al. 2010). MAPL is re-
sponsible for the stabilisation of Drp1 and for the degradation
of Mfn2, conjointly increasing mitochondrial fission (Braschi
et al. 2009). This process implicates the retromer complex,
which is known to carry cargoes from endosomes to the
Golgi apparatus. Brashi and collaborators (2010) showed that
VPS35 and VPS26, two components of the retromer complex,
are recruited to MDVs and bind to MAPL in HEK293T. This
process may be important for the regulation of the mitochon-
drial dynamic, to make sure there is a balance between fission
and fusion events. Interestingly, mutations in VPS35 were
recently identified as causing an autosomal dominant form
of PD (PARK17; OMIM: 614,203; Zimprich et al. 2011;
Vilariño-Güell et al. 2011). Mutations in VPS35 are very rare
and account for 0.2% of sporadic cases (Hernandez et al.

Fig. 3 Molecular and cellular quality control. a In healthy mitochondria
(blue), unfolded proteins from the cytoplasm enter by TOM and TIM.
Inside the mitochondria, Mortalin and mtHsp60 help in the folding of
proteins. b In case of increased level of misfolded proteins and ROS
within the mitochondria (orange), the mtUPR pathway is activated.
This leads to the increase of mitochondrial chaperones expression,
Mortalin and mtHsp60, which help in the refolding of misfolded and
oxidised proteins. TRAP1 and Omi/HtrA2 also help to refold or degrade

the misfolded proteins. c In case of major cellular dysfunction, impaired
mitochondria (red) triggers apoptosis. CHCHD2 allows relocalisation of
Bax, which conjointlywith Bak induces release of cytochrome c. TRAP1,
mtHsp60 and mortalin can stimulate cytochrome c release and Omi/
HtrA2 facilitates apoptosis by binding to IAPs. Also, alpha-synuclein
increases Ca2+ transfer to the mitochondria that, when overloaded, in-
duces apoptosis. Proteins in bold are linked to PD
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2016) (Fig. 1). Functional studies of the most common
D620N mutation in VPS35 describe a fragmentation of the
mitochondria in neurons (Tang et al. 2015; Wang et al.
2015). Tang and collaborators (2015) explored whether the
fusion machinery was impaired in cells expressing VPS35
D620N and discovered that the MAPL levels were increased
and Mfn2 levels were decreased. In healthy cells, it is
hypothesised that MAPL is degraded via the MDVs that
destabilises Drp1 (Braschi et al. 2010) and stabilises Mfn2
expression (Tang et al. 2015). Mutant D620N VPS35 does
not bind to MAPL anymore, which subsequently is not de-
graded, stabilises Drp1 and degrades Mfn2, leading to an in-
creased fission and fragmentation of mitochondria. Moreover,
physiological VPS35 can also directly modulate Drp1 activity
by binding to Drp1 (Wang et al. 2015) and mediating its deg-
radation via MDVs, so that mutations in VPS35 interfere at
different levels with mitochondrial dynamics.

The second type of MDVs implicates the PINK1/Parkin
pathway (McLelland et al. 2014) (Fig. 2). These vesicles have
been shown to carry oxidised proteins from the mitochondria
to the lysosome in vitro (Soubannier et al. 2012). Importantly,
this process does not involve the autophagic machinery, the
proteins are directly degraded within the lysosome
(Soubannier et al. 2012). The MDV formation has been
hypothesised to be triggered mainly by oxidative stress and
ROS production, which will create a local activation of the
PINK1/Parkin pathway (Sugiura et al. 2014). Indeed, it is
thought that locally oxidised proteins and lipids might inhibit
the import of PINK1 and therefore its inactivation. PINK1will
then recruit Parkin that will ubiquitinate local mitochondrial
proteins. This local activation of the PINK1/Parkin pathway
will lead to the budding of vesicles from mitochondria con-
taining oxidised proteins (Sugiura et al. 2014). This means
that MDV formation is an event that takes place before global
mitophagy and is triggered by ROS, not global depolarisation
of the mitochondria. Timewise, MDV formation is thought to
take place within 2–6 h following a mild antimycin-A treat-
ment, whereas mitophagy occurs later, within 12–24 h
(McLelland et al. 2014), revealing the gradual response to
mitochondrial dysfunction involving different mechanisms
(Fig. 2).

The relevance of impaired mitochondrial quality control in
the pathogenesis of PD is further corroborated by the recent
identification of mutations in the VPS13C gene in the autoso-
mal recessively inherited form of juvenile parkinsonism
(PARK23; OMIM: 616,840; Lesage et al. 2016). We
hypothesise that VPS13C could also have a role in organellar
quality control of mitochondria. Under physiological condi-
tions, VPS13C was found to be localised in mitochondrial
fractions and relocalises to the cytoplasm after mitochondrial
damage in monkey and human cell lines (Lesage et al. 2016).
The PD-associated loss of VPS13C caused mitochondrial
fragmentation, loss of membrane potential and increase

PINK1/Parkin-mediated mitophagy after challenging cells
with the mitochondrial uncoupler CCCP (carbonyl cyanide
3-chlorophenylhydrazone) (Lesage et al. 2016). It has also
been shown to colocalise with the lysosomal fraction in
HeLa cells (Yang et al. 2016).

Within the organellar quality control machinery, another as-
pect of mitochondrial dynamics is crucial to avoid the spread-
ing of malfunctioning mitochondria or ROS: the intracellular
transport of mitochondria. Indeed, mitochondria need to travel
in the neurons according to local energy demand. Miro1, a
mitochondrial Rho GTPase, is implicated in the trafficking of
mitochondria (Fig. 2a). Miro1 associates with kinesin-1 and
Milton in a calcium-dependent manner to allow mitochondria
to travel along microtubules (Wang and Schwarz 2009,
MacAskill et al. 2009). When the calcium concentration is
high, Miro1 binds calcium and the transport stops at the place
where themitochondria is themost needed. Nevertheless, in the
case where mitochondria is malfunctioning, its transport needs
to stop. The PINK1/Parkin pathway is once more involved in
this phenomenon (Wang et al. 2011). Parkin has been shown to
ubiquitinate Miro1, subsequently leading to its degradation by
the proteasome (Weihofen et al. 2009). The arrest followed by
degradation of dysfunctional mitochondria via the Miro1/
PINK1/Parkin pathway avoids spreading of ROS within the
cell but also prevents corruption of healthy mitochondria via
fusion. Loss ofMiro1 can rescue PINK1-related phenotypes by
activation of mitophagy and overexpression of Miro1 in a
Drosophilamodel revealed an aberrant mitochondrial aggrega-
tion and loss of dopaminergic neurons (Liu et al. 2012).
Recently, LRRK2 has been shown to interact with Miro1 by
promoting its removal from mitochondria in order to arrest the
transport of malfunctioning mitochondria in iPSC-derived neu-
rons (Hsieh et al. 2016). These observations strengthen the role
of Miro1 in the pathology of PD and made it an interesting
candidate gene for PD (Fig. 1). However, no study has yet been
able to define a genetic contribution of variants in the Miro1
gene, RhoT1, with PD (Anvret et al. 2012).

These studies indicate that impaired organellar quality con-
trol pathways have been well established in neurodegenera-
tion in PD, including an increasing number of genes related to
mitochondrial homeostasis that are mutated in familial forms
of PD. Nevertheless, more recently, another level of quality
control has been implicated intomolecular pathways related to
PD. This level precedes the above-mentioned and is the mo-
lecular quality control.

Mitochondrial dysfunction affecting
molecular quality control

The first level of molecular quality control implicates
chaperoning proteins. Indeed, most of the proteins found in
the mitochondria have a nuclear origin. In order to enter the
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mitochondria, these proteins need chaperones to undergo
unfolding and refolding inside the mitochondria. Proteins with
a mitochondrial target sequence enter by TOM and are fur-
thered by TIM (reviewed in Baker et al. 2011). mtHsp60 is
typically recruited to help in the folding process together with
mortalin (HSPA9), a member of the Hsp70 family (Wadhwa
et al. 2015) (Fig. 3a). Damaged or unfolded proteins from the
matrix are degraded by mitochondrial proteases, whereas in
the OM they are ubiquitinated and degraded by the ubiquitin–
proteasome system (UPS) in the cytosol (Livnat-Levanon and
Glickman 2011). Two transmembrane AAA metalloprotease
complexes are responsible for the quality control across the
MIM. Indeed, as the ETC is localised in the MIM, proteins in
the intermembrane space (IMS) are more susceptible to ROS
and unfolding (Baker et al. 2011). Omi/HtrA2, a serine prote-
ase, is thought to play a role in the degradation of proteins in
the IMS (Moisoi et al. 2009) (Fig. 3b). Interestingly, two point
mutations leading to amino acid exchanges, A141S and
G399S, in Omi/HtrA2 (PARK13, OMIM: 610,297) have been
found in PD patients from a German cohort (Strauss et al.
2005). The G399S mutation was subsequently found to co-
segregate with PD and essential tremor in a large family with
multiple affected individuals of Turkish descent, providing
further genetic evidence for the pathogenic role of G399S
mutant Omi/HtrA2 (Unal Gulsuner et al. 2014). Functional
characterisation of both mutations in vitro revealed an associ-
ation with a reduced protease activity and overexpression of
the mutant protein leading to mitochondrial dysfunction in
human neuronal cell lines, suggesting a dominant negative
effect due to the trimer formation required for physiological
Omi/HtrA2 function (Strauss et al. 2005). Indeed, the first
transgenic mouse model overexpressing human G399S Omi/
HtrA2 displayed mitochondrial defects and neurodegenera-
tion that were in line with a dominant-negative effect in vivo
(Casadei et al. 2016). Additionally, the loss of function of
Omi/HtrA2 is associated with increased ROS (Moisoi et al.
2009), mitochondrial dysfunction (Strauss et al. 2005) and a
progressive movement disorder in mice (Jones et al. 2003;
Rathke-Hartlieb et al. 2002). This suggests a link between
molecular quality control of mitochondria and PD and sup-
ports the notion of mutations in the Omi/HtrA2 gene as rare
variants with substantial effect (Fig. 1).

If misfolded or oxidised proteins accumulate, the mtUPR
takes over, which results in the upregulation of various genes.
The mtUPR includes the upregulation of Drp1, the main mi-
tochondrial fission effector but none of the proteins of the
fusion machinery (reviewed in Schulz and Haynes 2015).
This highlights the fact that, during stress, mitochondria be-
comes fragmented. In addition, Mfn1 and Mfn2, the GTPase
in charge of OM fusion, are degraded by the UPS (Tanaka
et al. 2010) and OPA1 isoforms are processed by OMA1,
which results in an increase of the shorter isoforms and a
decrease of the fusion rate (Baker et al. 2011).

Interestingly, EIF4G1 (eukaryotic initiation factor 4G)
(PARK18; OMIM: 614,251) has been proposed as a PD-
linked protein by Chartier-Harlin and collaborators (2011).
As EIF4G1 is a transcription factor, it may also play a role
in the transcription of nuclear-encoded mitochondrial proteins
important for the mtUPR. Twomain variants have been found,
R1205H and A502V, in families with an autosomal dominant
inheritance of PD (Chartier-Harlin et al. 2011). These variants
are very rare (0.2% of sporadics; Puschmann 2013) (Fig. 1)
and thought to perturb the binding of mRNA to ribosomes
(Deng et al. 2015). Even though the precise role of these
mutations in PD is unknown and the causal link of genetic
variants with PD is still debated (Huttenlocher et al. 2015),
EIF4G1 variants have been linked to mitochondrial dysfunc-
tion. Indeed, upon oxidative stress, mitochondria of cells over-
expressing the EIF4G1 PD-linked variants, have difficulties in
rapidly and dynamically responding to stress compared to
wild-type EIF4G1 overexpressing cells (Chartier-Harlin
et al. 2011).

mtUPR promote an increase of mitochondrial chaperones
(mtHsp60, mortalin, TRAP1) and proteases transcription to
support the recovery of the mitochondria (Zhao et al.
2002) (Fig. 3b). Also, transcription of glycolysis genes and
lactate dehydrogenase are increased, which show a switch to
oxidative glycolysis during mitochondrial stress (Mouchiroud
et al. 2013).

However, two additional mitochondrial chaperones have
been linked to PD pathogenesis based on rare disease-
associated variants: mortalin and TRAP1 (Fig. 1). Mortalin,
encoded by HSPA9, has been thought to be a candidate for
causing PD, due to selective downregulation in the substantia
nigra of patients compared to controls, strengthening the rel-
evance of fine-tuned proteostasis for the correct function of
mitochondria (Jin et al. 2006). Subsequently, three rare genetic
variants were described as associated with PD in a Spanish
and German cohort (De Mena et al. 2009; Burbulla et al.
2010). Functional characterisation of these variants supported
a role as susceptibility factors, as all variants caused increased
intramitochondrial ROS levels and reduced MMP in different
human cell lines (Burbulla et al. 2010).

Interestingly, the impaired intramitochondrial molecular
quality control due to reduced mortalin function led to an
increased autophagic clearance of damaged mitochondria
and subsequently to a reduced mitochondrial mass in human
cells in vitro and ex vivo (Burbulla et al. 2014). Increased
mitophagy via Parkin or PINK1 overexpression rescued the
loss of mortalin-associated mitochondrial phenotypes and re-
quired an intact autophagic pathway. This convergence was in
line with the phenotypes observed in fly models of PD in vivo,
as partial loss of mortalin in Drosophila recapitulated impaired
motor phenotypes observed in loss of Parkin and loss of
PINK1 function (Zhu et al. 2013). Here, dopaminergic neu-
rons were more susceptible to cell death induced by reduced
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mortalin function than other neuronal populations or non-
neuronal cells. Thus, the partial loss of mortalin function pro-
vided a first direct link between impaired molecular quality
control related to mtUPR and PD pathogenesis.

TRAP1 is part of established PD signalling pathways, as it
has been shown to be phosphorylated and activated by PINK1
(Pridgeon et al. 2007). A rare mutation of TRAP1 causing loss
of function was identified in a typical late-onset PD patient
(Fitzgerald et al. 2017). Functional analysis in patient-derived
cells suggests that loss of TRAP1 results in significant loss of
mitochondrial membrane potential and sensitivity to late-stage
quality control such as organellar removal and apoptosis.
Moreover, overexpression of TRAP1 in Drosophila is able
to compensate for PINK1 loss of function (Zhang et al.
2013) and mutant A53T alpha-synuclein-mediated mitochon-
drial toxicity (Butler et al. 2012). Recently, TRAP1 was de-
scribed to interact with Omi/HtrA2 and rescued mitochondrial
phenotypes associated with a loss of Omi/HtrA2 function)
suggesting a signalling pathway downstream of PINK1 and
Omi/HtrA2 (Fitzgerald et al. 2017).

In summary, there is increasing evidence strengthening the
link between an impaired molecular quality control and mo-
lecular pathways related to neurodegeneration in PD.

Mitochondrial dysfunction affecting cellular
integrity

In cases of sustained mitochondrial dysfunction, apoptosis of
the cell is the last solution to avoid general damage to the
organism. Apoptosis is a physiological event occurring during
development and arising when molecular and organellar qual-
ity controls are overwhelmed. Two distinct pathways have
been described, the extrinsic and the intrinsic pathways, with
the latter involving a mitochondrial signalling pathway. Here,
upon cellular stress, Bax and Bak are translocated in the mi-
tochondrial OM where these proteins colocalise with mito-
chondrial fission sites (Karbowski et al. 2002). In order to
trigger apoptosis, these pro-apoptotic proteins need to outbal-
ance anti-apoptotic proteins like Bcl-2 and Bcl-xL (Ghavami
et al. 2014). Bax and Bak then contribute to the release of
cytochrome c through the permeability transition pore (Fig.
3c). Cytochrome c will subsequently form a complex with
pro-caspase-9, which activates caspase-9, the initiator cas-
pase. Caspase-9 will in turn promote the activation of cas-
pase-3, the executioner caspase and lead to the activation of
the apoptosis pathway.

Interestingly, mitochondria-mediated apoptosis can be reg-
ulated by CHCHD2, a gene identified as responsible for an
autosomal dominant of typical PD (PARK22; OMIM:
616,710; Funayama et al. 2015). It has been shown that
CHCHD2 binds to Bcl-xL and thereby supports the anti-
apoptotic interaction between Bcl-xL and Bax (Liu et al.

2015). Under stress conditions, CHCHD2 induces a
relocalisation of Bax to mitochondrial membrane followed
by an opening of the mitochondrial permeability transition
pore (Fig. 3c). Moreover, CHCHD2 has been shown to bind
to the ECL component cytochrome c oxidase (Aras et al.
2015). When the levels of CHCHD2 were decreased, mito-
chondrial impairment occurs, as defined by decreased MMP,
increased ROS levels and mitochondrial fragmentation (Aras
et al. 2015). These observations indicate a role of CHCHD2 in
balancing both apoptosis and mitochondrial function and re-
inforce the important interplay between these processes to
insure cellular homeostasis.

VPS35 also has an anti-apoptotic role via its association
with Lamp2a and with the Parkin substrate, aminoacyl-
tRNA synthetase complex interacting multifunctional
protein-2 (AIMP2) (Yun et al. 2017). For VPS35 harbouring
the PD-associated D620N mutation, this association was dis-
turbed and led to an increased level of non-degraded AIMP2,
which translocates to nucleus and activates PARP1 leading to
cell death (Yun et al. 2017; Lee et al. 2013).

Moreover, Mortalin and TRAP1, together with mtHsp60,
have been shown to be implicated in the control of cyto-
chrome c release (Ghosh et al. 2010; Qu et al. 2012) (Fig.
3c). Depending on the subcellular localisation, Omi/HtrA2
can also have a pro-apoptotic effect after release from the
mitochondria. Indeed, in the cytoplasm, it has been shown to
bind to inhibitor of apoptosis proteins (IAPs) and therefore
promote the activation of caspases and apoptosis (Verhagen
et al. 2002) (Fig. 3c).

As described above, several genes implicated in monogen-
ic forms of PD are playing an important role not only at one
but at different levels of mitochondrial quality control. These
models can serve as prototypes to identify signalling pathways
related to impaired mitochondrial functions. Even if these fa-
milial forms represent less than 10% of all PD cases, the les-
sons learned on the role of mitochondrial integrity in PD may
be also relevant for the typical sporadic PD cases.

Genetic risk factors linked to impaired
mitochondrial function in sporadic PD

More and more, the genetic background of patients with spo-
radic forms of PD appears to be of importance. Besides the
rare genetic variants with a high effect size defining monogen-
ic forms of PD, there is an increasing number of genetic risk
factors with a smaller effect that may also contribute to neu-
rodegeneration. Among these, susceptibility factors or muta-
tions with reduced penetrance, e.g., mutations inGBA, LRRK2
and some SNCA variants, are blurring the frontier between
familial and idiopathic PD (Fig. 1). Some of these mutations
are leading to an impairment of neuronal integrity, notably
caused by mitochondrial dysfunction.
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Autosomal dominantly inherited mutations in the SNCA
gene encoding alpha-synuclein (PARK1/PARK4; OMIM:
168,601, 605,543) were the first identified genetic cause for
PD (Polymeropoulos et al. 1997; Krüger et al. 1998).
Subsequently, additional rare mutations in the SNCA gene
were discovered, including point mutations, duplications or
triplications. The penetrance of SNCA point mutations is indi-
cating a strong effect in terms of pathogenicity. Interestingly, a
potential role of the SNCA gene also in the sporadic form of
the disease was early suggested by the presence of alpha-
synuclein in Lewy bodies, the pathological hallmark in brains
of PD patients. Common genetic variants in SNCA gene were
subsequently identified without strong causal effect but rather
appear as risk factors for sporadic PD. Among them, the com-
plex polymorphic microsatellite repeat, NACP-Rep1, located
10 kb upstream of the transcription start site of SNCA has been
early associated with sporadic PD (Krüger et al. 1999;
Maraganore et al. 2006; Kay et al. 2008). The presence of
the risk allele, Rep1-261 bp, of the dinucleotide repeat poly-
morphism in the promoter of SNCA leads to an increase of
alpha-synuclein expression in vitro and in vivo (Chiba-Falek
and Nussbaum 2001; Cronin et al. 2009), leading to increased
protein levels in blood of PD patients carrier of this variant
compared to the protective genotype (Fuchs et al. 2007).
Indeed, in analogy to the disease-causing effect of the gene
duplication or triplication, a critical dose-effect with a slight
but significant increase of alpha-synuclein expression due to
the polymorphism could suffice to cause the late onset spo-
radic form of PD, as opposed to the severe early onset form
caused by an SNCA triplication. Interestingly, increased levels
of alpha-synuclein have been shown to induce mitochondrial
fragmentation by direct interaction (Kamp et al. 2010;
Nakamura et al. 2011) but also to cause impaired energy bal-
ance due to decrease respiration rates and ATP production
(Flierl et al. 2014; Sarafian et al. 2013). Moreover, an increase
of alpha-synuclein has been correlatedwith an increased Ca2+
transfer from the ER to the mitochondria, which may contrib-
ute to oxidative stress (Calì et al. 2012) (Fig. 3c). Indeed,
increased cellular stress and ROS levels have been observed
in stem cell-derived neuronal precursor cells of a PD patient
carrying a SNCA triplication (Flierl et al. 2014). Pukaß and
colleagues showed that the application of mitochondrial
stressors induced a decrease of autophagic clearance of al-
pha-synuclein, which causes alpha-synuclein accumulation
(Pukaß et al. 2015). These studies underscore a relationship
between alpha-synuclein and mitochondrial homeostasis that
may trigger cellular quality control via apoptosis. Moreover,
several SNPs located in the 3′ end of SNCA have been found
to be associated with PD (Simón-Sánchez et al. 2009; Mueller
et al. 2005). Interestingly, carriers of the ‘G’ allele of SNP
rs356219 display increased levels of alpha-synuclein in the
blood (Mata et al. 2011) but decreased SNCA mRNA expres-
sion in brain, particularly in SN (Fuchs et al. 2007; Linnertz

et al. 2009). This indicates a potential tissue-specific modula-
tory effect of different alleles of rs356219 on the SNCA
mRNA levels. Moreover, a pilot study has shown that PD
patients carrying the ‘G’ allele have a more favourable treat-
ment response to deep brain stimulation therapy (Weiss et al.
2016). Indeed, rs356219 was associated with a subtype of PD
without cognitive impairment, which may indicate a lower
burden of alpha-synuclein aggregation in different brain re-
gions related to preserved basal ganglia circuits as a basis for
optimal DBS effect (Guella et al. 2016;Weiss et al. 2016). The
mechanism underlying the SNCA SNP rs356219 needs further
studies to fully understand its pathogenicity but it appears
here, in line with the critical dose hypothesis, that different
levels of alpha-synuclein in specific brain regions may con-
tribute not only to the risk to develop sporadic PD but also
influence the therapeutic outcomes.

Heterozygous mutations in the GBA gene, encoding the
lysosomal enzyme glucocerebrosidase (GCase), are the most
common risk factor for sporadic PD with 3–7% of all PD
patients harbouring a mutation in this gene (Sidransky et al.
2009; Lesage et al. 2011).GBAmutation carriers have an up to
20-fold increased lifetime risk of developing PD (Schapira
2015). Nevertheless, the penetrance of 20% at age 70 and
30% at age 80 excludes GBA variants as a clear monogenic
form of PD (Anheim et al. 2012). Physiologically, GCase is
responsible for the hydrolysis of glucosylceramide into glu-
cose and ceramide that will be integrated into membranes.
Moreover, GCase participates to the lysosomal degradation
of alpha-synuclein that, when accumulating, can in turn impair
GCase trafficking (Mazzulli et al. 2011). Homozygous muta-
tions in the GBA gene have been extensively studied in
models of Gaucher’s disease (GD) and are known to lead to
autophagolysosomal dysfunction, accumulation of
glucosylceramide and lipid metabolism impairment
(Panicker et al. 2012; Magalhaes et al. 2016). GBA loss of
function has been shown to induce mitochondrial impairment
as revealed by a decreasedMMP and reduced ATP production
in different in vitro and in vivo models (Cleeter et al. 2013;
Osellame et al. 2013; de la Mata et al. 2015). Moreover an
increase of oxidative stress and fragmentation of mitochondria
have been observed under inhibition of GCase and in a mouse
model of GD (Cleeter et al. 2013; Osellame et al. 2013). The
direct link between GBA and mitochondrial dysfunction may
be related to quality control from its role of hydrolase. First,
lack of GCase appears to decrease macro-autophagic flux
(Osellame et al. 2013; Schöndorf et al. 2014) as revealed by
an impaired lysosomal function (Fig. 2). This defect in
organellar quality control leads to a decrease of mitophagy
and causes accumulation of dysfunctional mitochondria un-
able to ensure their role in the cell. Autophagic impairment is
particularly detrimental for neuronal cells, which are
postmitotic and therefore cannot dilute their damaged organ-
elles or unfolded proteins by cell division. Moreover, an
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impaired GCase function unbalances alpha-synuclein degra-
dation and may overload the lysosome with subsequent accu-
mulation of alpha-synuclein (Mazzulli et al. 2011; Schöndorf
et al. 2014; Yang et al. 2017). Asmentioned previously, alpha-
synuclein accumulation can independently lead to mitochon-
drial dysfunction and apoptosis (Fig. 3c). Proteostatic burden
of aggregated alpha-synuclein can challenge an alreadymildly
impaired lysosomal function, which may synergistically lead
to cellular dysfunction. Finally, Schöndorf and colleagues ob-
served an increased level of cytosolic Ca2+ in neurons derived
from iPSC of GBA mutation carriers (Schöndorf et al. 2014).
Accumulation ofmisfoldedmutant GCase into the ER leads to
dysfunction of the UPR (Kurzawa-Akanbi et al. 2012;
Fernandes et al. 2016) and can perturb ER related Ca2+ ho-
meostasis (Kilpatrick et al. 2016). The fact that GBA muta-
tions appear as a risk factor for PD in the heterozygous state
shows that one healthy allele may be enough to ensure normal
cellular function for a certain time; however, during ageing,
mutant cells cannot cope anymore with lysosomal and mito-
chondrial dysfunctions associated to alpha-synuclein accumu-
lation. To better understand this transition, more studies are
needed on the specific link between GBA and PD as most of
the existing studies focus on GD models or chemically in-
duced by GCase inhibition.

Mutations in the LRRK2 gene (PARK8; OMIM: 607,060)
are the most frequent cause of autosomal dominant PD
(Lesage and Brice 2009) but, interestingly, some population-
specific mutations in this genewith reduced penetrance appear
as well in sporadic cases (Lesage and Brice 2012). Seven
LRRK2 mutations have a proven pathogenicity (Healy et al.
2008; Lesage and Brice 2009). Among them, the G2019S
mutation has a frequency worldwide of 1–2% in sporadic
cases (with up to 30% in northern Africa; Benamer and De
Silva 2010) and 4–5% in hereditary PD (Healy et al. 2008;
Nichols et al. 2005; Gilks et al. 2005) with a variable pene-
trance (G2019S: 28% at 59, 51% at 69 and 74% at 79 years;
Healy et al. 2008). This observation already highlights the
dual role of LRRK2 as a causal gene for familial PD and as a
risk factor for sporadic PD. The G2385R and R1628P variants
of LRRK2 are particularly frequent in the Asian population,
where they cause a 2- to 3-fold increased risk for PD (Wu et al.
2013; Gopalai et al. 2014). With a frequency of 3–5% in the
Asian PD population, these two variants can be considered as
the most common variants for developing PD in East Asia
(Pulkes et al. 2014).

The G2385R mutation is localised in a protein–protein in-
teraction domain (WD40) and may disturb interaction with
binding partners or diminish dimerization of LRRK2 (Mata
et al. 2006). Contrary to the G2019S mutant, the kinase activ-
ity of LRRK2 G2385R is decreased and its GTPase activity is
increased (Ho et al. 2016; Rudenko et al. 2012). Under con-
ditions of oxidative stress, the G2385R variant leads to a
higher rate of apoptosis (Tan et al. 2007). Also, neurons from

transgenic Drosophila for G2385R were more susceptible to-
wards mitochondrial toxins (Ng et al. 2009). From these stud-
ies, it appears that the G2385R variant induces cellular dys-
function only in the presence of additional environmental
stress. Rudenko and colleagues detected an increased binding
of LRRK2 G2385R to the chaperone Hsp90, which would
imply a refolding of the protein (Rudenko et al. 2012). They
further showed that LRRK2 G2385R protein levels are de-
creased due to its higher affinity for CHIP, which induced
proteasomal degradation of the protein (Rudenko et al.
2017). Under physiological conditions, the balance between
refolding of proteins by chaperones and proteasomal degrada-
tion is tightly regulated. Cellular stress like ageing, unbal-
anced homeostasis or increased ROS levels can turn in favour
of degradation (Pratt et al. 2010).

The R1628P mutation is localised in the COR (C-terminus
of ROC) domain of LRRK2. The amino acid exchange may
lead to conformational changes and could affect dynamic inter-
action among LRRK2 domains (Ross et al. 2008). Shu and
colleagues showed that R1628P does not directly alter kinase
activity of LRRK2 but increases its affinity for Cdk5 by
allowing phosphorylation of the preceding serine that will ac-
tivate the kinase function (Shu et al. 2016). Cdk5 is activated by
oxidative stress via activation of the Ca2+ dependent protease
calpain (Strocchi et al. 2003; Dhavan and Tsai 2001). Neurons
carrying the R1628P variant have a higher sensitivity to MPTP
(Shu et al. 2016). Indeed, disturbance of mitochondria by
MPTP leads to production of oxidative stress that would acti-
vate Cdk5, which in turn leads to hyperphosphorylation of
LRRK2 R1628P variant and increases its kinase activity. Of
note, the mechanism could be dependent on a dose effect, as
patients homozygous for R1628P display a stronger phenotype
(Lu et al. 2008). Cellular dysfunction caused by R1628P vari-
ant need further studies but the previous data are showing that
unbalanced mitochondrial homeostasis could be the trigger of
increased kinase activity that would lead to typical LRRK2
dysfunction as aberrant vesicular trafficking and protein syn-
thesis (Martin et al. 2014). Reprogramming of peripheral blood
mononuclear cells from patients with PD harbouring heterozy-
gous R1628P mutation into iPSC (Ma et al. 2017) will provide
a better model to decipher the R1628P effect.

Together, these studies show that more frequent genetic
variants with weak to moderate effects can substantially con-
tribute to the risk to develop sporadic PD and implicate mito-
chondrial impairments to different extents and at different
levels of mitochondrial quality control.

Conclusion

There is increasing evidence that PD is a heterogenous disor-
der involving different genes and different molecular path-
ways, all converging to a characteristic (but not exclusive)
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degeneration of dopaminergic neurons in the substantia nigra.
Therefore, novel approaches in defining access to causative
neuroprotective therapies have to account for this heterogene-
ity and need to define criteria for stratification of sporadic PD
into different subgroups. Among the different signalling path-
ways described in PD, mechanisms implicating impaired mi-
tochondrial homeostasis get more and more into focus. Also,
an increasing number of monogenic forms of PD have been
identified that have helped to dissect the different instances of
mitochondrial quality control involved in the neurodegenera-
tive process. Here, the PINK1/Parkin-mediated pathway for
organellar quality control is representing an important build-
ing block in the understanding of the molecular underpinnings
of PD. Based on genetically defined models of PD, new ap-
proaches can now be taken to develop neuroprotective treat-
ment strategies. Using patient-derived fibroblasts from Parkin
mutation carriers, the first successful compound screening
campaign was recently published that allowed to define bile
acid derivatives as potential candidates for reverting PD-
associated mitochondrial phenotypes like energy deficiency
and altered mitochondrial morphology (Mortiboys et al.
2015). Interestingly, the same class of compounds was
also effective in patient-based models with another
monogenic form of PD, due to mutations in the LRRK2 gene
(Mortiboys et al. 2015). This may indicate that strate-
gies defining neuroprotective therapies using monogenic
models related to primary mitochondrial dysfunction may also
be effective in forms of PD that involve secondary mitochon-
drial damage.

However, even all monogenic forms of PD taken together
only contribute to a minority of all patients and therefore strat-
egies to define the mitochondrial subtypes within the most
common sporadic form of PD need to be developed. Besides
rare genetic variants that interfere with proper mitochondrial
function and confer substantial risk to develop typical PD, also
more common variants, e.g., in theGBA or LRRK2 genes were
defined that may interfere with mitochondrial homeostasis.
This adds to the complex genetic architecture of PD and led
to the concept of a certain genetic burden within a pathway,
e.g., related to mitochondrial quality control and that confers
risk to the more common sporadic form of PD. Indeed for
some heterozygous carriers of mutations in the PARK2 or
PINK1 gene an increased risk to develop sporadic PD has
been described (Hilker et al. 2001; Oliveira et al. 2003;
Foroud et al. 2003) and also digenic cases of PD revealing
an interplay of mutations in different genes related to the same
pathology have been reported (Funayama et al. 2008). Recent
studies using functional prioritisation of candidate genes de-
rived from next generation sequencing strategies further ex-
tended the concept of genetic burden that may implicate sev-
eral ‘hits’ in one individual defined by variants in different
genes, that per se only have a minor effect but may add up
to a relevant effect on mitochondrial function (Jansen et al.

2017). Therefore a similar approach to what has been outlined
here can be justified for other disease-related pathways, e.g.,
involving impaired endosomal-lysosomal function. Indeed
there is increasing evidence of monogenic causes of PD
(PARK19, PARK20 or PARK21) that are directly involved in
the shuttling of vesicles and maturation into lysosomes for
degradation of not only mitochondria but also other organelles
and protein aggregates (Edvardson et al. 2012; Köroĝlu et al.
2013; Krebs et al. 2013; Quadri et al. 2013; Vilariño-Güell
et al. 2014). Using mechanism-based stratification more pre-
cise therapeutic interventions will be developed that account
for the interindividual differences and the heterogeneity of PD
(Krüger et al. 2017).
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