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The development of better eye and body tracking systems, and more flexible

virtual environments have allowed more systematic exploration of natural

vision and contributed a number of insights. In natural visually guided

behaviour, humans make continuous sequences of sensory-motor decisions

to satisfy current goals, and the role of vision is to provide the relevant infor-

mation in order to achieve those goals. This paper reviews the factors that

control gaze in natural visually guided actions such as locomotion, including

the rewards and costs associated with the immediate behavioural goals,

uncertainty about the state of the world and prior knowledge of the environ-

ment. These general features of human gaze control may inform the

development of artificial systems.
1. Introduction
Vision in both natural and artificial systems must deal with problems in the real

world, where the environment is often unpredictable and the sensing agent is

mobile. Despite the profound differences between artificial and human visual

systems, it is clearly advantageous to understand how human vision accom-

plishes its goals with such apparent ease. However, given the historical

development of vision science, our understanding of natural vision is still

limited, largely because of limitations in both display technology and move-

ment monitoring. The investigation of visual guidance of natural behaviour

requires immersion in natural environments, choice of an appropriate behav-

ioural paradigm, monitoring of eye and body movements, and recording the

image sequence while the behaviour is executed. All of these are technically

challenging. Until the 1970s, the primary device for presenting visual stimuli

was the Maxwellian view optical system, which required that the head be stabil-

ized by a bite bar in order to control the retinal illuminance. Eye-tracking

devices also required that the head be stabilized, and this constraint persists

to a large extent in modern eye-tracking experiments where the head is

frequently stabilized with a forehead rest. The drawback of having the head

fixed in space is that the repertoire of behaviours that the subject can engage

in is limited, and the stimulus conditions are also limited by the absence of

observer movements. As display technology has become more sophisticated,

and eye and body monitoring in unconstrained observers has become easier,

so too, has the range of convenient experiments broadened. Head-mounted

eye trackers have become lighter and less expensive, with higher spatial and

temporal resolution. Head-mounted displays for Virtual Reality (VR) are now

cheap and comfortable, eye tracking within VR displays has vastly improved,

and realistic environments easier to generate (e.g. [1]). Body movement

monitoring has also improved. These technical developments have made it

possible to observe in much greater detail the dynamic interplay between

observer and environment than in the past (e.g. [2]). In this paper, we give a

brief overview of some of the recent results documenting this dynamic

interplay, and attempt to outline some of the broader implications that might
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be relevant to the development of artificial vision systems. A

more extensive review is given in Hayhoe [3].

The complexity of human visually guided behaviour

poses a challenge, because for any given context we do not

know what information is being acquired or how it is being

used to control behaviour. One way to approach the problem

is to assume that complex behaviours can be broken down

into a set of specific sub-goals, each of which requires specific

visual information [4–6]. Thus, when walking on rough

ground the walker needs to select suitable footholds, view

the surrounding scene and perhaps commit it to memory,

control direction of heading and make global navigation

decisions. Each of these particular goals requires some evalu-

ation of the relevant visual information in the world in order

to make an appropriate action choice at the moment. We do

not, in fact, know precisely what this set of tasks is, or how

they might change as the terrain gets smoother or the scene

is more structured like a city street. Knowledge about what

the momentary requirements of the visual system are is

necessary for a complete characterization of a behaviour

such as walking outdoors, and remains a challenge for

understanding many natural tasks.

The simple example of walking outdoors reveals that

normal behaviour can be characterized as continuous

sequences of sensory-motor decisions that satisfy behavioural

goals and the role of vision is to provide the relevant infor-

mation for making decisions in order to achieve those

goals. In a given context, the particular behavioural goal

specifies the costs and benefits of an action in bringing

about the goal. These costs and benefits are mediated by the

underlying neural reward machinery [7]. The idea of reward

is a critical component of understanding sensory-motor

decisions, and one where there has been tremendous progress

over the last decade. In active behaviour, the visual system

uses gaze to sample necessary information from the environ-

ment in order to inform the subsequent action. Up to date

information about the task-relevant state of the world, such

as the location of an obstacle with respect to the body, is

necessary to know what the consequences of an action are

likely to be. Noisy sensory data and visual memory represen-

tations contribute to the subject’s uncertainty about the visual

scene, and factor into the decision of where to look and what

action to take as a consequence. As many properties of natural

environments have been learned through development and

experience, it also seems likely that memory is a critical

component in understanding visual control of actions. In

this paper, we will consider how these factors—costs and

benefits, memory and uncertainty—shape the choice of gaze

location in natural behaviour.
2. Costs and benefits
One fundamental cost that is probably a pervasive influence

on action choices is an energetic expenditure. Human loco-

motion is remarkably energy efficient due to our ability to

exploit the inverted pendulum-like passive dynamics of the

body. On flat obstacle-free surfaces, walkers naturally adopt

a preferred gait that is maximally efficient for their individual

passive dynamics comprising an optimal combination of step

length, width and duration that minimizes energetic cost

[8–10]. In this case, vision is barely needed. When the terrain

is more complex and walkers must use vision to choose
footholds, Fajen & Matthis [11] have shown that it is necessary

to select a foothold two or more steps ahead in order to

preserve this energetic minimum. This strategy allows the

walker to initialize the mechanical state of their body before

the beginning of each step so that the ballistic trajectory of

the centre of mass will facilitate stepping on the targeted foot-

holds [12]. If the necessary visual information arrives after

that, walkers need to brake or alter direction, which incurs

an energetic cost [13]. In indoor environments, it has

been shown that walkers do indeed direct gaze 1–2 steps

ahead [14–16].

Although these findings are informative about the visual

control of foot placement, it remains an open question how

gaze is used to acquire the information necessary for loco-

motion in a natural environment. In the studies described

above, obstacles and footholds were patches of light on the

flat ground, and the visibility and location of the patches

were artificially manipulated. We asked how walkers gather

the information needed to guide foot placement in natural

terrain, where stability is another important constraint.

How does the benefit of moving the body efficiently trade-

off against the need to place the foot in stable locations? To

answer these questions during natural walking, we devel-

oped a novel system that integrates three-dimensional gaze

and full-body motion capture of subjects walking in uncon-

strained outdoor environments. This work is described in

more detail in Matthis et al. [2].

Subjects walked in a range of different terrains, with a

Positive Science mobile eye tracker and a Motion Shadow

Inertial Measurement Unit motion capture system for moni-

toring body movements. This allowed reconstruction of the

body skeleton with the gaze vector intersecting the ground

plane as shown in the inset of figure 1. To examine the location

of subjects’ gaze position relative to upcoming footholds,

we first calculated the intersections between the three-

dimensional gaze vector and a two-dimensional ground

plane at the location of the subject’s planted foot. Using the

planted foot as the origin, we then accumulated the gaze

distribution relative to the planted foot for each foot plant

repeated across the entire length of the walk. This gives the

gaze density relative to the planted foot (bottom right part

of figure 1, top row). The distributions for all the terrains

showed that subjects spend most of their time in each of the

terrains looking at the ground roughly two to four steps

ahead. However, if subjects direct gaze at the locations of

their upcoming footholds then some of the spread of the

distribution of gaze on the ground will be related to spatial

variability in the footholds themselves because the path the

subjects take is not straight, especially when the terrain is

very rough. To remove this source of variability, we

re-centred each gaze point on the locations of upcoming foot-

holds. That is, rather than plotting gaze relative to the location

of the planted foot (Foothold N), gaze location was plotted

relative to the location where the foot was going to be placed

next (N þ 1), or to the footholds that were coming up after

that (N þ 2, 3 and 4); figure 1 shows the results for flat,

medium and rough terrain. The top part of the figure is for

medium terrain, and we found that the peak of the gaze den-

sity distribution was at step N þ 2, that is the peak of the

distribution in the N þ 2 reference frame is centred over the

origin. The gaze distribution for the rough terrain is a little

different. Although subjects’ gaze in that condition was most

highly clustered around Foothold N þ 2, a considerable
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Figure 1. The right part of the top row shows the three terrains used. Top left shows the reconstructed data from the integration of eye and body measurements,
with the gaze vector shown in pink. The white arrow indicates the gaze location relative to the planted foot. These values were cumulated for each footplant along
the path and the resulting distributions are shown in the bottom right of the figure. Bottom left is the view of the path from the scene camera mounted on the
subject’s head. Bottom right shows a side-view of gaze distributions on the groundplane plotted relative to either the planted foot, foothold N in the top row, or
foothold N þ 1, N þ 2, N þ 3 or N þ 4 in subsequent rows. Adapted from [2].
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portion of the gaze density falls around foothold N þ 3.

By contrast, in the flat terrain, the gaze is only loosely linked

to foot placement resulting in the only minimal change

in the peak of the distribution when it is plotted in the

different foothold-centred reference frames. In that condition,

subjects only looked at the ground roughly 58% of the time, as

opposed to 94% and 96% in the medium and rough terrains,

respectively.

How do we interpret this behaviour? For the flat terrain,

subjects adopt their preferred gait cycle, with stable step

lengths and durations, and did not appear to use gaze to

locate specific footholds. In medium terrain, subjects indeed

choose to look two steps ahead as predicted from energy

minimization. To achieve this, however, they needed to

slow down so that the necessary information could be gath-

ered in time. Thus, their step length shortened and step

duration increased [2]. However, subjects still maintained a

regular relationship between these parameters similar to

that seen in the flat terrain. This indicates a desire to maintain

an energetically efficient gait while still satisfying the

demands on stability. The rough terrain is similar, in that

subjects distribute gaze at step N þ 2, but, in addition, they

looked ahead towards foothold N þ 3 sooner than they

do in the medium terrain. The increased attention on Step

N þ 3 seems to be related to the greater need for path

planning in the rough terrain, where stable footholds are

sparser, and advance planning ensures that there will be a

feasible path. Gait was also slower, with shorter steps, as

with the medium terrain, and these parameters were also

more variable. Steps take about half a second, and subjects

often made two or three fixations in this period. Thus unsui-

table footholds must be rejected and new saccade targets

found on a time scale of 100 or 200 ms. This is achieved in
a tightly linked fashion that preserves energy efficiency

while respecting stability, indicating that both factors contrib-

ute to the gaze and gait behaviour that emerges in the

various terrains. We interpret this to mean that action

decisions are dynamically regulated by costs and benefits

on the time scale of single steps and single gaze changes.

A variety of previous findings also attest to the impor-

tance of energetic costs. Ballard et al. [17] investigated a

scenario where subjects copied a model made up of eight

coloured Duplo blocks. They were required to pick up appro-

priate blocks from a resource area and place them in a nearby

area to make a copy. In this paradigm, subjects do not appear

to hold the model pattern in memory, but instead make

frequent looks back to the model pattern in the course of

copying it. However, if the model pattern was located further

away from the location where the copy was made, separated

so that a head movement was required in order to look at the

model, subjects made fewer fixations on the model. This

suggests that fixations on the model were more costly when

a combined eye and head movement was required, so now

memory was used more. Thus, the choice to fixate the

model depended on the cost of the fixation. Subsequent

work by Hardiess et al. [18] and Solman & Kingstone [19]

has found similar trade-offs.

There are other intrinsic costs that are revealed in natural

behaviour. For example, Jovancevic & Hayhoe [20] measured

gaze distribution while subjects walked around a room in the

presence of other walkers. Some of the walkers behaved in an

unexpected and potentially hazardous manner, by briefly

heading towards the subject on a collision course before

reverting to a normal avoidance path. Subjects rapidly modi-

fied their gaze allocation strategies and the probability of

fixations on these pedestrians was increased. Perhaps more
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Figure 2. Total distance travelled during a visual search task where subjects
walked around in a virtual three-room apartment as a function of experience
in the virtual environment. Each block consisted of eight trials. Subjects
rapidly learn the layout of the environment and adopt shorter paths. Adapted
from Li et al. [29].
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importantly, the latencies and durations of these fixations

also changed, so that fixations on the veering walkers

became longer and occurred sooner after the walker appeared

in the field of view. This tightly orchestrated aspect of gaze

distribution suggests an underlying adaptive gaze control

mechanism that learns the statistics of the environment

and allocates gaze in an optimal manner as determined by

potential costs.

The point of all these examples is that the momentary

costs of actions factor into sensory-motor decisions that are

being made on a time scale of a single gaze change. Thus,

whether to step to the right or left of an obstacle, how to allo-

cate attention and exactly when to make the movement, are

flexibly adjusted to satisfy global task constraints. Rothkopf

& Ballard [21] and Tong et al. [22] have shown that it is pos-

sible to recover an estimate of the intrinsic reward value of

particular actions such as avoiding obstacles in a walking

task. Thus, it seems likely that subjects learn stable values

for the costs of particular actions like walking and obstacle

avoidance and these subjective values factor into momentary

action decisions. The unexpectedly low variability between

subjects in many natural behaviours may be the result of a

common set of costs and optimization criteria. By looking

at natural behaviour that extends over time scales of seconds,

we can gain insight into the factors that affect momentary

action choices, what the task structure might be and what

the subjective value of different actions is.

A large body of work over the last 15 years or so has

explored the neural basis of the effects of task costs/rewards.

Neurons at many levels of the saccadic eye movement circui-

try are sensitive to reward (see [23], for a review). In

particular neurons, in the Lateral Intraparietal Cortex that is

likely involved in saccade target selection have been impli-

cated in coding the relative subjective value of potential

targets [24]. However, reward effects in neurons have been

observed with very simple choice response paradigms

where the animal gets rewarded for looking at a particular

target, whereas in natural vision individual eye movements

are not directly rewarded, but instead are for getting infor-

mation that allows behavioural goals to be achieved,

presumably with associated rewards [25]. Thus, the

examples described above reveal how the underlying

reward circuitry is manifest in natural behaviour. It is of

interest to note that in the natural behaviour, eye and

body reflect these reward effects in a linked manner,

whereas the neurophysiology has focused on eye move-

ments, with little work on reward effects on combined

eye and body movements. Another point of interest is

that the value of different behavioural constraints, such

as energetic efficiency and stability must somehow be

expressed in the same neural currency in order to modu-

late an action decision. It has been suggested that an area

in the ventromedial prefrontal cortex may be responsible for

computing a common currency for reward [26].
3. The role of memory in search
When visual search is conducted with a subject moving

around in a real or virtual immersive environment, different

factors come into play that are present in situations where the

subject searches for targets on a screen. In the context of

searching for an object in a scene, the decision where to
direct gaze can be made on the basis of the results of a

visual search operation together with some visual memory

representation of target location in a scene. How important

the factor is visual memory? In natural behaviour, subjects

are immersed in a relatively stable environment where they

have the opportunity to develop precise long-term memory

representations of object locations. As an individual moves

around in the environment, it is necessary to store infor-

mation about spatial layout in order to orient to regions

outside the immediate field of view. This allows planning

ahead, and this presumably leads to more energetically effi-

cient strategies. For example, eye, head, hand coordination

patterns to known target locations appear to be designed so

that all the effectors arrive at about the same time, which is

presumably optimal in terms of executing the next action

[27]. In a real-world search task, Foulsham et al. [28] found

that 60–80% of the search time was taken up by head move-

ments, so there is an advantage to minimizing the cost of

these movements. Whole body movements can also be mini-

mized using spatial memory. Li et al. [29] performed an

experiment where subjects searched for targets in a virtual

apartment. After searching for the target on three separate

occasions, the target was moved to another location. Follow-

ing the displacement, subjects frequently look at the old

location on entering the room where the target had been

located (58% of trials). This means that the signal used to

programme the eye movement to that location depended on

a memory representation, not on the visual information

currently on the retina in that location. In addition, the

subject’s head and eye were directed at the old target location

even before entering the room, when the target was not yet

visible. By rapidly encoding, the global structure of the

space subjects was able to reduce the total path walked.

This is shown in figure 2, which plots the total path travelled

during the search as a function of experience in the environ-

ment. By encoding the spatial layout subjects were able to

reduce path length by eliminating regions where targets

were unlikely to be and confining search to more probable

regions. Thus, the memory of the large-scale spatial structure

allows more energetically efficient movements, and this may

be an important factor that shapes memory for large-scale

environments. Thus, the energetic cost of moving around

may lead subjects to depend more heavily on memory
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4. The role of state uncertainty
The natural world is complex, dynamic and often unpredict-

able, so there are many sources of uncertainty about its

current state. Consider the previously described example of

walking in an outdoor environment. At any moment, there

are a number of behavioural needs competing for gaze/atten-

tion. Suppose a walker is currently looking at the location of

an obstacle in order to gather information to execute an

avoidance action. The previous fixation might have been in

the direction of the goal to control heading. This information

will be in the peripheral retina with poor spatial resolution, so

goal position with respect to the body will probably be stored

in working memory, which will decay over time, and will

also need to be updated as the observer moves in the scene,

introducing additional uncertainty. Other relevant information

acquired previously will also need to be held in working

memory and decay over time. The choice of the next gaze

location will be determined by these various uncertainties.

The need to include uncertainty to explain gaze choices

stems from the fact that the optimal action choice is unclear

if the relevant image state is uncertain [4]. Thus, the prob-

ability of a change in gaze to update state increases as

uncertainty increases. Evidence for the role of uncertainty

in gaze shifts has been demonstrated by Sullivan et al. [30]

and by Tong et al. [6]. Sullivan et al. used a virtual driving

environment, and Tong et al. used a virtual walking environ-

ment. In both cases, gaze shifts reflected both the importance

of the target (for example, the speedometer in driving or an

obstacle when walking) and also the uncertainty about the

state of the task-relevant information. Noise was added

to the speedometer reading in the driving environment

and obstacles drifted about randomly in the walking

environment. Both these manipulations lead to increased

gaze allocation.

Examination of precisely when a gaze change occurs can

be revealing about the underlying mechanisms. In an

exploration of how gaze probability is modulated by uncer-

tainty, Hoppe & Rothkopf [31] devised an experiment

where subjects had to detect an event occurring at a variable

time in either of two locations. The event could not be

detected unless the subject was fixating the location, and

the subjects learned to adjust the timing of the saccades

between the locations in an optimal manner. Subjects easily

learned the temporal regularities of the events and traded

off event detection rate with the temporal and energetic

costs of carrying out eye movements. Thus, subjects learn

the temporal properties of uncertain environmental events

and use these estimates to determine the precise moment to

make a gaze change.
5. Self-motion and the role of visual memory
As we move through the environment we generate complex

movement patterns that we effortlessly discount from exter-

nally generated motion. This is a pervasive feature of

natural vision and one that must be addressed also by

artificial vision systems. Recent evidence suggests that

mechanisms for discriminating self-generated motion from
externally generated motion may be established very early

in visual processing. In an experiment where mice ran on a

treadmill and were presented with moving gratings linked

to their running speed, Roth et al. [32] found evidence that

the projections from the lateral posterior nucleus in the

mouse thalamus (thought to be the equivalent of the pulvinar

in primates) carried information to primary visual cortex

about mismatches between running speed and the speed of

the gratings. It is not clear whether a similar mechanism for

accounting for self-generated motion exists in primates.

There is recent evidence that neurons in early visual cortex

distinguish between self-generated and externally generated

image motion [33], and there are eye movement inputs to

most visual areas. Thus, the result attests to the fundamental

importance of taking account of self-generated motion and

the potential role of the thalamus in this function.

How does the visual system take account of the complex

transformations of the image as observers move both body

and eyes through the environment? When observer motion

is accompanied by object motion, as is frequently the case,

the optic flow field includes a component due to self-

motion and a component due to object motion. For moving

observers to perceive the movement of other objects relative

to the stationary environment, the visual system needs to

recover the object motion component—that is, it needs to

factor out the influence of self-motion. When stationary sub-

jects view patterns of optic flow that include a moving object,

they are able to parse the flow pattern into a component due

to object motion and one potentially caused by self-motion

[34–37]. However, because the subjects in those studies

were not actually moving and self-motion was simulated,

none of the sources of non-visual self-motion information

that contribute to the perception of self-motion [38,39] were

present. Fajen & Matthis [11] and Fajen et al. [40] used an

ambulatory virtual environment viewed in a head-mounted

display, so that self-motion cues were veridical, and

performed a task that involved judgements about how to

avoid moving obstacles. They conclude that when

self-motion is real and actively generated, both visual and

non-visual self-motion information (efferent motor

commands and sensory reafference) contribute to the percep-

tion of object motion. They also argue that this process may

have a role in visually guided interception and avoidance of

moving objects. MacNeilage et al. [41] also showed that vestib-

ular inputs can facilitate image parsing. These experiments

underscore the fundamental nature of the perceptual processes

that take self-motion into account.

In this context, scene memory may also play an important

role, not in scene parsing, but in providing a mechanism for

attracting gaze to unexpected features in the visual scene. If

the scene is efficiently coded in long-term visual memory,

subjects may compare the current image with the stored

representation, and a mismatch, or ‘residual’ signal may

serve as a basis for attracting attention to changed regions

of scenes [42]. This may allow subjects to be particularly

sensitive when there are deviations from familiar scenes,

and thus attention may be drawn to regions that do not

match the stored representation. The nature of such

memory representation is something of a challenge, but

recent models of visual pattern representations using Convo-

lution Neural Nets [43] suggest that complex scene

representations are computationally feasible. This raises the

possibility that memory representations of complex scenes
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are stored and monitored as observers move around, so that

scene changes that do not fit the statistics of the stored

representations might be used to attract gaze in a task-

independent manner. Thus, non-task driven gaze changes

can also be seen as leading to entropy reduction and more

accurate representation of the state of the environment.

Such a mechanism can also greatly reduce the computational

load of mobile autonomous agents.
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6. Conclusion
Because natural behaviour unfolds in time, we need to

consider sequences of actions chosen by the subject. This is

in contrast to the traditional trial structure where repeated

sensory-motor decisions are made in response to experimen-

tal manipulations. This means that we can examine the

factors that influence the transitions from one action to the

next, something which is harder to get at in more controlled

paradigms. By looking at natural behaviour, it becomes clear

that knowing the immediate behavioural goals is critical, as it

defines the costs and benefits of momentary action decisions,

which turns out to be a fundamentally important factor.

Another important factor that emerges when subjects move

around in the world is the visual memory. While it has

long been accepted that memory can guide movements, it
is only in a behavioural context that we can evaluate how

important a factor memory actually is. Not only is memory

essential for navigating in natural environments, it allows

the more efficient use of energetic resources, and is a funda-

mental component of momentary decisions of where to look

and how to move. Finally, vision systems must take into

account the effects of self-generated movements. While bio-

logical systems do this with apparent ease, the mechanisms

are far from clear. Recent work using Convolution Neural

Nets demonstrate that learning the statistics of self-generated

movement patterns is computationally feasible and biolo-

gically plausible, and may form the substrate for visual

guidance in mobile vision systems. As visual guidance of

action is a ubiquitous property of animal behaviour, these

principles might apply broadly to a range of different species.

In addition, these features of human vision systems may

provide guidance for artificial systems.
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