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Perceived object colour and material help us to select and interact with objects.

Because there is no simple mapping between the pattern of an object’s image

on the retina and its physical reflectance, our perceptions of colour and

material are the result of sophisticated visual computations. A long-standing

goal in vision science is to describe how these computations work, particularly

as they act to stabilize perceived colour and material against variation in scene

factors extrinsic to object surface properties, such as the illumination. If we take

seriously the notion that perceived colour and material are useful because they

help guide behaviour in natural tasks, then we need experiments that measure

and models that describe how they are used in such tasks. To this end, we have

developed selection-based methods and accompanying perceptual models

for studying perceived object colour and material. This focused review high-

lights key aspects of our work. It includes a discussion of future directions

and challenges, as well as an outline of a computational observer model that

incorporates early, known, stages of visual processing and that clarifies how

early vision shapes selection performance.
1. Introduction
Perceived object colour and material properties help us to identify, select and inter-

act with objects. Figure 1 illustrates the use of both colour and material perception.

To be useful, these percepts must be well correlated with the physical properties of

object surfaces. Such properties are not sensed directly. Rather, vision begins with

the retinal image formed from the complex pattern of light that reflects from

objects to the eye. This light is shaped both by object surface reflectance and by

reflectance–extrinsic factors, including the spectral and geometric properties of

the illumination as well as the shape, position and pose of the objects. Because

there is no simple mapping between the pattern of an object’s image on the

retina and its physical reflectance properties, our percepts of object colour and

material are the result of sophisticated visual computations. A long-standing

goal in vision science is to describe how these computations work.

Object colour is the perceptual correlate of object spectral surface reflectance.

The visual system processes the retinal image to stabilize object colour against

changes in the spectrum of the illumination. This is called colour constancy [1–5].

Perceived material is the perceptual correlate of how object surfaces reflect

light in different directions (e.g. the surface’s bidirectional reflectance distri-

bution function, BRDF). Material perception has been the topic of energetic

study over the past 15 years [6]. In parallel with colour constancy, there are

important questions of how vision stabilizes material percepts against variation

in the geometric properties of the illumination, as well as against variation in

object shape and pose.

A widely used method for studying colour constancy is asymmetric matching.

Subjects adjust the colour of a comparison object, seen under one illumination, so

that its colour matches that of a reference object, seen under a different illumina-

tion [7–9]. The correspondence in appearance established by asymmetric

matching may be used to quantify the degree of human colour constancy, and

to study what cues are used to achieve it. Similar methods have also been used

to study the stability of perceived object material [10–14].
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Figure 1. Colour and material help us judge object properties. Colour guides us towards the rightmost, reddest tomato if we seek a ripe tomato for immediate
consumption. If instead we are planning a dinner featuring fried tomatoes, we would select the green ones. When choosing among these, perceived material
provides additional information, allowing us to select smoother more glossy tomatoes in preference to their rougher counterparts. Other daily life examples include
identifying which of many similarly shaped cars in a large parking lot is ours and deciding where to step on an icy sidewalk. Photo courtesy of Jeroen van de Peppel.
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Figure 2. Basic colour selection task. (a) Subjects viewed a computer render-
ing of a cube with a reference button on the right and two comparison
buttons on the left. The illumination differed across the cube. The 0%
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Asymmetric matching is not a natural task. When seeking

the ripest tomato (figure 1), we do not adjust the reflectance

properties of one of the tomatoes until it looks maximally

tasty. Rather, we must select from a set of available choices

whose properties are fixed.

If we take seriously the notion that perceived colour and

material are useful because they help guide selection, then

we need to measure how colour and material percepts guide

selection, particularly in the face of variation in surface-extrinsic

scene properties. We have developed such selection-based

methods and corresponding perceptual models. This focused

review highlights key aspects of our work. It includes a

discussion of future directions and challenges, as well as an

outline of a computational observer model that incorporates

early, known, stages of visual processing and that clarifies

how early vision shapes selection performance. Fuller descrip-

tions of the experiments, perceptual models and main results

are available in our published papers [15–18].
(upper) and 100% constancy (lower) comparisons are shown. The squares
on the right have RGB values matched to the reference, upper comparison
and lower comparison. (a) Adapted from fig. 1 of [15] & ARVO. (b) For a
given reference, there were six possible comparisons. (b) Reproduced from
fig. 2 of [15] & ARVO.
2. Selection-based colour constancy
We began our study of selection-based colour constancy

with the stimuli and task illustrated in figure 2. On each

trial, subjects viewed a computer rendering of an illuminated

cube. On the cube were three ‘buttons’: a reference button on

the right and two comparison buttons on the left. The sub-

ject’s task was to indicate which of the comparisons was

most similar in colour to the reference.

The rendered scene contained two different light sources,

which allowed us to manipulate the illumination impinging

on two faces of the cube. Figure 2 illustrates a case where

the comparison buttons’ illumination is bluer than the refer-

ence button’s. Thus, subjects had to compare colour across

a change in illumination.
For each reference, subjects judged all pairwise combina-

tions of six comparisons (figure 2b). Two of the comparisons

provide conceptual anchors. One represents 0% constancy. It

reflected light that produced the same excitations in the visual

system’s three classes of cones as the light reflected from the

reference. To produce the 0% constancy comparison, we ren-

dered a button with a different surface reflectance from that

of the reference, to compensate for the difference in illumination

across the cube. The 0% comparison would be chosen as iden-

tical to the reference by a visual system that represented colour
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Figure 3. Data and model for basic colour selection task. (a) Data matrix. Rows and columns correspond to the ordered set of comparisons. Rows run from the over-
constancy comparison (at top) to the 0% constancy comparison (at bottom). Columns run in the same order from the left to right. Each matrix entry gives the
percentage of time the comparison in the row was chosen when paired with the comparison in the column. (b) Perceptual model concept. Each of the comparisons
and the reference are positioned along a unidimensional perceptual representation of colour. The positions represent the means of underlying Gaussian distributions.
The positions shown represent the model fit to the data in (a). (c) Quality of the model fit to the data in (a). The x-axis indicates measured selection percentage and
the y-axis indicates corresponding model prediction.
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directly on the basis of the light reflected from the buttons. This

is illustrated in figure 2a, where spatially uniform patches that

have RGB values matched to the centre of each button are

shown. When seen against a common background, the patches

from the reference and 0% constancy comparison match.

The 100% constancy comparison was generated by render-

ing a button with the same reflectance as the reference. This

reflected different light to the eye than the reference, because

of the change in illumination (lower square patch on the

right of figure 2a). The 100% constancy comparison would

be chosen by a visual system whose colour representation

was perfectly correlated with object spectral reflectance.

Three other members of the comparison set were chosen to

lie between the 0% and 100% constancy comparisons. Selection

of these indicates partial constancy, with the degree corre-

sponding to how close the choice was to the 100% constancy

comparison. The remaining comparison, shown at the right

of figure 2b, represents ‘over-constancy’, that is compensation

for a difference in illumination greater than that in the scene.

Data from the basic selection task for one subject, reference

and illumination change are shown in figure 3a. The data

matrix gives selection percentages for all comparison pairs.

To interpret the data, we developed a perceptual model that

infers perceptual representations of object colour and then

uses these to predict subject’s selection behaviour. The model

builds on maximum-likelihood difference scaling (MLDS,

[19,20]) and combines key features of multi-dimensional scal-

ing (MDS, [21]) and the theory of signal detection (TSD, [22]).

As with MDS, the data are used to infer the positions of stimuli

in a perceptual space, with predictions based on the distances

between representations in this space. As with TSD, perceptual

representations are treated as noisy, so that the model accounts

for trial-to-trial variation in responses to the same stimulus.

Figure 3b illustrates the perceptual model. On each trial, the

reference and two comparisons are assumed to be represented

along one dimension of a subjective perceptual space. Variation

along this dimension represents variation in object colour

appearance. Because there is trial-by-trial perceptual noise,

each stimulus is represented not by a single point but rather

as a Gaussian distribution, with a stimulus-specific mean. The
standard deviations of the Gaussians were set to one, which

determines the scale of the perceptual representation.

The model predicts performance on each trial by taking a

draw from the reference distribution and from the distri-

butions for the two comparisons. It predicts the subject’s

selection as the comparison whose position on that trial is clo-

sest to that of the reference. Over trials, this procedure leads

to a predicted selection percentage for each member of each

comparison pair.

We fit the model to the data via numerical parameter

search, finding the perceptual positions that maximized the

likelihood of the data. Figure 3c shows the quality of fit to

the data in a.

The positions inferred by the model for the reference and

the comparisons lie in a common perceptual space. We also

have a physical stimulus description for each of the comparison

stimuli. We use the corresponding stimulus and perceptual

positions together with interpolation to establish a mapping

between the physical and perceptual representations for the

comparison stimuli. This, in turn, allows us to determine

what comparison, had we presented it, would have the same

perceptual position as the reference. We call this the selec-

tion-based match. Conceptually, the selection-based match is

the comparison that would appear the same as the reference.

It is also the comparison that would be chosen the majority

of the time, when paired with any other possible comparison.

From the selection-based match, we compute a colour con-

stancy index (CCI) by determining where the selection-based

match lies along the line between the 0% and 100% constancy

comparisons, using the CIELAB uniform colour space [23] to

specify colourimetric coordinates. Figure 4a shows the constancy

indices for the cube stimuli. The mean index was 0.47: for these

stimuli, the visual system adjusts for about half of the physical

illumination change. The CCI varied across subjects, suggesting

the possibility of individual differences in colour constancy.

We used the basic colour selection method to compare

constancy obtained for the naturalistic renderings of three-

dimensional cubes and for a simplified condition where flat

matte stimuli were shown (figure 4b). These simplified stimuli

are similar in spirit to the ‘Mondrian’ stimuli used in many



(b)

(a) 1.00

0.80

0.60

0.40

0.20

0

C
C

I

1.00

0.80

0.60

0.40

0.20

0

C
C

I

subjects
udm gmz jfa kkd

subjects
iul nau sbf hfe

Figure 4. Constancy indices from the basic colour selection task. (a) The plot shows constancy indices for the naturalistic cube stimuli, for four individual subjects (x-
axis). Each plotted point represents the mean CCI (y-axis) taken over four reference stimuli, with error bars showing +1 s.e.m. Blue symbols show data for a neutral
to blue illuminant change (cube shown in the centre). Orange symbols show data for a neutral to yellow illuminant change (cube shown at left). The initials used to
track individual subject data here and elsewhere in the paper are randomly generated strings. (a) Reproduced with permission from fig. 1 and 4b of [15] & ARVO.
(b) The plot shows constancy indices for a simplified stimulus configuration. The image at left illustrates the neutral to yellow illuminant change, while the image in
the centre illustrates the neutral to blue illuminant change. The reference is the central square. The two comparisons had a colour appearance similar to the
reference and were displayed outside the central region. Two additional distractor squares were also presented, but were rarely chosen by subjects. (b) Reproduced
with permission from fig. 5 and 6b of [15] & ARVO.
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studies of colour constancy (e.g. [8,9,24,25]), although the spatial

scale of the surface elements providing the background is smaller

than has typically been employed. Across the two types of

stimuli, we took care to match the colourimetric properties of

the simulated illuminants, surface reflectances, references and

comparisons. We found greatly reduced constancy indices for

the simplified stimuli, with the mean CCI dropping from 0.47

to 0.10. The large decline in CCI for the simplified stimuli

highlights the important role of image spatial structure in the

neural computations that support colour constancy.
3. Towards more natural tasks
The basic colour selection task is simplified relative to many

real-life situations and we are interested in extending the para-

digm to probe selection within progressively more natural

tasks. Our first step in this direction [16] employs a blocks-

copying task (figure 5). The task is designed after a task intro-

duced by Ballard, Hayhoe and colleagues for the study of

short-term visual memory [26,27]. The subject views three ren-

dered scenes, which we refer to as the Model, the Workspace

and the Source. On each trial, the subject reproduces the

arrangement of four coloured blocks shown in the Model by

selecting from the Source.

Three features of the experimental design are worth noting.

First, the four blocks in the Model are easily distinguished from

each other. For each, there are just two blocks in the Source that

are plausibly the same. Thus, each placement of a block in the

Workspace is in essence one colour selection trial. We verified
that subjects rarely placed a block in the Workspace that was

not one of the intended comparison pairs.

Second, the Model and the Source/Workspace were ren-

dered under different illuminants: to reproduce the Model

subjects had to select blocks across a change in illumination.

Across trials, subjects reproduced different arrangements

of the same four blocks. Also interleaved were trials with

different illumination changes.

Third subjects were instructed simply to reproduce the

Model – the word ‘colour’ was not used. Rather, the use of

colour was invoked implicitly by the goal and structure of

the task.

Because colour selection is an element of the blocks-

copying task, we analysed the data using the same perceptual

model we developed above. Figure 5b shows the constancy

indices we obtained for six subjects, for two illuminant

changes. The mean constancy index of 0.43 is similar to that

obtained with our naturalistic cube stimuli, and again the

CCI varies across subjects. This shows that the level of

constancy we obtained in the basic colour-selection task is

maintained in a goal-directed task where the use of colour

is driven by task demands rather than an explicit instruction

to judge similarity of colour.

4. Increasing the dimensionality: Colour-material
trade-offs

The perceptual model we developed above is based on stimu-

lus representations in a one-dimensional space. Colour vision
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Figure 5. Blocks-copying task. (a) Subjects view a computer display consist-
ing of a model, a workspace and a source. The model contains four coloured
blocks. The source contains eight coloured blocks. The subject’s task is to
reproduce the model in the workspace. The scene illuminant varied between
the model and the workspace/source. (a) Reproduced with permission from
fig. 5 of [16] & ARVO. (b) Constancy indices for the blocks-copying task. The
plot is in the same format as those in figure 4. Each point shows the mean
CCI averaged over four reference blocks, with error bars showing +1 s.e.m.
(b) Reproduced with permission from fig. 6b of [16] & ARVO.
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is fundamentally trichromatic, however, and colour is not the

only perceptual attribute of objects. Although a one-dimen-

sional model is a reasonable point of departure, we would

like to extend the ideas to handle multiple dimensions. To

that end, we studied selection where the stimuli vary not

only in colour but also in perceived material. We analysed

how differences in these two attributes trade off in selection.

The experimental design paralleled the basic colour

selection task (figure 6a). On each trial, subjects viewed a refer-

ence object in the centre of the screen, flanked by two

comparison objects. All of the objects had the same blobby

shape and were rendered in scenes that shared the same

geometry and illumination. The subject’s task was to judge

which of the comparisons was most similar to the reference.

There was a single reference and 13 possible comparisons

(figure 6b), with all pairwise combinations of comparisons

tested. Across the comparisons, both the diffuse spectral

reflectance and geometric surface reflectance (BRDF) varied.

The 13 comparison objects can be divided into two distinct

sets of 7, with the reference stimulus itself being considered

a member of both sets. We refer to one set as the colour

matches (top row of figure 6b). These all have the same

diffuse spectral surface reflectance as the reference, but vary

in their geometric surface reflectance. The colour matches

vary in material appearance from glossy (left of top row) to

matte (right of top row).

We refer to the second set of seven comparisons as the

material matches (bottom row of figure 6b). These have the

same geometric surface reflectance function as the reference,

but vary in their diffuse spectral surface reflectance. The

material matches vary in colour appearance from greenish

(left of bottom row) to bluish (right of bottom row).
The plot in figure 7a shows the percentage of time a colour

match was chosen, on trials where it was paired with one of the

material matches. The x-axis gives the material match colour

difference. For clarity, the plot shows data for only four of the

seven colour matches. Also not shown are data for trials

where one colour match was paired with another colour

match and for trials where one material match was presented

with another material match.

Consider the black points in figure 7a. These show trials

where the colour match had no material difference (M0) and

was thus identical to the reference. When the material match

(C0) was also identical to the reference, all three stimuli were

identical and the point is plotted at 50%. As the colour differ-

ence of the material match increases in either the positive or

negative direction, the subject increasingly selects the colour

match. This makes sense: for these cases, the colour match is

identical to the reference while the material match becomes

increasingly distinguishable.

Now consider the red points in figure 7a. These represent a

case where the colour match (Mþ3) was considerably less

glossy than the reference. When the material match (C0) was

identical to the reference, the subject always chose the material

match. As a colour difference in the material match was intro-

duced, however, the subject had to judge similarity across

comparisons where one differed in material and the other dif-

fered in colour. As the colour difference of the material match

increased in either direction, the subject increasingly chose

the colour match. The rate of this increase is determined, in

part, by how perceived colour and material trade-off in this

subject’s similarity judgements.

The blue and green points show intermediate cases of colour

match material differences (Mþ1, Mþ2). As the material differ-

ence of the colour match decreased (red! green! blue!
black), it took a smaller colour difference in the material match

to cause the subject’s selections to transition from the material

to the colour match. A similar pattern was seen in the data for

colour matches that were more glossy than the reference (M21,

M22 and M23, data not shown).

The data shown in figure 7a reveal a gradual transition from

material match to colour match selections as a function of the

material match colour difference. The rate of this transition is

related to how the subject weights differences in perceived

colour and material. The exact pattern of the data, however,

also depends on the size of the perceptual differences between

the stimuli. There is no easy way to equate perceptual differ-

ences between supra-threshold stimuli, and no easy way to

equate the perceptual magnitude of colour steps and material

steps. We chose the stimuli by hand on the basis of pilot data

and our own observations. The physical stimulus differences

must thus be regarded as nominal, and we cannot assume

that the perceptual step between (e.g.) M0 and Mþ1 is the

same as that between Mþ1 and Mþ2, or between C0 and Cþ1.

Interpreting the colour-material selection data requires a

perceptual model.

We developed a model that assumes that each stimulus has a

mean position on two perceptual dimensions, one representing

colour and one representing material. To reduce the number of

free parameters, we restricted the mean position of the colour

matches to lie along the perceptual material dimension and

mean position of the material matches to lie along the perceptual

colour dimension. There was trial-by-trial variation in the per-

ceptual position of each stimulus, and the perceptual noise

was represented by two-dimensional Gaussian distributions.
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Figure 7. Colour-material trade-off data and model. (a) Subset of data for one subject. For four levels of colour match material difference (black, Mþ0; blue, Mþ1;
green, Mþ2; red, Mþ3), the fraction of trials on which the colour match was chosen is plotted ( y-axis) against the material match colour difference (x-axis). The
black point corresponding to C0 and M0 was not measured and is plotted at its theoretical position. The smooth curves show the fit of the two-dimensional
perceptual model. (b) Two-dimensional perceptual model solution for the subject whose data are shown in (a). The plot shows the inferred mean positions
of the stimuli in a two-dimensional perceptual space, where the x-axis represents colour and the y-axis represents material. The fit is to the full dataset for
this subject, not just to the subset shown in (a). (c) Colour-material weights inferred for individual subjects. Error bars were obtained from bootstrapping and
show +1 s.d. of the bootstrapped weights, plotted around the colour-material weight inferred from the full dataset. (c) Adapted from fig. 5 of [18] & IS&T.
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Trial-by-trial predictions of the model were based on which

comparison had a representation closest to the reference on

each trial. We computed distance using the Euclidean distance

metric. Importantly, however, we weighted differences along

the perceptual colour dimension by a colour-material weight

w prior to computation of distance, and differences along the

perceptual material dimension by (1-w). The colour-material

weight served to specify how perceptual differences in colour

and material were combined.

We fit the model using numerical parameter search and a

maximum-likelihood criterion. The solution for the dataset

illustrated by figure 7a is shown in figure 7b, with the smooth

curves in a showing the model’s predictions. The overall

spread of the stimulus representation for the two perceptual

dimensions is roughly equal for this subject, but the spacing

is not uniform within either dimension. The colour-material

weight was 0.54, indicating that this subject treated the two

perceptual dimensions equally. The weight is inferred together
with the perceptual positions and is an independent parameter

of the model. See [18], for a fuller presentation.

We measured the colour-material weight for five subjects.

These vary considerably. Of interest going forward is to

understand how stable the colour-material weight for a given

subject is, across variations in stimulus conditions where the

relative reliability of colour and material are varied. For

example, if the comparisons are presented under a different

spectrum of illumination than the reference, the visual

system might treat colour as less reliable and reduce the

colour-material weight.
5. Discussion
5.1. Summary
Understanding mid-level visual percepts will benefit from

understanding how these percepts are formed for naturalistic
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stimuli and used in naturalistic tasks. The basic colour selec-

tion task [15], blocks-copying task [16] and colour-material

trade-off task [18] illustrate how to use naturalistic stimuli

in conjunction with naturalistic tasks to infer selection-

based matches and draw inferences about perceptual abilities

such as colour constancy. The interested reader is directed to

the original papers for more detail, and to related work by

others that uses selection to investigate constancy [28–31].
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5.2. Tools to facilitate the use of computer graphics
in psychophysics

Computer graphics is important for and widely used in visual

psychophysics because it enables manipulation of the distal

scene properties (e.g. object surface reflectance) with which

vision is fundamentally concerned. To conduct our studies,

we developed open-source software tools to facilitate the use

of high-quality graphics for psychophysics. First, RenderTool-

box (rendertoolbox.org, [32]) allows specification of full

spectral functions (in contrast to RGB values) for both object

surface reflectance and illuminant spectral power distributions.

In addition, it provides a convenient interface that allows

Matlab access to physics-based renderers. Our recent collabora-

tive work with the Hurlbert lab on illumination discrimination

[33,34] also takes advantage of RenderToolbox.

Second, for the blocks-copying task, we needed to re-render

the spectral surface reflectance of individual blocks rapidly

in response to subject’s selections. To accomplish this, we

developed software tools for synthesizing images as linear com-

binations of a set of pre-rendered basis images ([16], see also

[35]). These tools are available in the BrainardLabToolbox

(github.com/BrainardLab/BrainardLabToolbox.git).
5.3. Perceptual models
Interpreting selection data in a form that allows inferences

about colour constancy and colour-material trade-off required

the development of new perceptual models. These leverage

selection data to infer the perceptual representations of visual

stimuli and how information is combined across perceptual

dimensions. The models extend the applicability of maxi-

mum-likelihood difference scaling. The key extensions are

(i) for colour selection, inferring the position of the reference

and the comparisons within a single perceptual space and

(ii) for colour-material trade-off, generalizing the MLDS prin-

ciples to two dimensions. Our Matlab implementation of the

perceptual models is included in the BrainardLabToolbox.

There is no conceptual obstacle to extending the models

to more than two dimensions. In practice, however, the

amount of data required to identify model parameters grows

rapidly with the number of parameters. This motivated some

simplifying assumptions in our work (e.g. studying just one

dimension of stimulus variation in our colour selection work;

assuming that the colour matches have the same mean percep-

tual colour coordinate as the reference and that the material

matches have the same mean perceptual material coordinate

as the reference in our colour-material selection work). We

view these assumptions as sufficiently realistic to allow pro-

gress, but they are unlikely to be completely accurate [36,37].

An important goal for model dimensionality extension is

to be able to place stimuli within a full three-dimensional

colour space and infer corresponding perceptual positions.
This would enable the use of selection-based methods more

generally in colour science.

There is need for additional work on the perceptual

models. First, we would like to better characterize how effec-

tively selection data determine model parameters. Related to

this is the desire to increase the efficiency with which the

measurements constrain these parameters. One approach is

to develop accurate parametric models that describe the map-

ping between physical and perceptual representations, thus

reducing the number of parameters that need to be determined.

A second approach is to develop adaptive psychophysical pro-

cedures that optimize trial-by-trial stimulus selection. We have

recently implemented the Questþ adaptive psychophysical

method [38] to our colour-material model, and are exploring

its efficacy (see also [39]). We have made freely available

a Matlab implementation of Questþ (github.com/Brainar-

dLab/mQUESTPlus.git).

Although we have emphasized the role of the perceptual

models for inferring interpretable quantities of immediate inter-

est (the CCI; the colour-material weight), these models also

provide rich information about the mapping between physical

and perceptual stimulus representations (figures 3 and 7) as

well about the precision of these representations [39,40].

We think it will be of future interest to leverage the models to

understand more about these aspects of performance.
5.4. Interesting extensions
We describe two natural experimental extensions of our work

(figures 8 and 9). The first is a variant of the blocks-copying

task that could be deployed to study the role of learning via

natural feedback. In a feedback variation of our experiment,

the Model and Workspace are shown under a common illumi-

nant, while the Source is shown under a different illuminant

(figure 8a). The subject moves a block from the Source to the

Workspace and compares it with the Model under a common

illumination, and then chooses a different block if the alterna-

tive is preferred. After experience with this version of the task,

the subject is tested in the original version of the blocks task

(figure 8b) to determine the generality of learning that occurred

in the feedback condition.

We collected preliminary data using this paradigm. Two of

three subjects took advantage of the feedback and achieved

high levels of constancy when it was available (figure 8a).

When subsequently tested without feedback, one of these

subjects maintained high constancy (figure 8b). It would be

interesting to more carefully characterize these learning effects.

For example, does improved constancy generalize to reference

block colours and/or illuminant changes that were not

presented in the feedback condition?

In many real-life scenarios involving colour selection,

stimuli are compared to a memory-based rather than to a phys-

ical reference. For example, when picking the most desirable

tomato (figure 1), the remembrance of tomatoes past surely

plays an important role (e.g. [41–46]). We have not yet intro-

duced a memory-reference component into our selection

task, but this could be done. Figure 9 illustrates one approach.

The subject plays a simple adventure game. On each trial, the

subject enters a room in which there are two dragons, one from

each of two species. The subject selects which dragon to

engage. One species is friendly and the other evil, with the

species distinguished by the reflectance properties of their

scales. Friendly dragons give gold coins and evil dragons
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Figure 8. Effect of learning on constancy. (a) Version of blocks-copying task that provides naturalistic feedback. Preliminary data show high CCIs for two of three
subjects in the feedback condition. (b) When subsequently tested in a version of the task without feedback, CCIs for one subject remained high. Data in both a and b
are for two illuminant changes. For subject rgu, the data for the two illuminant changes in (a) overlap.

Figure 9. Introducing memory into the colour-selection paradigm. The image depicts a possible stimulus for a colour-selection adventure game. The geometry of
the scene shown here (without dragons) was created by Nextwave Media (http://www.nextwavemultimedia.com/html/3dblendermodel) and made freely available
on the Internet. The dragons were added and the scene rendered using RenderToolbox [32]. The appearance of the image was optimized for publication using
Photoshop.
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steal them. The subject’s task is to amass as much gold as poss-

ible. Each trial in this experiment involves a colour selection

and can be instrumented and analysed using the methods

described above. The key extension is that subjects must

learn over trials the reflectance properties of the dragons.

Early trials would be under a single illuminant. Changes in

illumination would be introduced after subjects have formed

a memory reference. This type of experiment could provide

a fuller picture of how object colour representations form

and how these are combined with perception to achieve

task-specific goals.
5.5. Instructions
How subjects are instructed to judge colour and lightness can

affect the degree of constancy they exhibit [8,17,47–53]. In an

asymmetric matching experiment, for example, subjects were

instructed to adjust a comparison so that it appeared to be

‘cut from the same piece of paper’ as the reference showed

higher constancy than those instructed to match ‘hue and satur-

ation’ [8]. How such instructional effects should best be

understood, as well as when they do and do not occur, has

not been resolved (see [17] for discussion). As we noted

above, the use of colour in the blocks-copying task is defined

http://www.nextwavemultimedia.com/html/3dblendermodel
http://www.nextwavemultimedia.com/html/3dblendermodel
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implicitly by the goal of reproducing the blocks, not by explicit

reference to colour. That subjects base their judgements on

colour follows naturally, because for these stimuli colour is

the only feature that differentiates individual blocks. Thus, it

seems reasonable to interpret the measured CCIs as representa-

tive of what subjects would do if performing such a task in a real

setting. By asking how the brain uses colour to help achieve task

goals, we shift the emphasis from perception to performance

and finesse the need to make distinctions between perception

and cognition. The perceptual positions inferred via the percep-

tual model also provide the basis for task- and instructions-

specific comparisons with more traditional assessments of

appearance [17].

5.6. Individual differences
Our measurements reveal individual differences, both in

the colour constancy indices (figures 4, 5 and 8) and in the

colour-material weights (figure 7). We do not have any direct

evidence about what drives these differences. As a general

matter, individual variations in performance in visual tasks

have been documented and systematically studied (for a

recent overview, see [54]). In colour perception, efforts to

understand individual differences have focused on early

visual processing. This work includes studies of differences

in cone spectral sensitivities [55–57], relative numbers of

cones of different classes [58,59] and loci of unique hues [60].

More recently, the phenomenon of #theDress revealed striking

individual differences in the perceived colours of an image

of a dress, with speculation that these are related to indivi-

dual differences in colour constancy [61–69]. Studies that
systematically investigate which individual difference factors

are correlated with the constancy index differences we measure

may help advance our understanding of the mechanisms of

colour constancy. A similar approach could be used to investi-

gate individual differences in material perception, although

these are currently less well documented.

5.7. A mechanistic model
Both object colour and perceived material are often described

as mid-level visual phenomena, and it is thought that these jud-

gements depend on cortical mechanisms. Even so, the signals

that reach the cortex are shaped by the optics of the eye and

retinal processing. These are increasingly well understood

and can now be modelled quantitatively. There is important

progress to be made by understanding the role of early factors

in limiting and shaping the information for performance of

visual tasks, a view with roots in seminal work on ideal obser-

ver theory [70,71]. We are developing a set of open-source

Matlab tools for modelling early vision, which we call the

Image Systems Engineering Toolbox for Biology (ISETBio, iset-

bio.org, [72,73]). Here, we illustrate how these tools may be

used to understand how colour-material selection would

behave, were it based on the representation available at the

first stage of vision.

Our stimuli were presented on a well-characterized compu-

ter-controlled monitor, so we know the spectrum at each pixel

of the displayed image. Using this information, we can com-

pute the retinal image using a model of the polychromatic

point spread function (PSF) of the eye (figure 10a). The PSF cap-

tures optical blur due to both monochromatic ocular
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aberrations and axial chromatic aberration. The retinal image is

sampled by an interleaved cone mosaic consisting of L, M and

S cones (figure 10b). Each cone class is differentially sensitive to

light of different wavelengths (figure 10c).

For each of the stimuli we used in the colour-material

selection experiment, we computed the mean number of iso-

merizations for each cone in a 158 by 158 patch of cone

mosaic, assuming a 1 s stimulus exposure. These allowed

us to simulate performance in the experiment, for an observer

who made selections based on the trial-by-trial similarity

between each of the comparisons and the reference. Simi-

larity was computed in the high-dimensional space where

each dimension represents the isomerizations of a single

cone, with smaller distance indicating greater similarity. To

make predicted performance stochastic, we added indepen-

dent trial-by-trial Gaussian noise to the mean number of

isomerizations for each cone. The noise level was chosen by

hand to bring overall performance roughly into the range

of that exhibited by human subjects. Similarity was com-

puted using Euclidean distance, and no differential

weighting of individual dimensions was applied. A subset

of the data obtained via the simulation is shown in figure 11a.

We fit the perceptual model to the simulated data, with

the model solution shown in figure 11b. The inferred colour-

material weight is 0.44. A weight close to 0.5 might be expected,

because no asymmetry between colour and material percep-

tion was built into the calculation. The perceptual positions,

however, are distributed asymmetrically along the colour

and material dimensions. This differs qualitatively from the

pattern we see for most subjects, where the distribution tends

to be fairly symmetric.

It is not surprising that the perceptual representation for the

computational observer differs from that of human subjects: as

we noted in the Introduction, the colour and perceived material

of objects are not directly available from the representation at the

photoreceptor mosaic. Rather, these are the results of visual com-

putations that likely begin in the retina and continue in the

cortex. For example, object material percepts are coupled with
perceptual representations of three-dimensional object shape

[77,78]. That said, we do not currently know why the represen-

tation obtained for the computational observer differs from the

human representation in the particular way that it does.

We plan to extend this modelling to incorporate additional

known early processes, including fixational eye movements,

the adaptive transformation between cone isomerization rate

and photocurrent, and coding by multiple mosaics of retinal

ganglion cells. To provide a good description of the early rep-

resentation of colour, the latter will need to include a model of

the opponent combination of signals from the three classes of

cones. This type of modelling has the potential to clarify

which aspects of mid-level vision are follow-on consequences

of early visual processing, and which require further expla-

nation in terms of later, presumably cortical, mechanisms.

One interesting question that we may be able to address is

the degree to which known adaptive transformations that

occur in the retina account for human colour constancy.
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