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Summary

Heritability is essential for understanding the biological causes of disease but requires laborious 

patient recruitment and phenotype ascertainment. Electronic health records (EHR) passively 

capture a wide range of clinically relevant data and provide a resource for studying the heritability 

of traits that are not typically accessible. EHRs contain next-of-kin information collected via 

patient emergency contact forms, but until now, these data have gone unused in research. We 

mined emergency contact data at three academic medical centers and identified 7.4 million 

familial relationships while maintaining patient privacy. Identified relationships were consistent 

with genetically-derived relatedness. We used EHR data to compute heritability estimates for 500 

disease phenotypes. Overall, estimates were consistent with the literature and between sites. 

Inconsistencies were indicative of limitations and opportunities unique to EHR research. These 

analyses provide a validation of the use of EHRs for genetics and disease research.

Graphical abstract
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Introduction

Family history is one of the most important disease risk factors necessary for the 

implementation of precision medicine in the clinical setting (Aronson and Rehm, 2015; 

Guttmacher et al., 2004). The predictive value of family history for any given trait is directly 

related to the fraction of phenotypic variance attributable to genetic factors, called 
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heritability (Tenesa and Haley, 2013; Visscher et al., 2008), as well as to shared 

environmental factors. Knowledge of disease heritability combined with family history 

information is clinically useful for identifying risk factors, estimating disease risk, 

customizing treatment, and tailoring patient care (Chatterjee et al., 2016). Moreover, by 

quantifying the genetic contribution to a trait, heritability estimation represents the first step 

in gene mapping efforts for any disease.

Estimating heritability has traditionally required in-depth family studies, with twin studies 

being the most commonly used method. By their nature these studies can be laborious, 

limiting their sample sizes and, subsequently, their power. A notable exception, and perhaps 

the largest single study, used 80,309 monozygotic and 123,382 same-sex dizygotic twins to 

conclude that there is a significant familial risk for prostate, melanoma, breast, ovary, and 

uterine cancers (Mucci et al., 2016). Another study brought together 2,748 twin studies 

conducted since 1955 covering 14.5 million subjects. However, individual data are not 

available in such a meta-analysis, preventing any study of cross-sections, combinations of 

traits, or strata that were not analyzed in the original study (Polderman et al., 2015).

Electronic Health Records (EHR) are in broad use and offer an alternative to traditional 

phenotyping. Every day, the EHR records information for thousands of patients from drug 

prescriptions and disease diagnosis to clinical pathology results and physician notes. Use of 

EHR data presents an opportunity to conduct rapid and expansive studies of disease and 

phenotype heritability. In particular, EHR data enables access to traits that otherwise might 

not be explored. In addition, data captured by these systems represent the diversity of the 

patient populations they serve, and, in ethnically diverse regions like New York City, make 

previously unattainable cohorts available for study (Hripcsak et al., 2016). The caveat is that 

these data are known to contain issues regarding missingness and accuracy which limits their 

use (Hripcsak and Albers, 2013; Weiskopf and Weng, 2013). The most critical limitation for 

genetic studies may be the uncontrolled ascertainment bias (Kaplan et al., 2014). The 

probability that a particular trait is recorded in the EHR is not uniform across disease 

conditions or patients. For example, a patient seen for a routine checkup with no symptoms 

is unlikely to undergo an MRI, regardless of whether or not they have an unruptured brain 

aneurysm (Bederson et al., 2000). However, a patient that lives nearby may receive much of 

their care at the hospital and have fairly complete records. A recent study used the first 

release of the UK Biobank data to estimate hundreds of heritabilities from 130,000 patients’ 

genotype and EHR data; however, they did not address the issues of ascertainment biases 

(Ge et al., 2017).

The genetic relatedness between patients is not routinely captured in the EHR during clinical 

practice. In some hospitals, as is the case for two out of three we represent, a link is made 

between the mother’s and child’s medical records upon birth. In general, however, familial 

links are not present. Recent work has identified twins by comparing birth dates and 

surnames (Mayer et al., 2014), but there is a more comprehensive source of familial 

relationship data that is available at nearly every hospital across the country – the emergency 

contact information. Upon admission, each patient is asked to provide contact details to be 

used in case of emergency as well as the relationship to the individual provided. If accurate, 
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this ubiquitous resource can be used to define a broad network of relatedness across a 

hospital’s patient population.

In this study, we demonstrate the utility of the EHR as a resource for genetics research, even 

in the absence of genetic patient data, by using extracted familial data to estimate the 

heritability of 500 phenotypes, both quantitative and dichotomous. We performed this 

analysis independently at three large academic medical centers in New York City. We 

present our algorithm for extracting relationships, called Relationship Inference From The 

Electronic Health Record (RIFTEHR), and use it to infer 7.4 million familial relationships 

among our patients. We then compute heritability estimates for every available phenotype. 

Our derived heritability estimates are consistent with those previously reported, concordant 

across sites, and we present significant heritability estimates for many traits that may 

otherwise never have been studied.

Results

Mining familial relationships from the EHR

We obtained the data for this study from the inpatient EHR used at the hospitals of Columbia 

University Medical Center, Weill Cornell Medical Center, and Mount Sinai Health System. 

Columbia University Medical Center and Weill Cornell Medical Center operate together as 

NewYork-Presbyterian Hospital and herein, we will refer to the hospitals and the data 

associated with them as Columbia, Weill Cornell and Mount Sinai, respectively. The study 

was approved by Institutional Review Boards independently at each site.

In total, 3,550,598 patients provided 6,587,594 emergency contacts at the three medical 

centers. Of these, we identified the emergency contact as a patient in 2,191,695 cases 

(825,880 at Columbia, 573,804 at Weill Cornell, and 792,011 at Mount Sinai). Of those, 

1,902,827 provided 1,588,134 family members as emergency contact (488,932 at Columbia, 

297,011 at Weill Cornell, and 802,191 at Mount Sinai; Table 1). Using these next-of-kin 

data, we inferred an additional 2,755,448 relationships at Columbia, 1,237,749 at Weill 

Cornell and 1,819,581 at Mount Sinai (Figure 1). Including inferences, we identified a total 

of 3,244,380 unique relationships at Columbia, 1,534,760 at Weill Cornell, and 2,621,772 at 

Mount Sinai. Inferred relationships include first to fourth-degree relatives as well as spouses 

and in-laws (Table 1, Table S1). We grouped individuals into families by identifying 

disconnected subgraphs (Materials and Methods). We found 223,307 families at Columbia 

containing 2 to 134 members per family. Similarly, we found 155,883 families at Weill 

Cornell, with up to 129 members per family and 187,473 families at Mount Sinai, with up to 

57 family members. These include 4,271 families with fourth-degree relatives (i.e., families 

that contain first cousin once removed, great-grandaunt/great-granduncle or great-

grandnephew/great-grandniece) at Columbia, 1,045 families at Weill Cornell, and 992 

families at Mount Sinai.

The relationship between mother and child was explicitly documented in the EHR for 

newborns delivered at Columbia and Weill Cornell. This ‘EHR mother-baby linkage’ 

provided a reference standard for maternal relationships, allowing us to compute sensitivity 

and positive predictive value (PPV) of the relationship inference method. For maternal 
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relationships, we obtained 92.9% sensitivity with 95.7% PPV at Columbia and 96.8% 

sensitivity with 98.3% PPV at Weill Cornell. Similarly, for siblings, we obtained 92.2% 

sensitivity with 98.3% PPV at Columbia and 96.5% sensitivity with 99.6% PPV at Weill 

Cornell (Figure 2A). Tables S4 and S5 present the stratified performance of the identified 

relationships by the number of variables used to match the emergency contact to a patient in 

a healthcare system, and by the combination of variables (e.g., last name only, first name and 

last name, etc.) used to perform the match, respectively.

We validated the identified relationships by comparison to genetically-derived relatedness 

(Figure 2). We collected data for 1,222 patients from Mount Sinai and 302 patients from 

Columbia for whom we have EHR-inferred relationships and available genetic data that 

were consented for reuse. We included spousal relationships as a negative control using a 

heuristic definition of being genetically unrelated (IBS < 0.1). We estimated relatedness 

using PLINK (Purcell et al., 2007). At Columbia, almost all 134-predicted parent-offspring 

relationships had the expected genetic relatedness of 50%, and the three grandparental 

relationships had the expected relatedness of 25%. All 26 sibling relationships were 

genetically related, but four were identical twins, and three were half-siblings (Figure 2B). 

At Mount Sinai, the positive predictive value (PPV) to predict spousal relationships was 

91%, 80% for parent-offspring, 66% for sibling, and 47% for grandparental and 32% for 

avuncular relationships (Figure 2D). Overall, relationships extracted from the EHR 

significantly correlate with the expected genetic relatedness (r=0.60, p=1.81e-18 at 

Columbia and r=0.67, p<1.2e-162at Mount Sinai).

Health records-based estimates of heritability

To differentiate heritability estimates derived under uncertain ascertainment conditions, we 

introduce the concept of “observational h2” or ho
2. ho

2 is an estimate of the narrow-sense 

heritability where the phenotypes (traits) come from observational data sources. 

Observational data are subject to confounding biases from physician and patient behaviors 

that will affect the probability that a particular trait is ascertained. The differential 

probability that a given individual will be phenotyped for a study trait is the ascertainment 
bias. When ascertainment biases vary from family to family, they can produce unstable 

heritability estimates that will be dependent on the particular families with available data. In 

an ideal setting, these biases would be identified and the phenotyping corrected. For a single 

trait, this would be feasible. However, in a systematic evaluation of heritability across all 

traits and physiological systems, it is not. Therefore, we used repeated subsampling to 

produce heritability estimates that are robust to this bias. For each sampling, we used 

SOLAR (Almasy and Blangero, 1998) to estimate the heritability of the trait adjusted for age 

and sex, in a procedure we call SOLARStrap (Materials and Methods). SOLARStrap 
involves repeated sub-sampling of families, estimating heritability on each sub-sample using 

SOLAR, and averaging these results to produce a more robust estimate.

We used simulations of quantitative and dichotomous traits with heritability ranging from 5–

95% to validate the accuracy and robustness of SOLARStrap. SOLAR was precise in 

estimating the heritability of both quantitative (r2 = 0.999) and dichotomous (r2 = 0.994) 

traits (Figure 3A). We ran SOLARStrap in the simulated quantitative traits, and it accurately 
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estimated the heritabilities regardless of the sampling size (Figure 3B, r2 = 0.986, p = 

3.22e-15). For dichotomous traits, we ran SOLARStrap in two scenarios: (1) including all 

families regardless of the number of cases in the family and (2) including only families with 

at least one case. In the latter scenario, we randomly chose one of the cases in each family to 

be the proband. SOLARStrap accurately recapitulated the heritability estimates regardless of 

the number of families sampled in both cases, with lower accuracy when a proband was 

assigned than the complete ascertainment (r2 = 0.988, p = 7.57e-15 without proband and r2 = 

0.930, p = 2.85e-11 with proband; Figure 3C and 3D). We found that both SOLAR and 

SOLARStrap produced accurate estimates given complete data and in the presence of 

random missingness (Figure 3E). However, SOLARStrap produced more accurate estimates 

in the presence of ascertainment biases that vary from family to family (Figure 3F). As 

expected, SOLARStrap produced estimates with larger confidence intervals than SOLAR. 

SOLARStrap becomes more sensitive to bias as the number of families sampled increased 

towards the total number of families available (Figure 3G); however, the estimate of 

heritability is not dependent on the number of families sampled (Figure 3H, r=0.02, 

p=4.1e-8). We used the Proportion of Significant Attempts (POSA) as a quality score for the 

heritability estimates generated by SOLARStrap. A higher POSA score represents a more 

accurate heritability estimate from SOLARStrap (Figure 3I). We injected noise into the data 

by randomly shuffling a subset of the patient diagnoses, simulating misclassification 

(misdiagnosis or missed diagnosis) in the medical records. Injection of 5% noise reduced the 

estimate 13% (from ho
2 =0.77 to ho

2 =0.67) and 10% noise reduced the estimate 30% (from 

ho
2 =0.77 to ho

2 =0.53, Figure 3J). Misclassification is one explanation of lower than 

expected estimates compared to a carefully ascertained study.

We found that heritability estimates are significantly correlated across sites (Figure 4A). We 

identified traits with heritability estimates and then computed the correlation between the 

estimates found in each one of the study sites to the other two sites. Columbia had 147 traits 

that overlapped with traits from the other two sites, with correlation r=0.35, p=1.32e-05. 

Similarly, Weill Cornell had 147 traits, with correlation r=0.48, p=8.20e-10, and Mount 

Sinai had 58 traits, r=0.36, p=5.48e-03. We mined the literature for heritability estimates and 

found 91 phenotypes that mapped to phenotypes we curated from the EHR. We also 

included all traits reported in the latest meta-analysis (Polderman et al., 2015). We used 

simulations to set the quality control parameters of the SOLARStrap procedure (Materials 
and Methods). Thirty-three traits passed these quality control criteria. We found that they 

were significantly correlated with literature estimates for these traits (r=0.45, p=9.11e-03, 

Figure 4B), and 16 (48%) had overlapping confidence intervals (Table S2). On average, 

observational heritability estimates were 27% lower than those reported in the literature. We 

also stratified the heritability estimates by race and ethnicity. The estimates stratified by race 

and ethnicity are significantly correlated with the overall heritability estimates (Figures 4C 

and S3).

In addition to the additive genetic model (AE), we also modeled heritability with a term for 

common environment (ACE) using the mother ID as the household ID. ACE and AE models 

are overall significantly correlated (r=0.66, p=1.25e-34, Figure S2) and are also correlated 

when computing heritability estimates for ICD10 codes alone (r=0.49, p=4.21e-13, Figure 

4D).
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We found that phenotypes from the EHR can increase sample size and recapitulate 

heritability estimates that are well known. For example, the most heritable trait we found 

was for sickle cell disease, ho
2 =0.97 (0.75–1.00), N=857 (Table 2). We also computed 

heritability of height and stratified the estimates based on self-reported race and ethnicity as 

captured in the EHR. The latest meta-analysis reported heritability of height to be 0.77 

(CI=0.74–0.80) (Polderman et al., 2015). Using EHR data, we obtained observational 

heritability of 0.80 (CI=0.74–0.86). The heritability of height among whites had a lower 

quality control score and is higher than the other groups. (Figure 4E).

Using phenotypes from the EHR for heritability can provide clarity for poorly studied traits, 

revealing subtle differences between closely related conditions, and open up new avenues of 

heritability research. For example, two previous studies had shown conflicting evidence for 

the relative heritability of HDL cholesterol and LDL cholesterol (Pietiläinen et al., 2009; 

Souren et al., 2007). The larger of these two studies (N=378) found no difference in the 

heritability of these two traits when adjusting for age and sex, while the other found a 

slightly higher heritability for HDL, but was underpowered to detect significance. We 

present evidence that HDL is more heritable than LDL (ho
2 =0.48 CI: 0.42–0.56 vs 0.36 CI: 

0.27–0.45 at Columbia; ho
2 =0.51 CI: 0.35–0.67 vs 0.26 CI: 0.15–0.38 at Weill Cornell). 

This finding holds when accounting for the use of HMG-CoA reductase inhibitors as 

treatment for hypercholesterolemia (Figure 4F). At 96,241 patients in the Columbia cohort 

and 33,239 patients in the Weill Cornell cohort, ours is the largest heritability study of 

cholesterol ever conducted, to our knowledge.

Heritability is used to estimate genetic contribution to complex, polygenic, or quantitative 

traits rather than classic Mendelian disorders in which the presence or absence of a single 

genetic mutation determines the development of the disease. Interestingly, our algorithm was 

able to provide estimates of heritability for Mendelian traits without genetic information 

based only on EHR data. For example, we observed high heritability estimates for common 

highly penetrant Mendelian diseases with autosomal transmission, such as sickle cell disease 

(ho
2 =0.97, 95%CI 0.75–1.00, N=857 families), but low heritability estimates for other rare 

recessive Mendelian traits, such as cystic fibrosis (ho
2 = 0.01 CI: 0.01–0.02 N=7,682 

families). Recovering a heritability estimate of almost 1 for sickle cell is reassuring since 

that is exactly what would be expected in the presence of a highly penetrant mutation and 

when carriers are also frequently correctly identified in the EHR. However, the heritability 

of cystic fibrosis was very low. This is likely because the additive model used for heritability 

estimation is clearly misspecified for a rare disease with a known recessive pattern of 

inheritance and asymptomatic carrier status. Moreover, because of the availability of carrier 

screening and prenatal diagnosis, cystic fibrosis families are nowadays typically small 

(Castellani et al., 2009; Dupuis et al., 2005; Scotet et al., 2012; Slieker et al., 2005); affected 

cases also frequently suffer from infertility limiting the number of observed disease 

transmissions per family. Indeed, in our dataset families with cystic fibrosis were smaller 

(average family size 3.0 for cystic fibrosis vs 4.6 for sickle cell disease, p=8.8e-14), had 

more advanced average age (average 40 years old vs 36 years old for sickle cell disease, 

p=4.1e-17), had fewer “child” and “grandchild” relationships (p= 2.18e-14and p=1.63e-20, 

respectively), and included more parental relationships (p= 2.00e-159) when compared to 

the sickle cell disease cohort (Table S3).
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In addition, subtle phenotypical variations that are routinely collected clinically can be 

studied. For example, analysis of the highest and lowest heritability estimates by category 

provides us with interesting findings. Among neurological diseases, we observe that sleep 

disorders are highly heritable (ho
2 =0.31 CI: 0.19–0.48); whereas headache syndromes are 

not (ho
2 =0.02 CI: 0.01–0.03). A comprehensive list of heritability estimates for multiple 

diseases’ categories is available in Table 2. Finally, our study demonstrated that the EHR can 

identify traits for future genetic studies. We computed heritability estimates for 500 traits, 

only 33 of which had been previously studied as part of the latest meta-analysis or identified 

by our literature review. All heritability estimates are available through a web interface and 

to download at http://riftehr.tatonettilab.org.

Discussion

Analysis of EHR data has yielded insight into drug effectiveness and allowed precise 

definition of phenotypes to investigate disease processes (Birkhead et al., 2015; Boland et 

al., 2015; Lorberbaum et al., 2016; Ritchie et al., 2015; Tatonetti et al., 2012; Wei and 

Denny, 2015). For the first time on a large scale, we used EHR data to infer pedigrees from 

patient-provided emergency contact information. We presented our algorithm for performing 

this relationship extraction, RIFTEHR, validated its performance, and applied it to the 

medical records of three independent institutions. This approach has significant implications 

for estimating heritability of disease without genetic testing. The EHR data used in this 

research are nearly ubiquitous and, if privacy is adequately protected, could allow almost 

any research hospital to identify related patients with high specificity. Finally, we used EHR-

inferred relationships to compute heritability estimates for 500 traits in diverse populations 

on a scale not previously available. Our approach allowed for heritability evaluation of many 

diseases not previously studied.

Heritability is a key component in precision medicine and is typically estimated based on 

family history. Collection of comprehensive and accurate family history is time-consuming 

and does not occur during the vast majority of clinical encounters (Polubriaginof et al., 

2015). The construction of pedigrees by inference of relatedness from administrative records 

allows for rapid assessment of family history and heritability at scales that were previously 

impossible to achieve. The algorithm used in this study uncovered over 560,000 pedigrees 

within the medical records of three academic medical centers. We validated the inferred 

familial relationships against both clinical and genetic references and found PPV between 

66% and 99% among first-degree relatives. One of the limitations of our method is the 

inability to detect adoptions, differentiate half-siblings from full siblings, or detect non-

paternity events. Emergency contact is not a biological construct; therefore, patients identify 

not only direct blood relatives, but also adoptive family members and use familial labels for 

friends.

We used EHR-inferred relationships to calculate heritability estimates among individuals 

with defined relationships. Previous research in this area has focused on family studies of 

known relatives, primarily twins. Mayer and colleagues used EHR data to create a cohort of 

2,000 twins/multiple births and measured concordance among identified twins for two 

highly heritable diseases, muscular dystrophy and fragile-X syndrome (Mayer et al., 2014). 
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Our study looked not only at twins, but entire families across several generations. 

Importantly, most previous studies have predominantly involved White Europeans and may 

not be representative of other populations. However, our results reflect the diverse, 

multiethnic population of New York City – the majority of our patient population is not self-

reported as “white.” For example, we stratified patients that had height available in the EHR 

by self-reported race and ethnicity and used these cohorts of patients to compute heritability 

of height. We observed that the heritability estimate was higher among whites in comparison 

to other race and ethnicity groups. Bias might explain this difference since this group had a 

lower quality control score than the others. But we also investigated income as a possible 

confounder using patient ZIP codes and Census data. Overall, the population self-identified 

as white has twice the average income than other populations – one possible explanation for 

this difference given that heritability estimates increase in more homogenous environments. 

This could create a difference in heritability of height both across ethnicities and across 

income levels. In other cases, traits have been shown to be more heritable in high 

socioeconomic strata than in lower strata (Bronfenbrenner and Ceci, 1994; Harden et al., 

2007; Turkheimer et al., 2003). The stratification by race and ethnicity was not feasible for 

all traits. Over 68% of the families have a single race and ethnicity reported and over 29% of 

the families have two distinct race and ethnicity groups reported. Estimates of traits that had 

a large enough sample size to stratify by race and ethnicity are available at http://

riftehr.tatonettilab.org. For traits that were stratified by race and ethnicity, heritability 

estimates were significantly correlated with the overall heritability estimate.

The primary and most significant challenge when using traits defined from an observational 

resource, like the EHR, is incomplete phenotype information resulting in ascertainment bias. 

In a heritability study, the phenotype of each study participant is, ideally, carefully evaluated 

and quantified. This is not feasible, however, when the cohort contains millions of patients 

with thousands of phenotypes. The bias may depend on many latent factors, including the 

trait being studied, the trait status of relatives, the proximity to the hospital, and an 

individual’s ethnicity and cultural identification, among others. The consequence of this 

uncontrolled ascertainment bias is that heritability estimates will be highly dependent on the 

particular individuals in the study cohort. We observed that a small number of highly biased 

families could significantly sway the heritability estimate. Repeated sub-sampling will be 

robust to these types of biases. EHR-based heritability estimates are particularly well-suited 

for complex traits that require large numbers of patients (e.g., Type 2 Diabetes Mellitus and 

Obesity).

The unique nature of the relationships and phenotypes derived from the EHR may 

necessitate novel methods for estimating heritability. We used a mixed linear model 

implemented in SOLAR (Almasy and Blangero, 1998) to estimate heritability and used 

repeated sampling, which we call SOLARStrap, for efficiency and to correct for 

ascertainment heterogeneities. We evaluated the impact of bias and missingness on 

SOLARStrap by comparing the heritability estimates with simulated data and demonstrated 

that SOLARStrap is robust to bias. Overall, quantitative traits perform better than 

dichotomous traits, and traits commonly documented in EHRs perform better than rare and 

poorly documented conditions (e.g. mental health disorders). There may be more accurate 

ways to estimate heritability from this unique data source. Future work could focus on using 
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only certain types or relationships or use alternative modeling strategies. Fragmentation of 

care is an additional limitation when using EHR data for genetic research. Patients often go 

to multiple healthcare systems, and therefore, the information available in a single institution 

is incomplete. Future implementations may address this limitation by accounting for the 

number of visits and documentation of primary care physician in the healthcare system or by 

integrating records across a regional healthcare network.

There are significant bioethical considerations regarding the use of the RIFTEHR method, 

including how best to balance the competing demands of protecting patients’ privacy with 

clinicians’ duty to warn relatives of potential genetic risks. The method could readily be 

applied in EHR systems, such that clinicians could easily access the health information of a 

patient’s family members. In the United States, accessing a family member’s health 

information in this manner may be considered a violation of the 1996 Health Insurance 

Portability and Accountability Act (HIPAA) Privacy Rule (United States, 1996). On the 

other hand, case law in the United States has established that healthcare providers have a 

responsibility to inform a patient’s relatives about heritable conditions that may reasonably 

put the relatives “at risk of harm” (Suarez, 2011). These conflicts may need to be resolved 

before automatic relationship inference can be used clinically. It is worth noting there is a 

risk of reidentification of family structures, even when de-identified according to the HIPAA 

Safe Harbor. For example, unique family structures could be identified by cross-referencing 

obituaries and other online tools. Extra safeguards are necessary to mitigate these risks when 

releasing these data.

We have described and validated a method for identifying familial relationships in patient 

medical records and used 7.4 million relationships inferred from the EHRs at three academic 

medical centers to estimate heritability of 500 traits without genetic testing. We found that 

heritability estimates were concordant across the three centers, and are broadly consistent 

with published studies, suggesting that the method may have broad applicability. Genetic 

information is valuable but expensive and not always available. In this case, familial 

relationships extracted from emergency contact information can personalize disease risk 

prediction and facilitate heritability determination for phenotypes that were not previously 

investigated in family-based or twin studies. The correspondence of our heritability 

estimates with family-based estimates provides a direct validation of the value of electronic 

health records for generating inferences about disease, making RIFTEHR a valuable tool for 

the advancement of precision medicine.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Please direct any requests for further information or reagents to Lead Contact, Nicholas P. 

Tatonetti (nick.tatonetti@columbia.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The data for this study were obtained from the inpatient EHR used at the hospitals affiliated 

with three large academic medical centers in New York City: Columbia University Medical 
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Center, Weill Cornell Medical Center, and Mount Sinai Health System. Columbia University 

Medical Center and Weill Cornell Medical Center operate together as NewYork-Presbyterian 

Hospital and herein, we will refer to the hospitals and the data associated with them as 

Columbia and Weill Cornell, respectively. Similarly, we will refer to Mount Sinai Health 

System and its data as Mount Sinai. This study was approved by Institutional Review Boards 

independently at each site (protocol number AAAO4154 and AAAL0601 at Columbia, 

1603017109 at Weill Cornell, and HS15-00873 at Mount Sinai). A waiver of informed 

consent was granted since this was a retrospective study, involving no greater than minimum 

risks to the subjects. The use of genetic data from previously conducted research studies was 

approved by the IRB (AAAI0997, AAAO6702, AAAL0601) and recruited study participants 

provided written informed consent.

This study included 682,267 patients from Columbia, 437,375 at Weill Cornell, and 783,185 

at Mount Sinai. The demographic description of the patients from the three study sites is 

detailed in Table 1.

Relationship Inference from the Electronic Health Record (RIFTEHR)—The 

institutional review boards at the three study sites approved this research. The standard 

operating procedures require patients who receive care at one of the three academic medical 

centers to provide information about an emergency contact. This information included the 

person’s name, address, phone number, and their relationship to the patient (e.g., parent, 

sibling, friend). Using a method we call “Relationship Inference from the Electronic Health 

Record” (RIFTEHR), we used the emergency contact information to identify familial 

relationships in the EHR in cases where the emergency contact person had his or her own 

record generated by an encounter with the healthcare system. Algorithmically, we then 

inferred additional relationships from the connectedness of the identified individuals. This 

information was validated against genetic data and a separate module of the EHR which 

documented the linkage between mothers’ and their newborns’ medical records.

Deriving familial relationships from emergency contact data

Matching emergency contact to medical records: Our algorithm created for each patient a 

list of all reported emergency contacts. Then, for each emergency contact, it attempted to 

identify a medical record by matching first name, last name, primary phone number, and ZIP 

code. First, we considered all cases with first name and filter the table that contains all 

patients’ information to identify records that contain the same first name. We then returned 

the identified records and performed the same comparison with last name, primary phone 

number, and ZIP code. Subsequently, we compared the combination of two variables at a 

time (i.e. first name and last name, first name and primary phone number, first name and ZIP 

code, etc.). We then performed combinations of three variables and then of all four variables. 

We only considered it successful when we identified a single patient that matches to the 

emergency contact information given. We also captured which variables were used in the 

matching process for each one of the emergency contacts (i.e. first name and last name; first 

name, last name and phone number, etc.). The output of this algorithm contained a patient’s 

identifier, the relationship between the patient and the matched emergency contact, the 

emergency contact’s identifier, and a list of the variables used to perform the matching 
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process. We used as patient identifiers the Enterprise Master Patient Index (EMPI), when 

available or the medical record number (MRN). EMPIs are a unique identifier created to 

refer to multiple MRNs across the healthcare organization. Using EMPIs allowed us to 

perform better in the matching process since duplicates from patients having more than one 

MRN were excluded.

Quality control of matches: Once the matches were identified, we excluded patients with 

non-biological relationships (i.e. spouse, friend). Specific relationships were mapped to 

relationship groups (e.g. the relationship “mother” is mapped to “parent”). We then 

calculated the age difference between two related patients and excluded parents that were 

less than 10 years older than their children, children that were less than 10 years younger 

than their parents, grandparents that were less than 20 years older than their grandchildren, 

grandchildren that were less than 20 years younger than their grandparent. Since parents and 

grandparents must be older than their children and grandchildren, we also flipped 

relationships when the age difference between parent or grandparent and its child or 

grandchild was negative, specifically the relationship “parent” becomes “child” and the 

relationship “grandparent” becomes “grandchild.” The same process was done when the age 

difference between children and grandchildren was positive. We also excluded every patient 

that matches to 20 or more distinct emergency contacts since it is unlikely that patients have 

such a high number of family members as a direct emergency contact. Finally, we generated 

the opposite relationship for every relationship pair. For example, if we determined that A is 

a parent of B, the opposite relationship is that B is a child of A.

Inferring familial relationships: Using the matches identified, we inferred additional 

relationships. The inference process was made based on familial relationship rules. For 

example, if patient A is the mother of patient B and patient B is the mother of patient C, then 

by inference we know that A is the grandmother of C and C is the grandchild of A. The rules 

used to perform these inferences are described in Table S5.

Quality control of inferred relationships: Once additional relationships are inferred, we 

removed ambiguous relationships such as “Parent/Aunt/Uncle” if the same pair contains a 

unique specific relationship, in this case, either “Parent” or “Aunt/Uncle.” The same was 

done for “Child/Nephew/Niece,” “Sibling/Cousin,” “Parent/Parent-in-law,” “Child/Child-in-

law,” “Grandaunt/Granduncle/Grandaunt-in-law/Granduncle-in-law,” “Grandchild/

Grandchild-in-law,” “Grandnephew/Grandniece/Grandnephew-in-law/Grandniece-in-law,” 

“Grandparent/Grandparent-in-law,” “Great-grandchild/Great-grandchild-in-law,” “Great-

grandparent/Great-grandparent-in-law,” “Nephew/Niece/Nephew-in-law/Niece-in-law,” and 

“Sibling/Sibling-in-law.”

Identification of families: To identify families in the datasets, we excluded all non-

biological relationships such as spouses and in-laws, as well as ambiguous relationships 

such as “Parent/Parent-in-law.” Using both provided and inferred relationships, we created a 

network where each node corresponds to a patient and edges represent familial relationships. 

To identify different families, we decomposed the network into individual connected 

components.
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Identification of twins: To identify twins, we matched siblings that shared the same last 

name and the same date of birth. We did not have enough information to distinguish between 

monozygotic and dizygotic twins.

Evaluation of automatically inferred relationships

Evaluation using the EHR’s mother-baby linkage: We used the EHR’s mother-baby 

linkage as the reference standard to evaluate identified maternal relationships. Cases were 

considered true-positives when maternal relationships identified by RIFTEHR were also 

present in the EHR’s mother-baby linkage table. Cases were considered false-positives when 

maternal relationships identified by our algorithm were discordant with the EHR’s mother-

baby linkage table. And lastly, false-negative cases occurred when a maternal relationship 

was captured by the EHR’s mother-baby linkage but not by our method. Overall 

performance was evaluated by calculating overall sensitivity and positive predictive value 

(PPV). To assess if matches identified by different variables performed differently, we also 

computed sensitivity and PPV. We stratified the identified relationships by the number of 

variables used to match the emergency contact to a patient in a healthcare system (Table S4), 

as well as by the combination of variables (e.g., last name only, first name and last name, 

etc.) used to perform the match (Table S4). Additionally, we used the EHR mother-baby 

linkage information to infer siblings. We then used these relationships to evaluate siblings 

identified by RIFTEHR. Similarly to the maternal relationships evaluation, overall sibling 

performance was evaluated by calculating sensitivity and PPV.

Evaluation using genetic data with analysis for kinship: Genotype data were collected 

from existing sources for 1,524 individuals. At Columbia, genetic data were available for 

302 individuals. Genotyped participants had a mean age 29.6 years, and approximately 70% 

were female. Participants self-identified as: Hispanic or Latino (41%), Black or African 

American (3%), White or Caucasian (33%), Other (11%), or Unknown/Declined to Answer 

(12%). Data were collected from three separate sources: the Institute for Genomic Medicine, 

The Columbia University Medical Center Pathology Department, and the Washington 

Heights/Inwood Informatics Infrastructure for Comparative Effectiveness Research 

(WICER) project, using whole exome sequencing, Affymetrix CytoScan HD array, and the 

Illumina Multi-Ethnic Genotyping Array, respectively. To select single-nucleotide 

polymorphisms (SNPs) for kinship, minor allele frequency was filtered to >5%, and 

genotyping rate to 99% using PLINK (Purcell et al., 2007). Independent SNPs were selected 

using the sliding window (100 SNPs) linkage disequilibrium approach. This resulted in a 

total of 24,752 variants from the Institute for Genomic Medicine data, 8,544 SNPS from the 

WICER data, and 32,938 SNPs from the Pathology Department data. PLINK was then used 

to calculate identity by descent (IBD) by determining π results (P(IBD=2)+0.5*P(IBD=1)

(proportion IBD)) for each pair of individuals. We considered that the predicted relationship 

was correct if the blood relationship fraction between the two people was the same as the 

one expected for the predicted relationship with a margin of error of 20% of the expected 

blood relationships. For example, for inferred mother-child pairs, two individuals in a pair 

share 50% (±10%) of their genetic information, then that provides evidence that the 

predicted relationship is correct. Likewise, for inferred aunt-niece pairs, the two individuals 

are expected to share 25% (±5%). The performance was evaluated by calculating PPV. The 
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research studies were approved by the IRB (AAAI0997, AAAO6702, AAAL0601) and 

recruited study participants provided written informed consent.

Using the Mount Sinai data, we leveraged genome array data for 24,441 participants 

recruited to the BioMe Biobank Program of The Charles Bronfman Institute for 

Personalized. Genotyped participants had a mean age 55.8 years, and approximately 61% 

are female. Participants self-identified as: Hispanic/Latino (45%), African American (31%), 

White/Caucasian (8%), Asian (6%), Mixed ancestry (6%), or Other (11%). To calculate 

genetic relatedness, we first merged BioMe participants (N) genotyped either on the 

Illumina OmniExpress HumanCore (N=11,212) and Multi-Ethnic Genotype Array v1.0 

(N=10,467) platforms, retaining only the intersection of sites (n) between the two arrays 

(n=385,531). We subsequently removed palindromic sites (n=7,215 SNPs) and sites with a 

missingness rate > 1% (n=517) and a MAF < 5% (n=112,537) leaving a total of 112,537 

SNPs. Of 21,679 BioMe participants with genotype data, emergency contact information 

was available for 16,341, and in 1,222 cases both family members with relationship inferred 

by RIFTEHR were in BioMe. Pairwise genetic relationships were estimated by Identity-by-

State analysis with PLINK1.9 using the –genome flag. Inferred relationships from 

RIFTEHR were compared to pairwise genetic relationships to assess performance metrics 

using the “caret” package with R version 3.0.3. Pairs of patients with conflicting familial 

relationships were analyzed based on the closest relationship available. For example, if the 

same pair has two distinct relationships inferred based on their emergency contact 

information (e.g. parent and aunt/uncle), we considered the first-degree relationship to be 

correct (in this case, parent) for evaluation of the relationship against genetic data. Parent-

offspring and sibling relationships groups were both expected to share ~50% genetic 

relatedness IBS ( π mean 0.5, s.d. ± 0.1). We could distinguish between these two groups by 

examining the IBS measures at heterozygous (IBS1) and homozygous (IBS2) sites. Parent-

offspring were defined as IBS1 > 0.75 and IBS2 < 0.25 (n=1087 pairs), full-siblings were 

defined as pairs that shared between 0.35 and 0.65 IBS1, and IBS2 > 0.15 and < 0.5 

(n=502), monozygotic twins were defined as individuals sharing > 0.8 IBS2 (n=2). In each 

RIFTEHR group we calculated positive predictive values (PPV) based on how many 

predicted parent-offspring and siblings met this genetic criteria. Grandparental, avuncular 

and half-siblings are all expected to share ~25% genetic relatedness IBS ( π mean 0.25, s.d. 

± 0.05). Avuncular relationships involved one sibling and the offspring of the other sibling 

regardless of sex; therefore, the term avuncular refers to both aunts and uncles.

We could not distinguish these groups any further, so we calculated positive predictive 

values for each group based on how many total pairwise relationships met this criteria 

(n=976). We did not calculate PPV for cousins, grand-avuncular, great-grandparental, great-

grand-avuncular, first cousin once removed relationships as the numbers of predicted 

relationships per group were low (n≤10). Finally, as negative control, we compared predicted 

spousal relationships with low or no evidence of IBS sharing ( π < 0.05, < 0.1 IBS1 and < 

0.1 IBS2). The BioMe Biobank Program (Institutional Review Board 07– 0529) operates 

under a Mount Sinai Institutional Review Board-approved research protocol. All study 

participants provided written informed consent.
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Evaluation using clinical data: As a qualitative validation of all relationship types, 

including distant relationships such as great-grandparent, we calculated age difference 

between all pairs of family relatives and stratified it by relationship type. We compared the 

identified age differences to what would be expected in a real family structure. For example, 

great-grandparents should be much older than their great-grandchildren.

METHOD DETAILS

Phenotyping in the EHR—We used clinical pathology reports (e.g., laboratory tests such 

as hemoglobin A1c which is primarily used to measure the three-month average glucose 

concentration in plasma) as quantitative traits and diagnosis billing codes (ICD codes) as 

dichotomous traits. We extracted the most commonly performed laboratory tests and 

mapped them to LOINC codes so that they could be matched between institutions. Each 

patient may have multiple laboratory reports over time. To extract a single value for each 

test, we collapsed all reports for each patient into a single value using the mean. This mean 

represents the average value for the laboratory report for the patient. For example, we used a 

patient’s mean blood glucose value over their lifetime instead of individual values of blood 

glucose.

For dichotomous traits, we used any diagnosis billing code that were used for at least 1,000 

distinct patients. Any patient with evidence of that billing code in their medical record 

history was considered a “case.” For ICD-9 codes, controls were chosen as any patient that 

did not have that diagnosis nor any diagnosis that shared an ancestor according to the 

Clinical Classifications Software (CCS).

CCS tool was developed by the Agency for Healthcare Research and Quality (AHRQ) and is 

composed of diagnoses and procedures organized in two related classification systems. In 

this study, we only used the diagnoses classifications. The single-level system consists of 

285 mutually-exclusive diagnosis categories. It enables researchers to map any of the 3,824 

ICD-9-CM diagnosis codes into one of the 285 CCS categories.

CCS also has a multi-level system composed of 4 levels representing a hierarchy of the 285 

categories. The first level is broken into 18 categories. To define a control group, we linked 

the ICD-9 codes associated with a phenotype of interest to their corresponding CCS 

categories using the top-level hierarchical categories. We also generated a table associating 

each patient to CCS categories from their diagnosis. Once this mapping was done, each 

phenotype was associated with one or more distinct CCS categories. We matched the CCS 

categories in the multi-level system to identify the first level parent category. We considered 

these top-level categories as our exclusion criteria since the control cohort for this phenotype 

should have no mention of any CCS under these categories in its medical records. For 

example, the controls for atrial fibrillation will exclude patients with cardiovascular diseases.

For conditions recorded using ICD-10 codes, we used the hierarchy from ICD-10 to identify 

patients for the control group. Patients that did not have the same ICD-10 code as diagnosis 

nor any diagnosis that shared an ancestor code were considered controls.
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We curated a set of 85 phenotypes to use for training and testing the SOLARStrap algorithm 

(see below Preparation of data for analysis on external computing clusters). For these 85 

phenotypes, we grouped closely related diagnoses codes together to increase the total 

number of patients (Table S6).

Estimation of heritability from the Electronic Health Records

Rationale: The most significant challenge when using traits defined from an observational 

resource, like the EHR, is the lack of ascertainment. In a traditional heritability study, the 

phenotype of each study participant is, ideally, carefully evaluated and quantified. This is 

infeasible, however, when the cohort contains millions of patients with thousands of 

phenotypes. The differential probability that a given individual will be phenotyped for a 

study trait is the ascertainment bias. The bias may depend on many latent factors, including 

the trait being studied, the trait status of relatives, the proximity to the hospital, and an 

individual’s ethnicity and cultural identification, among others. The consequence of this 

uncontrolled ascertainment bias is that heritability estimates will be highly dependent on the 

particular individuals in the study cohort. We hypothesized that repeated subsampling would 

be robust to biases introduced by extremely different ascertainment between families. We 

define the observational heritability, or ho
2, as the average of the statistically significant 

sample estimates (using median). For a given trait, the procedure, which we call 

SOLARStrap, involves sampling families, running SOLAR to estimate sample heritability, 

and rejecting or accepting the estimate based on a set of quality control criteria. Each step is 

detailed below.

SOLARStrap Protocol

Building pedigree files: To compute disease heritability using EHR data, we built pedigree 

files using the data from each one of the study sites. When building pedigree files, of the 

223,307 families at Columbia, there were 6,894 that contained conflicting relationships – 

where two individuals were inferred to have two different relationships. At Weill Cornell, 

3,258 families out of 155,811 contained conflicts, and at Mount Sinai 25,438 families out of 

187,473. These families were excluded from the heritability studies. In some cases, more 

than one mother or father is annotated for an individual. This could be because of duplicate 

patient records or errors in the EHR relationship extraction. We resolved these issues by 

choosing the mother or father that has more relationships in the family. The other 

relationship is discarded. We then constructed a master pedigree file for each site. To 

construct this pedigree file, we iterated through each member of each family. For each 

individual, we either know the mother and father from the EHR-derived relationships or not. 

If not known, then a new identifier was created to represent the parent. At this point, we 

iterated through all other family members and recorded the relationships between the new 

individual and each family member. We repeated this process until the entire pedigree file 

was filled, thus creating the master file. The master pedigree files contained 1,404,671 

individuals at Columbia, 949,440 at Weill Cornell, and 863,340 at Mount Sinai.

Sampling Families: To compute heritability estimates for each trait, we sampled an 

empirically defined proportion of the available families. The number of families that are 

sampled combined with the prevalence of the trait defines the power of the heritability 
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analysis. A smaller heritability can be detected with larger sample sizes. As the sample size 

increases towards the total number of available families the variance in heritability will 

decrease, but the estimate will be less robust to bias (Figures 3 and S1). This is because we 

sampled without replacement. Based on our simulation studies, we used sample sizes of 15 

and 20% of the total number of families with at least one case. For those estimates that did 

not pass our quality control criteria at this level, we increased the number of families 

sampled to 45% The maximum sample size is defined by the limitations of SOLAR which 

can only handle a maximum of 32,000 individuals per pedigree file. For each sample size, 

we performed 200 samplings. For each of these, we built a custom pedigree and phenotype 

files and ran SOLAR to estimate the heritability. We then aggregated the results and reported 

the median heritability with the 95% confidence interval.

Generating sample pedigree and phenotype files: For each sampling, a set of N families 

was selected. To construct the sample pedigree file, we identified all rows from the master 

pedigree files that corresponded to these families and created a new file from this subset. 

Once the pedigree file was created, we iterated over every individual in the pedigree and 

used the reference trait data and demographic data to enter the phenotype status and age of 

the patient. If no phenotype data were available for the individual, we enter it as missing. For 

dichotomous traits, the trait values were either 0 (absence), 1 (presence), or missing and a 

“proband” was randomly assigned by selected a single individual from each family that has 

the trait. See “Phenotyping in the EHR” for a description of how these traits were assigned. 

For quantitative traits, we entered the quantitative value or missing.

Running SOLAR: We used SOLAR (Almasy and Blangero, 1998), a software that 

incorporates a pedigree-based variance-component and a multipoint identity-by-descent 

(IBD), to estimate both quantitative and dichotomous trait heritability using a pre-defined 

mixed linear model. In both cases, sex and age were modeled as covariates. After the 

pedigree and phenotype files are loaded the heritability is estimated with the `polygenic -

screen` command. We used the ‘tdist’ command in SOLAR to adjust quantitative traits that 

were not normally distributed. For dichotomous traits, one “proband” was chosen at random 

for each family. SOLAR will automatically detected the presence of a dichotomous trait and 

converted the estimate from the observed scale to the liability scale. The heritability 

estimate, error on the heritability estimate, and the p-value were saved from each run for 

later analysis and aggregation. To investigate the relative contribution of the environment to 

the studied phenotype, we used SOLAR to compute household effects. For this analysis, we 

assigned the mother ID as the household ID.

Quality Control of SOLAR heritability solutions: SOLAR does not converge on a solution 

for heritability for all samples. Errors in the pedigree or in the ascertainment of phenotypes 

are the most likely causes for these failures. First, we rejected any runs of SOLAR that 

resulted in no solution for the heritability. We then considered two additional criteria that 

must be met for a solution to be considered legitimate: edge epsilon and noise epsilon. Edge 

epsilon (∊e) is a threshold that determines if the estimate is sufficiently close to 1 or 0. Any 

estimate within εe of 1 or 0 was rejected. Noise epsilon (εn) is a threshold that determines if 

an estimate have implausibly low error. Any estimate with implausibly low error was 
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rejected (h2 error is less than εn of the h2 estimate). These hyperparameters were set using 

simulated heritability data.

After filtering the SOLAR solutions for the basic criteria, we defined an additional quality 

control metric called the Proportion Of Significant Attempts, or POSA. POSA is defined as 

the number of solutions with a p value less than αPOSA divided by the total number of 

converged solutions (or attempts). The POSA is important because it is closely related to the 

power of the analysis. A fully powered analysis will have a POSA of 1, meaning that all 

converged estimates are statistically significant. A POSA of 0.5 means that only half of the 

converged estimates are statistically significant. When the families were sampled, the 

observed heritability was large enough to be detected with p < αPOSA half of the time. Or, in 

other words, we were powered to detect a heritability in 50% of samplings. We showed that 

the higher the POSA, the more accurate the heritability estimates are (Figure 3I). We chose a 

minimum POSA score, POSAlower and the αPOSA using simulations.

Aggregation of sampling results (computing ho
2): For each sampling that passed the 

quality control criteria and met the minimum POSA score, we computed the ho
2 as the 

median. The median ho
2 corresponds to a single run of SOLAR that has passed all quality 

control filters. We used the 95% confidence interval as the error of the ho
2. We found that 

this error is closely related to the standard error reported by SOLAR (Figure 3). All raw 

heritability estimates that passed the initial quality control were made publicly available for 

reanalysis.

Preparation of data for analysis on external computing clusters: Due to the high number 

of heritability estimates that needed to be computed, external computing resources from The 

Open Science Grid (OSG) and Amazon Web Services (AWS) were used. The Open Science 

Grid (OSG) is a massive computing resource funded by the Department of Energy and the 

National Science Foundation. The OSG is comprised of over 100 individual sites throughout 

the United States, primarily located at universities and national laboratories. The sites 

contain anywhere from hundreds to tens of thousands of CPU cores available for scientific 

research (Pordes et al., 2007; Sfiligoi et al., 2009). AWS is used to supplement this resource, 

which makes available on-demand compute instances with high-performance capacity. Per 

institutional requirements, no protected health information or personally identifying 

information can be transferred to systems outside of our institutional networks. To leverage 

these resources for our computing task, we prepared a data subset according to the Safe 

Harbor guidance provided by the U.S. Department of Health and Human Services (https://

www.hhs.gov/hipaa/for-professionals/privacy/special-topics/deidentification/

index.html#standard). The following is a description of how we processed the data for Safe 

Harbor for each of the 18 identifiers here enumerated from (A) through (R): (A) we removed 

first, middle, and last names for all patients, (B) all patient address information was 

removed, (C) all dates were removed and all ages over 89 are coded as “90”, (D) telephone 

numbers and (E) fax numbers were removed, (F) there were no email addresses in our subset 

of the clinical data, (G) there were no social security numbers in our subset of the clinical 

data, (H) medical record numbers were mapped to a 10 digit random number and the 

mapping was stored on a limited access PHI-certified server within the institutional firewall 
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and will never be made available, (I) there were no health plan beneficiary numbers in our 

data subset, (J) there were no account numbers in our data subset, (K) there were no 

certificate or license numbers, (L) there were no vehicle numbers or serial numbers in our 

data subset, (M) there were no device identifiers or serial numbers, (N) there were no URLs 

in our data subset, (O) there were no IP addresses in our data subset, (P) there were no 

biometric identifiers in our data subset, (Q) there were no full-face or comparable images in 

our data subset, (R) there were no other uniquely identifying characteristics or numbers. All 

data were transferred using secure file transfer protocols using encryption and were 

destroyed immediately after retrieval of the results.

Validation of accuracy and robustness of SOLARStrap using Simulated Traits: The 

scripts and data used in the following simulations are available publicly at https://

github.com/tatonetti-lab/h2o.

Simulation of quantitative and dichotomous traits: To validate the accuracy and robustness 

of SOLARStrap, we constructed a set of 4,195 families containing 14,690 individuals 

chosen from the families extracted from the EHR using RIFTEHR. Relationships and 

pedigree structures are heterogeneous across these families. We used the ‘simqtl’ command 

from SOLAR to simulate quantitative traits with heritability values of 5% to 95% at 5% 

intervals for this pedigree. Traits were simulated for 19 different heritability values in total. 

To generate binary traits, a threshold for the quantitative value was chosen for each of the 19 

simulations so that the prevalence of the dichotomous, or binary trait, was 15%. We used the 

prevalence of 15% for dichotomous traits because overall, the average prevalence of disease 

among patients with familial relationships was 15.9% (min–max: 8%–37%). The result of 

each simulation was a phenotype file (.phn) containing the family id, the individual id, and 

the quantitative or binary trait value.

Evaluation of simulated traits: We evaluated the quantitative and dichotomous traits by 

running SOLAR using the simulated phenotype files for each of the 19 different values for 

heritability. We summarized performance using the r-squared and ran a test of significance.

Creating trait files for SOLARStrap: We then created trait files for SOLARStrap. 

SOLARStrap is designed to use trait files that are similar to the phenotype files used by 

SOLAR but can contain more than one type of trait and more than 32,000 individuals 

(SOLAR’s limit). We used a python script to combine the 19 heritability estimates into a 

single trait file.

Evaluation of the accuracy of SOLARStrap on quantitative traits: To evaluate the accuracy 

of SOLARStrap on quantitative traits, we ran SOLARStrap on each of the 19 simulated 

datasets. We repeated these runs using a different sampling size (argument nfam in 

SOLARStrap) between 100 and 700 increasing by 100. We selected the largest sample size 

(nfam=700) and evaluated the accuracy of SOLARStrap using r-squared and tested 

significance using regression analysis.

Evaluation of the accuracy of SOLARStrap on dichotomous traits: When working with 

dichotomous traits, there are two scenarios that had to be considered to evaluate the accuracy 
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of SOLARStrap. Either (1) the cases and controls are equally known, meaning that each 

individual in the pedigree can be assigned to either being a case or control, or (2) the cases 

are higher confidence than the controls. This latter case more closely resembles the scenario 

present in the electronic health records. Documentation of a disease in the EHR can be very 

indicative of the patient having the disease, but the absence of this documentation does not 

mean the patient does not have the disease. We evaluated the accuracy of SOLARStrap in 

both cases. For the former, we included all individuals in the pedigree, and for the latter, we 

excluded any families where there were no cases. In the pedigrees where the cases are higher 

confidence than controls, we assigned a proband so that the estimate of heritability is not 

biased. This was accomplished by randomly selecting a single individual in each family as 

the “proband.”

Evaluation of the robustness of SOLAR and SOLARStrap to missing data: To evaluate the 

robustness of SOLAR and SOLARStrap to missing data, we chose a single simulated trait 

(h2=50%) and randomly changed individual phenotypes to unknown. We evaluated 

removing 5 to 60% of the phenotype data at 5% intervals.

Evaluation of the robustness of SOLAR and SOLARStrap to biased data (non-random 
missingness): To evaluate the robustness of SOLAR and SOLARStrap to biases, specifically 

non-random missingness, pedigrees were removed from the heritability estimation with a 

probability determined by a beta distribution. The beta distribution is a continuous 

probability distribution bounded by 0 and 1 and parameterized alpha and beta. Each family 

can be assigned a probability by sampling this distribution. Most families will have the same 

probability of missing data with a small number of families have a much lower probability. 

By varying the beta and alpha parameters we can change the proportion of families with a 

much lower probability of missing data. We varied the value of the beta parameter from 

0.001, 0.01, 0.1, 1.0, 10.0, to 100.0 and we set the alpha parameter such that the average 

probability of missingness across all families was constant at 50%. See 

introduce_missingness.py for implementation.

Evaluation of other measures of robustness and accuracy: Using the simulation results, we 

evaluated the effect of increasing the sample size (or the number of families being sampled 

in each iteration when running SOLARStrap). We hypothesized that as the number of 

families approaches the number of available families the heritability estimate of 

SOLARStrap would converge to the heritability estimate of SOLAR. We expected that the 

number of families sampled would not have an effect on the heritability estimate produced 

by SOLAR or SOLARStrap. We evaluated this relationship using linear regression of the 

simulation results. One of the primary quality control metrics for SOLARStrap is the 

Proportion of Significant Attempts (or POSA). We evaluated the relationship between the 

POSA score (which ranges from 0 to 1) and the accuracy of the heritability estimates 

produced.

Preparation of clinical data for release: Due to institutional restrictions, we cannot release 

the exact data as it was used in our analysis. However, we are sensitive to issues regarding 

reproducibility and replicability. Therefore, we have modified the dataset according to the 
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rules of Safe Harbor as provided by the U.S. Department of Health and Human Services. 

The processing of the data for release was performed as described above (see Preparation of 
data for analysis on external computing clusters). However, in this case, we took three 

additional precautions beyond what is required for Safe Harbor since these data will be made 

completely public. First, we did not release data for any conditions where there are less than 

1,000 individuals. Second, we did not release data for families with unique family structures. 

Data was only released for family structures with at least 100 families. We did not release 

race and ethnicity data where less than 20 individuals are reported in a single category. 

These additional precautions protect against identification through unique familial 

relationships situations. Third, we generated a new random map of patient identifiers for 

every individual trait. This precaution protects against the identification of an individual by 

looking for unique combinations of diseases. Unfortunately, this also will preclude the 

possibility of comorbidity analysis. Even with these additional limitations, our dataset 

constitutes one of the largest public releases of clinical data in history. All aggregate data 

and their corresponding statistics were released without obfuscation.

Literature review of related heritability estimates: For validation purposes, we compared 

our heritability estimates to the ones reported in the most recent meta-analysis of twin 

correlations and heritability (MaTCH) (Polderman et al., 2015). Using the ICD-10 hierarchy, 

we grouped our ICD codes to match the main chapters and subchapters reported in the 

MaTCH database. Since the meta-analysis grouped all traits into higher level traits, losing a 

lot of granularity, we also performed a literature review on heritability estimates on 128 

traits. We started by analyzing studies that were included in the table available at http://

www.snpedia.com/index.php/Heritability (accessed on March 2016). In total, we reviewed 

heritability estimates with confidence intervals from 61 published reports.

Additionally, we compared our heritability estimates to the ones reported using the UK 

Biobank dataset. (Ge et al., 2017) We used the estimates reported with ICD 10 codes to 

match the heritability estimates reported by Ge et al. to our estimates. Overall, we observed 

that the estimates from the UK biobank were significantly lower than the ones computed 

using EHR data (Figure S4). We also compared the heritability estimates from this set of 

traits to the MaTCH database. Table S7 contains the traits along with heritability estimates 

from the UK Biobank, the MaTCH database, and our estimates using EHR data.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details are included in the main text, Figures or Figure legends. Statistical 

analysis, data preparation, and figure creation were performed using Python 2.7. The python 

system environment is described fully in the supplemental materials. Relationship inferences 

were implemented in Julia 0.4.3. All correlations are reported as Pearson correlation 

coefficients unless otherwise noted. All code for RIFTEHR and SOLARStrap is available on 

the supporting website: http://riftehr.tatonettilab.org/.

Polubriaginof et al. Page 21

Cell. Author manuscript; available in PMC 2019 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.snpedia.com/index.php/Heritability
http://www.snpedia.com/index.php/Heritability
http://riftehr.tatonettilab.org/


DATA AND SOFTWARE AVAILABILITY

All code for RIFTEHR and SOLARStrap, and heritability estimates are available through a 

web interface and to download at http://riftehr.tatonettilab.org, https://github.com/tatonetti-

lab/riftehr, and https://github.com/tatonetti-lab/h2o.

We released data from both Columbia and Weill Cornell. We identified 8,223 and 3,101 

unique family structures at Columbia and Weill Cornell, respectively, that were not released 

due to privacy concerns. We released data from a total of 63 and 50 distinct family structures 

and 202,960 and 146,092 families from Columbia and Weill Cornell, respectively. All data 

are available at http://riftehr.tatonettilab.org and http://dx.doi.org/10.17632/j8239bz4n5.1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Emergency contact information used to identify 7.4 million familial 

relationships.

• Familial relationships were validated using clinical and genetic data.

• Estimated heritability for 500 traits using only medical records data.

• Heritability estimates were concordant across study sites and with the 

literature.
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Fig. 1. Inference of familial relationships and estimation of heritability from the electronic health 
records
At Columbia, 680,000 reported next-of-kin data were identified in the institutional EHR. 

Similarly, 430,000 and 780,000 were identified at Weill Cornell and Mount Sinai, 

respectively. From these initial relationships, we were able to infer additional relationships 

resulting in 3.2 million patient relationships at Columbia, 1.5 million relationships at Weill 

Cornell, and 2.6 million relationships at Mount Sinai. A family was identified as a group of 

patients with no relationships outside of the group. In total, we identified 223,000 families at 

Columbia, 155,000 families at Weill Cornell, and 187,000 at Mount Sinai. The largest 400 

families from Columbia were visualized as a graph using a force layout (Materials and 
Methods). Each disconnected subgraph is a family. Each node is an individual. Solid nodes 

represent patients in our respective EHRs. Colored nodes indicate the presence of a disease 

diagnosis in one of four classes: cardiovascular disease (red), musculoskeletal disease 

(purple), metabolic disease (blue), and skin disease (green). The top left shows 93 of the top 

families at Columbia. The largest family shown contains 23 individuals and the smallest, 12. 

We constructed detailed pedigrees for one family from Columbia (bottom left). The pedigree 

shown was modified for de-identification purposes. Each node is an individual. Individuals 

indicated by dashed lines are inferred to exist but did not exist in the EHR. The top right 
shows a map of the number of individuals from Columbia for whom relationships were 

identified. The colors represent the number of individuals that live in each ZIP code. The 

bottom right shows a bar graph shows the number of individuals by relationship type for 

each institution. We used all disease diagnosis data and clinical pathology report data 
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(laboratory tests) available for patients in our cohort to study genetic heritability. At 

Columbia, 6.6 million disease diagnoses were used to estimate heritability of dichotomous 

traits and 42 million laboratory tests were used to estimate heritability of quantitative traits. 

At Weill Cornell, 3 million disease diagnoses were used and 16 million laboratory tests and 

at Mount Sinai, 4 million disease diagnosis.
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Fig. 2. Validation of familial relationships inferred from the EHR
(A) The medical centers at both Columbia and Weill Cornell have implemented a link 

between the electronic health records of mother and baby at the time of birth. We used these 

links as a gold standard to evaluate RIFTEHR, our algorithm for automatically inferring 

relationships from the EHR. We also inferred siblings using the mother-baby link data. (B) 

Through biobanks at Columbia, 302 of the patients with identified relationships from 

RIFTEHR also had genetic data available and appropriately consented for use in our study. 

For these, RIFTEHR predicted a total of 172 relationships. Genetic relatedness was 

determined for each pair of individuals. Almost all 134 parent/child relationships had the 

expected genetic relatedness of 50% (51%±3%). Of the siblings predicted by RIFTEHR 19 

were full siblings, 3 were half siblings (genetic relatedness of 25%), and 4 were identical 

twins. The high rate of twins in our small sample is a result of the secondary use of existing 

data – which was originally collected for genetic studies. Excluding these twins yields a 

more accurate estimate of RIFTEHR’s performance (PPV=86.4%). Overall the RIFTEHR 

relationship and the genetic relationship were significantly correlated (r=0.60, p=1.81e-18). 

(C) Average age differences for each relationship type. We computed the age differences for 

each pair of individuals at Columbia (blue), Weill Cornell (red) and Mount Sinai (purple). 

The age differences are consistent across sites. (D) At Mount Sinai, we identified 1,222 

patients that had familial relationships from RIFTEHR and also had genetic data available 

with appropriate consent for use in our study. Among these, RIFTEHR inferred 937 

relationships. Genetic relatedness was determined for each individual pair and compared to 

the relationships inferred by RIFTEHR. RIFTEHR’s performance varied from 32% to 91% 

PPV, being more accurate in identifying members of the nuclear family. Overall the 

RIFTEHR relationship and the genetic relationship were significantly correlated (r=0.67, 

p<1.2e-162).
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Fig. 3. Validation of SOLARStrap accuracy and robustness using simulated data
(A) Traits with heritability ranging from 5% to 95% were generated using the SOLAR. We 

used actual family structures extracted from the EHR by RIFTEHR to generate the 

simulated traits. We then created dichotomous (binary) versions of the trait by choosing a 

threshold that would yield a trait with 15% prevalence. SOLAR was very accurate at 

recapitulating the correct heritability for both quantitative (r2 = 0.999) and binary (r2 = 

0.994) traits. In (B), (C) and (D), the number of families varied from 100 to 1000, being 

represented by different colors. (B) SOLARStrap was run on each of the simulated 

quantitative traits and was accurate at estimating the true heritability (r2 = 0.986). 

SOLARStrap was accurate regardless of the number of families that was used in the 

sampling procedure (left). (C) SOLARStrap was run on each of the binary traits in the 

setting of complete ascertainment. SOLARStrap achieved equal accuracy as in the 

quantitative case (r2 = 0.988). (D) SOLARStrap was run on each of the binary traits in the 

setting of incomplete ascertainment. In this case families without any cases were dropped 

and a proband was randomly assigned in each family. The accuracy is lower than the case of 

complete ascertainment (r2 = 0.930). (E) In the presence of randomly missing information, 
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both SOLAR and SOLARStrap produce accurate estimates of the true heritability even when 

up to 60% of the data are removed. However, in four cases where the proportion removed 

was 35%, 45%, and above 50% SOLARStrap estimates did not pass our internal quality 

control criteria. (F) SOLAR is sensitive to this bias and produces inaccurate results as the 

strength of the bias increases. SOLARStrap is robust to these biases and produces accurate 

estimates of heritability even in the most extreme case of bias. (G) As the number of families 

sampled increases toward the total number of available families SOLARStrap becomes more 

sensitive to bias – in the most extreme case where the number of sampled families is equal to 

the total number of available families SOLARStrap reduces to simply running SOLAR. (H) 

The estimate of heritability is not dependent on the number of families sampled (r=0.02, 

p=4.1e-8). (I) The Proportion of Significant Attempts (POSA) is a primary estimate of 

quality for heritability estimates produced by SOLARStrap. The accuracy of SOLARStrap 
increases as the POSA increases (shown as error here). (J) The effect of noise injection on 

the estimate of observational heritability of rhinitis. We injected noise into the data by 

randomly shuffling a subset of the patient diagnoses. This simulates misclassification 

(misdiagnosis or missed diagnosis) in the medical records. When no noise is injected the 

estimate is 0.77 (0.60–0.92). As noise is introduced the estimate of the heritability decreases 

to 0.36 (0.23–0.49) once one quarter of the data are randomized.
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Fig. 4. Estimating heritability of disease using electronic health records
We designed a method, called SOLARStrap, for estimating the heritability of traits where 

the phenotype is derived under unknown ascertainment biases, the ho
2. (A) We found that 

performance was consistent across sites and (B) that ho
2 is significantly correlated with 

literature estimates of h2. (C) Heritability estimates stratified by race and ethnicity using the 

AE model are correlated with estimates of ho
2. (D) These models are also correlated when 

computing heritability estimates for ICD10 codes alone. (E) Heritability of traits that have 

been studied before, such as height, have been recapitulated by our study. We also stratified 

heritability of height by self-reported race and ethnicity as available in EHR. (F) 

Observational heritability of HDL cholesterol (blue) is significantly higher than heritability 

of LDL cholesterol (red). This difference is still observed after stratifying patients by the 

presence or absence HMG-CoA reductase inhibitors as treatment for hypercholesterolemia.
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Table 1

Demographic data of the electronic health records at Columbia University Medical Center, Weill Cornell 

Medical Center, and Mount Sinai Health System.

Variable Columbia Weill Cornell Mount Sinai

N 682,267 437,375 783,185

Relationships 3,244,380 1,534,760 2,621,772

 N provided relationships 488,932 297,011 802,191

 N inferred relationships 2,755,448 1,237,749 1,819,581

Families 223,307 155,811 187,473

Gender, Female 418,657 (61.36%) 261,482 (59.78%) 449,878 (57.45%)

Age 40.15 (24.81) 39.85 (25.02) 51.44 (23.20)

Race/Ethnicity

 Black or African American 69,506 (10.19%) 30,975 (7.08%) 79,854 (10.20%)

 White 123,800 (18.15%) 110,485 (25.26%) 285,559 (36.46%)

 Hispanic or Latino 373,552 (54.75%) 52,087 (11.91%) 151,785 (19.38%)

 Other 11,438 (1.68%) 26,687 (6.10%) 25,864 (3.30%)

 Unknown/Declined to answer 103,971 (15.24%) 217,141 (49.65%) 240,123 (30.66%)

Degree of relationship

 First (i.e. child, parent) 1,388,858 814,650 798,440

 Second (e.g. grandchild) 605,922 225,796 243,434

 Third (e.g. great-grandparent) 432,262 137,712 136,936

 Fourth (e.g. great-great-grandchild) 215,300 61,986 58,500

 Other

  None (e.g. spouse, in-laws) 172,158 127,748 571,250

  Unknown (e.g. parent/parent-in-law) 429,880 166,868 813,212

Cell. Author manuscript; available in PMC 2019 June 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Polubriaginof et al. Page 33

Ta
b

le
 2

H
er

ita
bi

lit
y 

R
an

ge
s 

fo
r 

D
ic

ho
to

m
ou

s 
an

d 
Q

ua
nt

ita
tiv

e 
T

ra
it 

C
at

eg
or

ie
s.

D
ic

ho
to

m
ou

s 
D

is
ea

se
 C

at
eg

or
y

M
ed

ia
n 

h o
2

T
ra

it
 w

it
h 

H
ig

he
st

 H
er

it
ab

ili
ty

T
ra

it
 w

it
h 

L
ow

es
t 

H
er

it
ab

ili
ty

IC
D

9 
C

od
e

N
am

e
M

ed
ia

n 
h o

2 

(9
5%

 C
I)

IC
D

9 
C

od
e

N
am

e
M

ed
ia

n 
h o

2 

(9
5%

 C
I)

 
H

em
at

ol
og

ic
 D

is
ea

se
s

0.
50

28
7.

31
 

Im
m

un
e 

th
ro

m
bo

cy
to

pe
ni

c 
pu

rp
ur

a
0.

71
(0

.3
3–

0.
96

)
28

5.
9

 
A

ne
m

ia
0.

20
(0

.1
5–

0.
36

)

 
M

en
ta

l H
ea

lth
 D

is
ea

se
s

0.
41

30
9.

28
 

A
dj

us
tm

en
t d

is
or

de
r 

w
ith

 m
ix

ed
 a

nx
ie

ty
 

an
d 

de
pr

es
se

d 
m

oo
d

0.
95

(0
.3

6–
1.

00
)

31
5.

39
 

O
th

er
 d

ev
el

op
m

en
ta

l s
pe

ec
h 

or
 

la
ng

ua
ge

 d
is

or
de

r
0.

11
(0

.0
9–

0.
15

)

 
Se

ns
e 

O
rg

an
s 

D
is

ea
se

s
0.

41
36

5.
11

 
Pr

im
ar

y 
op

en
 a

ng
le

 g
la

uc
om

a
0.

93
(0

.5
2–

1.
00

)
38

2.
9

 
U

ns
pe

ci
fi

ed
 o

tit
is

 m
ed

ia
0.

10
(0

.0
6–

0.
16

)

 
E

nd
oc

ri
ne

 a
nd

 M
et

ab
ol

ic
 

D
is

ea
se

s
0.

40
27

8.
02

 
O

ve
rw

ei
gh

t
0.

71
(0

.5
4–

0.
88

)
27

2.
4

 
O

th
er

 a
nd

 u
ns

pe
ci

fi
ed

 
hy

pe
rl

ip
id

em
ia

0.
23

(0
.1

5–
0.

37
)

 
G

as
tr

oi
nt

es
tin

al
 D

is
ea

se
s

0.
39

57
9

 
C

el
ia

c 
di

se
as

e+
0.

78
(0

.5
5–

0.
97

)
52

1
 

D
en

ta
l c

ar
ie

s
0.

12
(0

.0
7–

0.
18

)

 
In

fe
ct

io
us

 D
is

ea
se

s
0.

34
11

1
 

Pi
ty

ri
as

is
 v

er
si

co
lo

r
0.

85
(0

.5
0–

0.
94

)
78

0.
6

 
Fe

ve
r

0.
11

(0
.0

5–
0.

23
)

 
R

es
pi

ra
to

ry
 D

is
ea

se
s

0.
34

47
7.

9
 

A
lle

rg
ic

 r
hi

ni
tis

, c
au

se
 u

ns
pe

ci
fi

ed
+

0.
72

(0
.2

5–
0.

93
)

46
4.

4
 

C
ro

up
0.

09
(0

.0
5–

0.
12

)

 
C

ar
di

ov
as

cu
la

r 
D

is
ea

se
s

0.
33

78
5.

2
 

U
nd

ia
gn

os
ed

 c
ar

di
ac

 m
ur

m
ur

s
0.

59
(0

.4
2–

0.
84

)
78

6.
59

 
O

th
er

 c
he

st
 p

ai
n

0.
18

(0
.1

1–
0.

25
)

Pr
eg

na
nc

y,
 C

hi
ld

bi
rt

h 
an

d 
Pu

er
pe

ri
um

0.
54

O
30

M
ul

tip
le

 g
es

ta
tio

n
0.

76
(0

.3
6–

1.
00

)
O

30
-O

48
M

at
er

na
l c

ar
e 

re
la

te
d 

to
 th

e 
fe

tu
s 

an
d 

am
ni

ot
ic

 c
av

ity
 a

nd
 p

os
si

bl
e 

de
liv

er
y 

pr
ob

le
m

s

0.
41

(0
.1

9–
0.

61
)

H
em

at
ol

og
ic

 D
is

ea
se

s
0.

45
D

57
Si

ck
le

-c
el

l d
is

or
de

rs
*

0.
97

(0
.7

5–
1.

00
)

D
64

O
th

er
 a

ne
m

ia
s

0.
18

(0
.1

1–
0.

30
)

In
ju

ry
 a

nd
 P

oi
so

ni
ng

0.
40

T
59

To
xi

c 
ef

fe
ct

 o
f 

ot
he

r 
ga

se
s,

 f
um

es
 a

nd
 

va
po

rs
0.

81
(0

.4
9–

0.
98

)
S0

1
O

pe
n 

w
ou

nd
 o

f 
he

ad
0.

18
(0

.1
0–

0.
36

)

In
fe

ct
io

us
 D

is
ea

se
s

0.
40

B
35

D
er

m
at

op
hy

to
si

s
0.

81
(0

.4
1–

0.
98

)
B

80
E

nt
er

ob
ia

si
s

0.
11

(0
.0

4–
0.

13
)

G
en

ito
ur

in
ar

y 
D

is
ea

se
s

0.
37

N
92

E
xc

es
si

ve
, f

re
qu

en
t a

nd
 ir

re
gu

la
r 

m
en

st
ru

at
io

n
0.

85
(0

.6
2–

0.
99

)
N

80
-N

98
N

on
in

fl
am

m
at

or
y 

di
so

rd
er

s 
of

 
fe

m
al

e 
ge

ni
ta

l t
ra

ct
0.

15
(0

.0
9–

0.
20

)

R
es

pi
ra

to
ry

 D
is

ea
se

s
0.

35
J0

1
A

cu
te

 s
in

us
iti

s
0.

85
(0

.6
1–

0.
98

)
J0

2
A

cu
te

 p
ha

ry
ng

iti
s

0.
02

(0
.0

1–
0.

03
)

E
ye

 D
is

ea
se

s
0.

34
H

35
O

th
er

 r
et

in
al

 d
is

or
de

rs
0.

55
(0

.3
3–

0.
77

)
H

10
C

on
ju

nc
tiv

iti
s

0.
18

(0
.1

0–
0.

22
)

G
as

tr
oi

nt
es

tin
al

 D
is

ea
se

s
0.

34
K

90
In

te
st

in
al

 m
al

ab
so

rp
tio

n
0.

84
(0

.6
9–

0.
98

)
K

02
D

en
ta

l c
ar

ie
s

0.
14

(0
.0

9–
0.

20
)

Cell. Author manuscript; available in PMC 2019 June 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Polubriaginof et al. Page 34

D
ic

ho
to

m
ou

s 
D

is
ea

se
 C

at
eg

or
y

M
ed

ia
n 

h o
2

T
ra

it
 w

it
h 

H
ig

he
st

 H
er

it
ab

ili
ty

T
ra

it
 w

it
h 

L
ow

es
t 

H
er

it
ab

ili
ty

IC
D

9 
C

od
e

N
am

e
M

ed
ia

n 
h o

2 

(9
5%

 C
I)

IC
D

9 
C

od
e

N
am

e
M

ed
ia

n 
h o

2 

(9
5%

 C
I)

E
nd

oc
ri

ne
 a

nd
 M

et
ab

ol
ic

 D
is

ea
se

s
0.

34
E

20
-E

35
D

is
or

de
rs

 o
f 

ot
he

r 
en

do
cr

in
e 

gl
an

ds
0.

60
(0

.2
8–

0.
89

)
E

84
C

ys
tic

 f
ib

ro
si

s*
0.

01
(0

.0
1–

0.
02

)

C
ar

di
ov

as
cu

la
r 

D
is

ea
se

s
0.

33
I1

5
Se

co
nd

ar
y 

hy
pe

rt
en

si
on

0.
50

(0
.3

1–
0.

89
)

IX
D

is
ea

se
s 

of
 th

e 
C

ir
cu

la
to

ry
 

Sy
st

em
0.

18
(0

.1
0–

0.
28

)

Sk
in

 D
is

ea
se

s
0.

32
L

70
A

cn
e+

0.
72

(0
.2

0–
0.

91
)

L
80

-L
99

O
th

er
 d

is
or

de
rs

 o
f 

th
e 

sk
in

 a
nd

 
su

bc
ut

an
eo

us
 ti

ss
ue

0.
17

(0
.1

1–
0.

29
)

E
ar

 a
nd

 M
as

to
id

 D
is

ea
se

s
0.

31
H

61
O

th
er

 d
is

or
de

rs
 o

f 
ex

te
rn

al
 e

ar
0.

82
(0

.6
8–

0.
93

)
H

66
Su

pp
ur

at
iv

e 
an

d 
un

sp
ec

if
ie

d 
ot

iti
s 

m
ed

ia
0.

11
(0

.0
6–

0.
22

)

M
en

ta
l H

ea
lth

 D
is

ea
se

s
0.

31
F9

3
E

m
ot

io
na

l d
is

or
de

rs
 w

ith
 o

ns
et

 s
pe

ci
fi

c 
to

 
ch

ild
ho

od
0.

78
(0

.2
7–

1.
00

)
F4

0-
F4

8
A

nx
ie

ty
0.

02
(0

.0
1–

0.
03

)

E
xt

er
na

l C
au

se
s 

of
 M

or
bi

di
ty

 a
nd

 
M

or
ta

lit
y

0.
31

V
49

C
ar

 o
cc

up
an

t i
nj

ur
ed

 in
 o

th
er

 a
nd

 
un

sp
ec

if
ie

d 
tr

an
sp

or
t a

cc
id

en
ts

0.
94

(0
.8

7–
0.

99
)

V
04

Pe
de

st
ri

an
 in

ju
re

d 
in

 c
ol

lis
io

n 
w

ith
 h

ea
vy

 tr
an

sp
or

t v
eh

ic
le

 o
r 

bu
s

0.
01

(0
.0

0–
0.

01
)

Si
gn

s 
an

d 
Sy

m
pt

om
s

0.
30

R
92

A
bn

or
m

al
 f

in
di

ng
s 

on
 d

ia
gn

os
tic

 im
ag

in
g 

of
 b

re
as

t
0.

48
(0

.2
6–

0.
65

)
R

62
L

ac
k 

of
 e

xp
ec

te
d 

no
rm

al
 

ph
ys

io
lo

gi
ca

l d
ev

el
op

m
en

t
0.

07
(0

.0
5–

0.
10

)

M
us

cu
lo

sk
el

et
al

 D
is

ea
se

s
0.

27
M

71
O

th
er

 b
ur

so
pa

th
ie

s
0.

61
(0

.2
5–

0.
99

)
M

00
-M

25
A

rt
hr

op
at

hi
es

0.
18

(0
.1

1–
0.

25
)

C
on

ge
ni

ta
l m

al
fo

rm
at

io
ns

0.
27

X
V

II
C

on
ge

ni
ta

l M
al

fo
rm

at
io

ns
0.

73
(0

.5
0–

0.
96

)
Q

85
Ph

ak
om

at
os

es
0.

05
(0

.0
0–

0.
09

)

N
eo

pl
as

m
s

0.
25

D
23

O
th

er
 b

en
ig

n 
ne

op
la

sm
s 

of
 s

ki
n

0.
35

(0
.2

0–
0.

53
)

II
N

eo
pl

as
m

s
0.

17
(0

.0
8–

0.
27

)

Pe
ri

na
ta

l D
is

ea
se

s
0.

22
X

V
I

C
er

ta
in

 C
on

di
tio

ns
 O

ri
gi

na
tin

g 
In

 th
e 

Pe
ri

na
ta

l P
er

io
d

0.
62

(0
.4

5–
0.

84
)

P0
0-

P0
4

N
ew

bo
rn

 a
ff

ec
te

d 
by

 m
at

er
na

l 
fa

ct
or

s 
an

d 
by

 c
om

pl
ic

at
io

ns
 o

f 
pr

eg
na

nc
y

0.
05

(0
.0

1–
0.

08
)

N
eu

ro
lo

gi
ca

l D
is

ea
se

s
0.

17
G

47
Sl

ee
p 

di
so

rd
er

s+
0.

31
(0

.1
9–

0.
48

)
G

44
O

th
er

 h
ea

da
ch

e 
sy

nd
ro

m
es

0.
02

(0
.0

1–
0.

03
)

E
nd

oc
ri

ne
 D

is
or

de
rs

0.
3

30
16

-3
T

hy
ro

tr
op

in
 [

U
ni

ts
/v

ol
um

e]
 in

 S
er

um
 o

r 
Pl

as
m

a
0.

37
(0

.2
3–

0.
49

)
30

26
-2

T
hy

ro
xi

ne
 (

T
4)

 [
M

as
s/

vo
lu

m
e]

 in
 

Se
ru

m
 o

r 
Pl

as
m

a
0.

26
(0

.1
6–

0.
36

)

G
as

tr
oi

nt
es

tin
al

 D
is

or
de

rs
0.

3
23

24
-2

G
am

m
a 

gl
ut

am
yl

 tr
an

sf
er

as
e 

[E
nz

ym
at

ic
 

ac
tiv

ity
/v

ol
um

e]
 in

 S
er

um
 o

r 
Pl

as
m

a
0.

45
(0

.3
5–

0.
56

)
19

75
-2

To
ta

l B
ili

ru
bi

n 
se

ru
m

/p
la

sm
a

0.
11

(0
.0

8–
0.

16
)

H
em

or
rh

ag
e

0.
18

59
02

-2
Pr

ot
hr

om
bi

n 
tim

e 
- 

pa
tie

nt
0.

25
(0

.1
6–

0.
35

)
71

8-
7

H
em

og
lo

bi
n

0.
14

(0
.0

8–
0.

19
)

M
et

ab
ol

ic
 a

nd
 N

ut
ri

tio
na

l 
D

is
or

de
rs

0.
41

25
73

-4
L

ip
op

ro
te

in
.a

lp
ha

 [
M

as
s/

vo
lu

m
e]

 in
 S

er
um

 
or

 P
la

sm
a

0.
49

(0
.4

1–
0.

58
)

24
98

-4
Ir

on
 [

M
as

s/
vo

lu
m

e]
 in

 S
er

um
 o

r 
Pl

as
m

a
0.

25
(0

.1
4–

0.
35

)

M
et

ab
ol

ic
 D

is
or

de
rs

0.
38

20
85

-9
C

ho
le

st
er

ol
 in

 H
D

L
 [

M
as

s/
vo

lu
m

e]
 in

 
Se

ru
m

 o
r 

Pl
as

m
a

0.
51

(0
.3

5–
0.

67
)

20
89

-1
C

ho
le

st
er

ol
 in

 L
D

L
 [

M
as

s/
vo

lu
m

e]
 in

 S
er

um
 o

r 
Pl

as
m

a
0.

26
(0

.1
5–

0.
38

)

R
et

ic
ul

oe
nd

ot
he

lia
l D

is
or

de
rs

0.
29

46
79

-7
R

et
ic

ul
oc

yt
es

 %
0.

93
(0

.7
7–

1.
00

)
26

45
0-

7
E

os
in

op
hi

ls
 %

0.
12

(0
.0

7–
0.

18
)

Cell. Author manuscript; available in PMC 2019 June 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Polubriaginof et al. Page 35
T

he
 m

ed
ia

n 
ob

se
rv

at
io

na
l h

er
ita

bi
lit

y 
an

d 
ra

ng
es

 a
re

 s
ho

w
n 

fo
r 

di
ch

ot
om

ou
s 

tr
ai

t c
at

eg
or

ie
s,

 b
ot

h 
IC

D
9 

an
d 

IC
D

10
 c

od
es

, a
nd

 f
or

 q
ua

nt
ita

tiv
e 

tr
ai

t c
at

eg
or

ie
s,

 L
O

IN
C

 c
od

es
. W

ith
in

 e
ac

h 
ca

te
go

ry
, t

he
 tr

ai
t 

w
ith

 th
e 

hi
gh

es
t h

er
ita

bi
lit

y 
an

d 
th

e 
tr

ai
t w

ith
 th

e 
lo

w
es

t h
er

ita
bi

lit
y 

ar
e 

sh
ow

n.
 M

en
de

lia
n 

co
nd

iti
on

s 
ar

e 
an

no
ta

te
d 

w
ith

*  
an

d 
tr

ai
ts

 w
ith

 li
te

ra
tu

re
 h

er
ita

bi
lit

y 
es

tim
at

es
 a

re
 m

ar
ke

d 
w

ith
+

.

Cell. Author manuscript; available in PMC 2019 June 14.


	Summary
	Graphical abstract
	Introduction
	Results
	Mining familial relationships from the EHR
	Health records-based estimates of heritability

	Discussion
	STAR Methods
	CONTACT FOR REAGENT AND RESOURCE SHARING
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Relationship Inference from the Electronic Health Record (RIFTEHR)
	Deriving familial relationships from emergency contact data
	Matching emergency contact to medical records
	Quality control of matches
	Inferring familial relationships
	Quality control of inferred relationships
	Identification of families
	Identification of twins

	Evaluation of automatically inferred relationships
	Evaluation using the EHR’s mother-baby linkage
	Evaluation using genetic data with analysis for kinship
	Evaluation using clinical data


	METHOD DETAILS
	Phenotyping in the EHR
	Estimation of heritability from the Electronic Health Records
	Rationale
	SOLARStrap Protocol
	Building pedigree files
	Sampling Families
	Generating sample pedigree and phenotype files
	Running SOLAR
	Quality Control of SOLAR heritability solutions
	Aggregation of sampling results (computing ho2)

	Preparation of data for analysis on external computing clusters
	Validation of accuracy and robustness of SOLARStrap using Simulated Traits
	Simulation of quantitative and dichotomous traits
	Evaluation of simulated traits
	Creating trait files for SOLARStrap
	Evaluation of the accuracy of SOLARStrap on quantitative traits
	Evaluation of the accuracy of SOLARStrap on dichotomous traits
	Evaluation of the robustness of SOLAR and SOLARStrap to missing data
	Evaluation of the robustness of SOLAR and SOLARStrap to biased data (non-random missingness)
	Evaluation of other measures of robustness and accuracy

	Preparation of clinical data for release
	Literature review of related heritability estimates


	QUANTIFICATION AND STATISTICAL ANALYSIS
	DATA AND SOFTWARE AVAILABILITY

	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Table 1
	Table 2

