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Abstract concepts play a central role in human behaviour and constitute a

critical component of the human conceptual system. Here, we investigate

the neural basis of four types of abstract concepts, examining their simi-

larities and differences through neuroimaging meta-analyses. We examine

numerical and emotional concepts, and two higher-order abstract processes,

morality judgements and theory of mind. Three main findings emerge. First,

representation of abstract concepts is more widespread than is often

assumed. Second, representations of different types of abstract concepts

differ in important respects. Each of the domains examined here was associ-

ated with some unique areas. Third, some areas were commonly activated

across domains and included inferior parietal, posterior cingulate and

medial prefrontal cortex. We interpret these regions in terms of their

role in episodic recall, event representation and social–emotional processing.

We suggest that different types of abstract concepts can be represented and

grounded through differing contributions from event-based, interoceptive,

introspective and sensory-motor representations. The results underscore

the richness and diversity of abstract concepts, argue against single-mechan-

ism accounts for representation of all types of abstract concepts and suggest

mechanisms for their direct and indirect grounding.

This article is part of the theme issue ‘Varieties of abstract concepts:

development, use and representation in the brain’.
1. Introduction
In investigations of the semantic system, two broad categories of concepts have

been used. Concrete concepts, such as tree, hammer or lion, have attracted a lion’s

share of research on the neural basis of the semantic system. These concepts

have an identifiable, bounded referent that can be experienced with the five

senses. They also tend to fall into taxonomic, hierarchical categories, such as

animals, tools and living things, owing to clusters of co-occurring features

(‘has legs’ and ‘has eyes’), and are intuitively easier to reason about. A large

body of evidence now indicates that such concepts are based, at least partially,

in action and perception systems of the brain, a view referred to as embodiment,

or more generally, grounded cognition [1–5]. Abstract concepts, such as democ-
racy, philosophy or evaluation, on the other hand, are messier and are more

difficult to characterize and categorize. They evoke complex and rich experi-

ences involving episodes and situations, emotions, relations, introspection

and interoception,1 but lack a clear sensory-motor experience. However, such

concepts are very frequently encountered in language and represent one of

the most sophisticated and important abilities of the human mind. Based on

some behavioural findings, such as the fact that people list fewer features for

abstract than concrete words, and require higher response times for abstract

words, it is suggested that abstract concepts are more impoverished and ‘less

semantic’. But it is not clear that there is anything impoverished about many

abstract concepts such as justice or opinion. Semantic richness may be largely

a matter of the methods used to measure it, which may be more or less suitable

for certain types of concepts. The apparent semantic poverty of abstract con-

cepts may be an artefact of methods suited to evaluating concrete concepts [6,7].
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While abstract concepts have been studied for at least

three decades, neuropsychological investigations of patients

with conditions such as aphasia and semantic dementia typi-

cally define ‘semantics’ entirely in terms of concrete concepts,

often only concrete objects. This is driven, in part, by the

popularity of tasks such as picture naming and picture

association in standardized test batteries, which are suited

to concrete concepts. This tendency also trickles down to neu-

roimaging studies. Even today, it is not uncommon to see

studies that use a few concrete object categories such as ani-

mals and tools as stimuli, and assume that the results speak

to the entire semantic system. The bias against abstract

concepts starts with the definition itself, in that they are

defined negatively by what they lack rather than by what

they contain. They are essentially ‘everything that is not

concrete’. This is a bit like dividing buildings into ‘dwellings’

and ‘non-dwellings’. This can be useful especially if we

are mainly interested in dwellings, but it shortchanges the

diversity of non-dwellings that can vary from hospitals to

museums to shopping centres. The most important feature

of a movie theatre is not that people do not live there.

Over the last decade, there has been a growing realization

of the importance and diversity of abstract concepts. Intense

debate has been generated relating to the representation of

abstract concepts, driven mainly by the observation that

they do not seem suitable for grounding in action and percep-

tion systems. This has resulted in a number of valuable

theoretical proposals which range in their degree of embodi-

ment and a number of distinct mechanisms that are required

to account for concrete and abstract concepts [8]. In general,

these theories treat abstract concepts as a single entity to be

explained by a particular mechanism. To be sure, concrete

and abstract concepts do not form a clean dichotomy, but

vary on a continuum that is commonly implemented using

the continuous measure of concreteness rating (and the clo-

sely related measure of imageability). Researchers have

typically used the high end of the continuum for the concrete

category, and mid- to low range concepts are classified

under ‘abstract’.

Neuroimaging and neuropsychological research has

consistently suggested that abstract and concrete concepts

differ. The particular brain regions involved and the reasons

for these differences remain controversial, but the existence of

differences is consistent. Neuropsychological double dis-

sociations have pointed to reliance of concrete concepts on

featural or taxonomic, and that of abstract concepts on associ-

ative or thematic information [7,9–13] (see [8] for a

discussion). With regard to neuroanatomy, a meta-analysis

of 19 studies [14] found that two regions were consistently

activated for abstract over concrete words or sentences: the

left anterior temporal lobe (ATL) and the inferior frontal

gyrus (IFG). This contrasts with the findings for concrete con-

cepts, which revealed a more extensive network that includes

bilateral angular gyrus (AG), posterior lateral, medial and

ventral temporal lobe, and posterior cingulate (pCi) and

precuneus [14,15].

These findings are consistent with both of the classical

theories of abstract/concrete concept representation. According

to the Context Availability Theory [16–18], abstract words are

more reliant on the context in which they occur. Abstract word

processing requires greater activation of, and integration with,

the context. This is consistent with the left IFG activation,

which is associated with strategic semantic access and
integration. The Dual Coding Theory [19,20] posits that only

concrete concepts have a direct connection to image-based or

visual representations, while abstract concepts are represented

only through verbal associations. Activation of a number of

areas associated with higher-order visual processing, such as

the parahippocampal gyrus, fusiform gyrus and middle occi-

pital gyrus (MOG), as well as greater bilateral activation,

supports this view. Left lateralized activation for abstract

concepts, including the traditional language processing area

of IFG, also supports the notion of importance of verbal

associations for abstract concepts.

According to the meta-analyses, abstract concepts would

appear to have a significantly smaller footprint than concrete

concepts, involving only the left IFG and lateral ATL,

whereas concrete concepts reveal a much more extensive ter-

ritory. This apparent small footprint of abstract concepts may

be misleading for multiple reasons. First, note that these acti-

vations only reveal areas activated to a greater extent for

abstract concepts relative to concrete ones. They do not

include areas that may be equally activated by both types

of concepts, or those that are activated by abstract concepts,

but even more so by concrete concepts. Secondly, meta-ana-

lyses are designed to detect consistent activation across

studies that identify neural correlates of a particular psycho-

logical process. Activations found in a smaller proportion of

included studies are assumed to be unreliable or false posi-

tives, likely resulting from statistical accidents or a flaw in

the experiment such as a confound. However, this is not

necessarily the case. Variable results between different exper-

iments can exist if categories with different underlying

representations are lumped together. For example, concepts

that refer to mental processes (thought and consideration),

those that refer to social structures and constructs (democracy
and conspiracy) and those that have a strong emotional com-

ponent ( praise and anger) could potentially have different

neural representations. Legitimate variability resulting from

these differences is eliminated in a meta-analysis.

Apart from the heterogeneity, there is an additional

methodological issue that adds variability to concepts that

are classified as ‘abstract’ in different studies, and hence

in the results of these studies. As Pollock [21] has recently

pointed out, concepts with intermediate concreteness ratings

tend to have high standard deviations. They are not truly

rated as ‘intermediate’ by many raters, but as clearly concrete

by some and clearly abstract by others. Abstract stimuli used

in many studies contain words with intermediate and high

standard deviation ratings, and hence, their abstractness is in

question. Concrete concepts selected in many studies tend

to have low standard deviations and tightly cluster near

the high end of the concreteness scale. Using parametric vari-

ation in concreteness (e.g. [22]) can mitigate this, but the high

variability related to intermediate ratings is still problematic.

This can potentially explain some of the discrepancy in

neuroimaging and behavioural results, such as the advantage

of concrete over abstract words, or the importance of taxono-

mic versus thematic information for concrete and abstract

words, respectively.

Here, we meta-analyse neuroimaging studies from four

categories of abstract concepts, with two aims. The first is

to examine the similarities and differences between the

neural correlates of types of abstract concepts, to test whether

different subcategories differ substantially, or whether a

single representation format for not-concrete words is likely.
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A related second aim is to examine the possibility that at least

some types of abstract concepts can be grounded in brain cir-

cuits subserving other functions, such as emotional or spatial

processing, and event representations. We review emotional

and numerical concepts expressed symbolically and two

‘higher-order’ processes that reflect abstract thought: morality

judgements and theory of mind (ToM). Apart from the

salience and controversial nature of these domains, they are

chosen because of the substantial body of neuroimaging

work on these domains that can be used to draw inferences

across a variety of stimuli and tasks.
Phil.Trans.R.Soc.B
373:20170122
2. Numerical concepts
Numerical magnitude can be conveyed through symbolic (e.g.

Arabic numerals or written number words) or non-symbolic

stimuli (e.g. dot patterns), and has been pointed out as a key

example of abstract semantics. The question of how abstract

numerical magnitude information can be represented, or

grounded in sensory-motor systems, therefore forms one of

the key challenges for any theory of cognition. Previous evi-

dence has suggested that semantic information of the domain

of numerical cognition can be grounded through its systematic

association with left-to-right coordinates of space [23,24].

Numerous studies have indeed demonstrated that numerical

cognition shares computational processes with spatial proces-

sing. Dehaene et al. [23] demonstrated that subjects were

faster in making parity judgements to small numbers when

responding with their left hand, while judgements to large

numbers were faster in the case of a right-hand response.

Such a demonstration of a common representational format

underlying numerical magnitude information and the spatial

characteristics of a response was termed the SNARC effect

(Spatial–Numerical Association of Response Codes) and has

been taken as evidence for a spatial nature of numerical magni-

tude representations analogue to the location on a ‘mental

number line’. In line with the observation that the SNARC

effect is typically not observed earlier than in 9-year-old chil-

dren and becomes stronger from childhood to elderly age

[25,26], it has been suggested that it reflects the long-term prac-

tice of using spatial information in processing numerical

magnitude [27,28] and establishment of a reading–writing

system [29]. The exact nature of the spatial information

recruited during numerical magnitude processing seems to

be modulated by cross-cultural differences in the direction of

the writing system [30–32]. Furthermore, it has been shown

that the SNARC effect is modulated by finger counting habits

and hand preference [33,34]. This finding might reflect the

fact that the direction of the spatial–numerical association

given by a writing system seems to be an important determi-

nant in shaping finger counting habits [35]. Moreover, an

influence of finger counting habits and hand preference

might signify the coexistence of multiple number–space map-

pings that are based on either extra-personal physical space or

finger counting habits. Findings from studies that tried to dis-

entangle these influences are mixed, with some studies

reporting a stronger influence of body-based than space-

based representations [36,37], while other studies found the

reverse pattern [38,39]. Altogether, findings have shown that

numerical magnitude information shares computational pro-

cesses with spatial representations that are based on either

personal or extra-personal number–space mappings.
In line with the idea that numerical cognition overlaps

with computational processes that underlie spatial processing

and/or finger counting actions, spatial processing areas in

the posterior parietal cortex play a role in the processing of

numerical magnitude information across a wide range of

tasks like mental calculation, approximation and number com-

parison [40,41] and across cultures [42]. Similarly, patient

studies show that lesions to the parietal cortex are associated

with deficits in numerical processing ranging from magnitude

comprehension to number subtraction or bisection [43], and

repetitive transcranial magnetic stimulation (rTMS) over pos-

terior parietal regions has been shown to reduce the SNARC

effect in a parity judgement task [44]. To investigate if the

abstract domain of numbers is grounded in brain areas

involved in spatial processing, we conducted an activation

likelihood estimation (ALE) meta-analysis on peak coordinates

reported in neuroimaging studies on number processing.
(a) Methods
First, we describe general methods that were used for meta-

analyses in all domains. Peer-reviewed articles were obtained

from literature search or existing meta-analyses, to which

additional inclusion criteria were applied. Specific contrasts

were included if they contained a whole-brain neuroimaging

analysis and contrasts with linguistic baseline conditions (with

the exception of numbers, where non-linguistic baselines such

as scrambled letters are commonly used). This excluded con-

trasts that used ‘rest’, fixation or a similar low-level condition.

Comparisons with nonverbal materials such as pictures were

also excluded, as they do not control for orthographic and

phonological processes. Coordinates for all the included con-

trasts across the different domains were extracted and, where

necessary, converted from Montreal Neurological Institute

(MNI) to Talairach space using the icbm2tal transformation

tool provided in GingerALE 2.3.6 [45,46]. In the ALE analysis

using GingerALE, we used a corrected cluster-level p , 0.05,

1000 permutations, uncorrected p , 0.005. A region of interest

(ROI) analysis was also included to examine the left ATL and

left AG, two areas that often emerge during semantic processing,

which were also corrected using the same parameters.

Studies included for the numerical concepts domain were

selected on the basis of meta-analyses by Arsalidou & Taylor

[47] and Sokolowski et al. [48]. From the 146 studies included

across these two meta-analyses, we only included studies that

investigated numerical magnitude processing by means of

symbolic stimuli (i.e. Arabic numerals like ‘1, 5’ or written

number words like ‘three, nine’, in either the visual or auditory

modality) and that did not involve any calculation of some

sort (e.g. multiplication or addition). Contrasts that involved

judging numerosity or counting (e.g. five circles versus seven

circles) were removed. Furthermore, we excluded positron

emission tomography (PET) studies, studies that used children

as subjects, studies that did not include a control for general

executive processing (e.g. number comparison versus rest),

studies that used tasks that heavily relied on other cognitive

processes (e.g. delayed-number matching) and studies that

only used contrasts that focus on higher-order numerical

processing (e.g. positive versus negative integers, congruent

versus incongruent, comparing different number ratios).

After screening all studies, 23 separate contrasts remained,

with a total of 126 foci from 375 participants (figure 1;

electronic supplementary material, table S1).
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Figure 1. Peaks from all contrasts used in the meta-analyses. Green—numbers, blue—emotion, red—morality, yellow—theory of mind.

Table 1. Clusters for the numerical cognition meta-analysis. Coordinates are reported in Talairach space and refer to the location of the maximum observed ALE
value. clust., cluster number; hem., hemisphere; BA, approximate Brodmann area; ALE, activation likelihood estimate; vol., volume.

clust. hem. brain area BA x y z ALE vol. (mm3)

1 R inferior parietal lobule 40 36 244 40 0.024 5792

middle temporal gyrus 39 30 260 30 0.014

superior parietal lobule 7 24 264 42 0.014

28 252 44 0.013

36 264 48 0.009

2 L inferior parietal lobule 40 242 244 38 0.020 3824

248 238 48 0.013

234 240 44 0.013

3 L superior parietal lobule 7 224 258 42 0.015 2632

224 254 44 0.015

precuneus 19 230 266 36 0.013

31 226 276 24 0.008
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(b) Results
Three significant clusters of activation, with a total of 12

peaks, were found for numerical cognition (table 1 and

figure 2). These fell in the right anterior intraparietal sulcus

(IPS), extending into the posterior IPS and the superior parie-

tal lobule (SPL), and the left anterior IPS, extending into the

inferior parietal lobule (IPL) and the left posterior IPS.

(c) Discussion
The IPS has been consistently linked to spatial processing and

attention as well as visually guided grasping [49–54]. It is

part of the classic where/how dorsal visual pathway

[53,55], although the binary distinction between dorsal/

ventral pathways has been challenged [56], with evidence

that the dorsal pathway may also contain object represen-

tations that subserve actions. Regarding number processing,

Eger et al. [57] showed that, in a task that did not require

the explicit activation of magnitude information, processing

of numeric symbols across the visual and auditory modality

elicited activation in a bilateral region of the horizontal sec-

tion of IPS (hIPS). In addition, imaging studies have
provided evidence that the hIPS plays a role in the coding

of non-symbolic numerical magnitude [58] and shows a dis-

tance-dependent recovery of activation for newly presented

numbers irrespective of the symbolic or non-symbolic

nature of the stimulus material [59]. The finding of an invol-

vement of the hIPS in the processing of numerical magnitude

information has been replicated across a wide range of tasks

such as number comparison, mental calculation and approxi-

mation [40,41,60] (although we eliminated calculation tasks

here) and has been replicated across cultures [42]. Patient

studies have demonstrated that parietal lesions are associated

with deficits in numerical processing ranging from magni-

tude comprehension to number subtraction or bisection

[43]. These results have led to the proposal that the hIPS

contains a representation of numerical magnitude that is

independent of the modality of presentation (i.e. visual or

auditory, [57,61]). The finding of an important role of the

hIPS in the processing of numbers is in line with the idea

that numerical magnitude is grounded in brain regions that

code for extra-personal spatial representations.

Alternatively, or in addition to spatial representations,

these results may reflect the activation of body-based
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Figure 2. Results of the meta-analysis showing significant ALE values within
each domain, and overlap.
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representations acquired through finger counting habits. It is

difficult to distinguish between these two proposals on

the basis of these neuroimaging findings, given that the hIPS

has traditionally also been strongly linked with the control of

hand and finger movements [62–65]. A number of studies

have provided evidence for a role of finger and hand move-

ment representations in the grounding of numerical

knowledge by showing that numerical magnitude processing

not only involves parietal regions but also extends to the pri-

mary motor cortex [41,60,66,67] and increases corticospinal

excitability of hand muscles [68]. Several peaks were observed

in the current analysis in the motor cortex, but did not survive

the meta-analysis owing to their distributed nature.

IPS involvement, especially in the right hemisphere, could

reflect the activation of a generalized magnitude system, as

proposed by A Theory of Magnitude (ATOM) [69,70].

ATOM suggests a single system responsible for many types

of magnitude estimations, including those for time, space

and number, with the right parietal lobe as the key com-

ponent. Neuroanatomy suggests that such common

representations are grounded in action–perception systems.

To argue that these magnitude representations are abstract,

positive evidence would need to be provided to the effect

that they do not contain any spatial or action components.

The lack of frontal activation in the current meta-analysis

might reflect the fact that we only selected studies that used

‘simple’ number tasks like numerical comparison, whereas

studies of numerical cognition typically include a wide

array of tasks that involve additional arithmetic processing

[47]. Similarly, while AG was seen in the three other domains

meta-analysed below, its absence from the current domain is

noteworthy, given its strong association with numerical cog-

nition [71]. This can also be explained by the fact that AG is

most commonly seen in tasks that involve calculation. During

calculation, it is involved with recall of memorized math-

ematical facts (such as 3 � 4 ¼ 12) [72] and transfer of facts

between calculations [73]. Involvement of AG is likely
minimized here owing to the inclusion criteria that

eliminated calculation tasks.

In addition to confirming the role of IPS in number pro-

cessing, these results demonstrate that it also holds for

purely symbolic stimuli, and without the use of higher-

order tasks. The bilateral extent of IPS, SPL and IPL activation

for number processing suggests grounding of numerical

concepts in the processing of physical space and the

spatial/non-spatial characteristics of hand movements.

However, it should be noted that the precise nature of con-

ceptual grounding of numerical magnitude information

seems to vary extensively between individuals and cultures

[30,31,35], reflecting interindividual and task-specific differ-

ences in the disposition to map numbers to different body

parts, to personal versus extra-personal space or even to

non-spatial force parameters [74]. These interindividual

differences in number–space mappings can likely be

explained by factors such as handedness, counting habits

and writing system direction [33–35]. For example, some cul-

tures use counting systems that use specific body parts in

sequence, like counting on fingers but also using elbows,

knees and eyes [75, p. 242]. These systems can top out at

12, or go as high as 74, and can even cycle through these

two or three times to obtain even higher values. Such systems

can be neurobiologically grounded in cortical representations

of body parts that go well beyond fingers.2
3. Emotion concepts
From the perspective of semantic information, emotion refers

to the emotional or affective experience elicited by the use of

a word. Based on the circumplex model [76,77], two dimen-

sions are often used to describe emotion semantics: arousal

describes the amount of emotional ‘energy’ or the level of

engagement of the organism, and valence describes the hedo-

nic tone of the emotional state, ranging from positive to

negative. Although more highly valenced stimuli are also fre-

quently more highly arousing [78], this pattern is stronger for

negative than for positive words [79]. Other dimensions have

also been proposed to describe emotional stimuli. For example,

a word can be classified according to whether it is ‘biological’,

that is, if its emotional content is relevant to evolutionary

success [80]. However, arousal and valence are the most

commonly studied in psycholinguistic evaluations of emotion.

Emotional arousal and valence are often cited as playing a

critical role in the difference between abstract semantics and

concrete semantics [7,81,82]. Abstract words, in general,

tend to be more emotionally valenced than concrete words

[83] and, within the domain of abstract words, highly arous-

ing words elicit different behaviours from emotionally

neutral words; the distribution of lexical decision reaction

times is narrower and earlier for emotional words [84].

There is even evidence for a specific role of emotion in proces-

sing abstract concepts that is absent in concrete concepts:

behavioural performance [85,86] and deterioration of seman-

tic memory in Alzheimer’s dementia patients [87] show

effects of emotional content within abstract words but not

within concrete words. This suggests that the emotional

information associated with abstract words is uniquely criti-

cal to how their meanings are stored in the brain. We

performed a meta-analysis of neuroimaging studies that

examined affect through verbal materials.



Table 2. Clusters for the emotional cognition meta-analysis. *Area that was significant only in the ROI analysis.

clust. hem. brain area BA x y z ALE vol. (mm3)

1 L dorsomedial prefrontal cortex 9 26 48 34 0.020 4608

24 48 26 0.017

8 50 16 0.014

anterior cingulate 32 24 38 18 0.014

middle frontal gyrus 9 214 38 28 0.012

2 L amygdala 226 24 212 0.020 2752

hippocampus 228 214 214 0.015

3 L precuneus 24 256 24 0.027 2448

4 R IFG/orbitofrontal gyrus 47 32 20 212 0.020 1808

38 26 22 0.011

5 L anterior temporal lobe* 247 26 223

253 27 25

6 L angular gyrus/TPJ* 249 261 18
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(a) Methods
Studies or contrasts were selected that investigated emotion

by means of verbal stimuli only, excluding studies that

used materials such as pictures, videos or music, either as

the condition of interest or as the control condition. The

dimension of valence has been experimentally isolated from

emotional arousal by a few neuroimaging studies, but it is

often confounded with emotional arousal. In the current

analysis, the majority of studies that purport to study valence

contrasted either positively or negatively valenced words

with emotionally neutral words. The neutral word baseline

is also low-arousal relative to either positive or negative

words; hence, it is difficult to distinguish arousal from

valence across these studies. Thus, the peaks included in

the current analysis are restricted to experiments that contrast

emotional arousal, even if some may also be contrasting

valence. We included foci from experiments that contrasted

emotionally valenced words with neutral words, or an expli-

citly valenced semantic task with a non-emotional semantic

task. Thirty-three separate experiments were included, with

a total of 205 foci (figure 1) from 560 participants (electronic

supplementary material, table S2).

(b) Results
Four significant clusters of activation, with a total of

10 peaks, were found in the ALE meta-analysis for the

emotion domain (table 2 and figure 2). Activations fell in

the bilateral dorsomedial prefrontal cortex (dmPFC) and

anterior insula, the left anterior cingulate, medial superior

frontal gyrus (SFG), amygdala, hippocampus and precuneus

as well as the right orbitofrontal cortex (OFC) extending into

the pars orbitalis.

(c) Discussion
Of the areas that emerged in the ALE meta-analysis, the

amygdala is the most specific to emotion processing relative

to other forms of abstract semantics. Neuroimaging studies

consistently report the amygdala as being sensitive to

emotional arousal across many types of stimuli (for review,
see [88]). It emerges in both contrasts comparing negative

words with neutral words [89–91] and those comparing

positive words with neutral words [92,93]. Traditionally,

amygdala is considered to be part of the subcortical pathway

that is dedicated to processing emotions, especially fear. This

view has been challenged [94], and instead, it is suggested

that it is part of a broader network that evaluates the

emotional significance of (especially visual) stimuli and also

the possible responses to it [95,96]. While amygdala has an

important role in emotion processing under this model, it

suggests that cortical areas such as the OFC and anterior

cingulate cortex (ACC) have a greater role in evaluating

emotional significance than is traditionally assumed [96].

The OFC is also unique to emotional content in the cur-

rent meta-analysis. The OFC is often associated with

decision-making and predicting rewards (for review, see

[97]), and in the left hemisphere, this may include emotional

decision-making, specifically ‘counterfactual emotions’, e.g.

regret following emotional decisions [98]. A recent meta-

analysis of emotion semantics found left OFC activation for

verbal emotion stimuli compared with nonverbal emotion

[99]. Although the literature included in the current analysis

does reveal some peaks in the left OFC [93,100], only the

right OFC emerges as significant for emotion semantics.

This area emerges in the few studies that specifically test

emotional valence and/or attempt to decorrelate or control

for the effects of emotional arousal [101–103]. The right

OFC plays a role in social cognition; patients with social

anxiety disorder have impaired functional connectivity

between the right OFC and amygdala, suggesting that both

areas are important for successful emotional and social pro-

cessing [104]. Even in healthy adults, grey matter volume in

the bilateral OFC correlates negatively with symptoms of

emotional dysregulation, supporting the theory that both

hemispheres of the OFC are important to emotional proces-

sing [105]. OFC specifically has a role in computation of

valence. Rapid electrophysiological responses (100–150 ms)

to discrimination of valence of a visual stimulus are observed

in OFC [106]. An fMRI study [107] used representational

similarity analysis to show that both positive and negative

valence stimuli, across sensory modality, showed distinct
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patterns in bilateral OFC. Furthermore, subjective valence rat-

ings could be classified based on activation similarity

patterns in OFC and generalized across subjects.

The region of ACC activated by emotion concepts,

pregenual ACC, is considered to be part of the emotion

processing network for both linguistic and non-linguistic

stimuli [108–110], and is specifically associated with valence

[111]. It is connected to amygdala [112] and to autonomic

nuclei associated with visceromotor control in monkeys

[113]. More recently, the role of ACC in emotion processing

is thought to involve modulating the activity of amygdala

[109,114].

In contrast to the emotion-specific activation patterns in the

amygdala, OFC and anterior insula, a wide region of medial

frontal areas, as well as the pCi and precuneus, were com-

monly activated across abstract semantic domains. Apart

from general semantics, these regions are also associated

with emotion processing from multivariate classification

studies [115]. For example, using movies and mental imagery,

Saarimaki et al. [116] found distinct signatures of six basic

emotions in dmPFC, ventromedial prefrontal cortex (vmPFC),

ACC and precuneus/pCi, in addition to amygdala and OFC,

in a multivoxel analysis. Classification generalized between

movies and imagery methods. We suggest that the medial

frontal regions and precuneus/pCi are unlikely to be special-

ized for emotion processing, although they may be

upregulated by emotional content. Domains with extensive

activation in these regions (emotion, ToM and moral judge-

ments) take place during social interactions or elicit

memories of interactions in the form of episodes or events.

The fact that emotional movies and mental imagery activate

these regions, and the activity generalizes across the modal-

ities, supports this view. A meta-analysis comparing social

cognition, emotional processing and introspection found over-

lapping areas between emotional and social cognition that

included the orbitofrontal and medial frontal cortex [117].

The ROI analysis also revealed some activation for the left

AG during emotion processing, which overlaps with the

larger temporo-parietal junction (TPJ) clusters for morality

and ToM, and is discussed later.

The left ATL also emerged in the ROI analysis. Among its

many associated functions, such as general semantics, sen-

tence processing, short-term memory, social cognition and

processing unique entities, the ATL has previously been

implicated in emotional arousal [118,119] and valence

[90,120] as well as social processing such as detection of fam-

iliar faces [121]. Research on non-human primate lesions

suggests that the ATL’s role in social processing may, at

least in part, rely on its role in emotional processing

[122,123]. There is also evidence that the ATL is involved in

emotional processing even when controlling for the presence

of social cognition [124,125]. The connectivity of the temporal

pole is similar to that of amygdala, and damage to the pole

causes Klüver–Bucy syndrome. Some symptoms of this syn-

drome include social withdrawal, blunted affect, tameness or

diminished fear, which are produced by lesions to either

temporal pole, OFC or amygdala [122,126].

In summary, emotion semantics consistently activated

regions of the network implicated in the experience and

processing of emotions. ‘Core’ regions of this network, amyg-

dala and OFC, were activated uniquely for emotion words

(with respect to the domains evaluated here). Other regions,

such as the ACC, ATL, AG, precuneus/pCi and medial PFC
(mPFC), overlapped with other domains and may be involved

in episodic memory, social cognition and general semantics

(see General discussion, §7). These results are consistent with

Barrett’s theory of constructed emotion [127,128]. Briefly, this

view suggests that the brain runs an internal model based on

past experiences to perform allostasis, which refers to the

regulation of the body’s internal environment by anticipating

physiological needs. Interoception is the representation and

utilization of these internal sensations. Past experiences are

implemented as concepts, which are embodied representations

that predict what is about to happen in the sensory environ-

ment. When the internal model creates an emotion concept, a

situated conceptualization (or categorization) results in an

instance of emotion. The activation of visceromotor regions

involved in interoception (amygdala, anterior insula, OFC,

ACC and mPFC) and those associated with representation of

events and situations (AG, precuneus/pCi and ATL) is broadly

consistent with this view (see also [129], where evidence for

situated conceptualizations for emotions was found in a neu-

roimaging study using a task context where situations were

described explicitly).
4. Morality
Morality has been defined as a set of guiding principles that

includes standards of right and wrong conduct, or rules that

guide us in our everyday choices and actions [130]. Moral

judgements involve decisions about what we would do

when faced with a moral dilemma, or evaluations of the

decisions and actions of others in situations that involve

moral principles like harm, justice and fairness. Deciding

what to do when faced with a moral dilemma or deciding

whether an action is right or wrong might involve slightly

different processes [131], with the former relying on

additional self-referential processes [132]. Theoretical

accounts have argued for a role of abstract-inferential, self-

referential and emotional processes in moral judgements.

For example, studies suggest that moral cognition is influ-

enced by the perceived intentionality of agents’ actions

[133–135]. To judge whether an agent’s action is intentional

requires the ability to infer other’s desires, thoughts and be-

havioural dispositions [136,137] often captured by the term

ToM. Support for the idea that abstract-inferential processes

play a role in moral cognition comes from neuroimaging

studies, showing that moral evaluations and decisions share

common neural resources with brain areas engaged in ToM,

including medial frontal and temporo-parietal brain regions

[138]. Evidence for a role of emotional processes in making

moral judgements comes from studies showing that experien-

cing empathy promotes moral behaviour towards other

people [139], and morally inappropriate behaviour can be

attributed to a deficiency in empathic skills [140,141]. In

line with this proposal, neuroimaging and lesion studies

have provided evidence that moral decision-making relies

on the vmPFC [142,143]. It has been argued that the

vmPFC plays a role in emotion regulation and that its invol-

vement in studies on morality therefore reflects a role of

emotional processes in making moral judgements [144]. To

investigate neural regions underpinning moral cognition

mediated verbally, and to examine their relationship to

other abstract domains, we conducted an ALE meta-analysis

using neuroimaging studies on moral decision-making.



Table 3. Clusters for the morality meta-analysis.

clust. hem. brain area BA x y z ALE vol. (mm3)

1 L dorsomedial prefrontal cortex 9 22 50 26 0.024 6536

R 2 46 30 0.024

24 42 28 0.022

2 L temporo-parietal junction 22 246 258 16 0.034 5800

258 250 16 0.016

middle occipital gyrus 19 248 268 6 0.016

inferior parietal lobule 39 246 266 28 0.013

234 258 22 0.010

3 L precuneus 7 24 254 28 0.024 4552

22 260 34 0.021

0 246 26 0.016

4 R ventromedial prefrontal cortex 10 4 52 2 0.020 2432

L 210 48 0 0.013

5 R temporo-parietal junction 39 48 258 20 0.022 2168

superior temporal sulcus 44 260 8 0.017
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(a) Methods
Studies included for the morality domain were selected on

the basis of a meta-analysis by Garrigan et al. [132]. From

the 28 studies included in this meta-analysis, we selected

studies that investigated morality by means of written sen-

tences, statements and scenarios (excluding studies that

used animated stimuli, pictures or vignettes). After screening,

20 separate experiments remained for inclusion, with a

total of 182 foci from 395 participants (figure 1; electronic

supplementary material, table S3).

(b) Results
Five significant clusters of activation, with a total of 15 peaks,

were found across the morality studies. Activations fell in the

bilateral dmPFC, vmPFC, AG, supramarginal gyrus (SMG)

(or TPJ3; [145]), left MOG and precuneus/pCi (table 3

and figure 2).

(c) Discussion
The TPJ is activated by abstract-inferential processes that have

been proposed to underlie ToM abilities like inferring other’s

desires, thoughts and beliefs [138,146–149]. Most theoretical

accounts have argued for a role of both the left and right TPJ

in ToM. However, contributions to ToM abilities seem to

differ between hemispheres [150]. A study by Saxe & Wexler

[150] showed that the right TPJ showed a response that was

restricted to the attribution of mental states, while the left

TPJ showed a response to the social background information

of a protagonist that was not significantly different from the

response during mental state attribution. Based on these find-

ings, the authors suggested that the left TPJ is involved more

broadly in the coding of socially relevant information of a pro-

tagonist, whereas the right TPJ is selectively involved in the

attribution of mental states. Deciding what to do when faced

with a moral dilemma or deciding whether someone’s actions

can be considered right or wrong requires a general coding of
socially relevant information of a protagonist and more specifi-

cally the attribution of intentions to others’ behaviour.

Furthermore, the overlap in activation between morality

and ToM tasks suggests that these abilities rely on similar

abstract-inferential computational processes, which may

involve general semantic knowledge and, more specifically,

events and episodic information. TPJ/AG is also commonly

found in studies of semantics involving individual concrete

or abstract words, and is more strongly activated for concrete

words [15], and likely has a more general role. The General

discussion further addresses this point.

One region that was uniquely seen for the morality

domain was the ventral-most aspect of TPJ bilaterally,

extending into the occipito-temporal cortex. This region is

similar to the ventral subdivision of AG identified by Seghier

et al. [151]. It responds more strongly to picture semantics

than to written words, and likely has a role in visual seman-

tics, which is also the function associated with the lateral

occipito-temporal cortex. Thus, its role is unlikely to be

specific to morality and possibly reflects vivid visual imagery

evoked by scenarios used in morality tasks.

Medial frontal areas, dmPFC and vmPFC, are commonly

seen in social cognition, abstract-inferential processing and

emotion regulation [109,152–156]. It has been suggested that

the vmPFC tracks the value of rewards and valence of emotion-

al stimuli [155,157,158], regulates emotions [144,155] and plays

a role in mesolimbic reward systems [159,160]. Furthermore, it

has been shown that lesions of the vmPFC are associated with

deficits in empathic processing and ToM abilities [161]. Studies

on moral cognition typically involve situations and moral

dilemmas that involve principles like harm, justice and fair-

ness. We suggest that the common activation of the vmPFC

across studies on moral decision-making reflects a role of

emotional processes in making moral judgements. The

dmPFC plays a role in the processing of complex social judge-

ments on visual face stimuli [162], abstract-inferential

processes involved in ToM [154,163] and the generation and

regulation of emotion [156]. In line with the idea that the
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dmPFC plays a role in emotion regulation, the dmPFC shows

strong functional connectivity with subcortical regions

involved in emotion processing [156], and the region homolo-

gous to the dmPFC in the macaque monkey has strong

neuroanatomical projections to core limbic structures

[164,165]. Advanced cognitive abilities such as social cognition

also involve dmPFC [152,153]. Recent studies have provided

evidence that the dmPFC is hierarchically higher and

especially important for highly demanding and uniquely

human social cognitive tasks [166,167]. Consistent activation

of the dmPFC in studies on moral cognition, and its overlap

with emotion, therefore likely reflects the demanding

abstract-inferential processes involved in moral judgements,

as well as a role of emotional processes in moral decision-

making.

Like TPJ, the precuneus/pCi is frequently activated in

studies of general semantics, emotions and higher-order pro-

cesses such as morality. Some authors have interpreted it as

being responsible for visual awareness, self-awareness and

self-referential processing, or consciousness [168–170]. We

suggest that its role is likely more general, and this is further

addressed in the General discussion.

In summary, the present meta-analysis shows that moral

decision-making based only on verbal stimuli involves a net-

work of areas including medial frontal and temporo-parietal

brain regions, and overlaps greatly with areas associated with

general semantics, social and episodic memories, and emotion

regulation. This suggests a process that is based in retrieval of

socially relevant entities and events, as well as emotions.
5. Theory of mind
ToM, often referred to as ‘mentalizing’, is traditionally defined

as the process of inferring the beliefs, thoughts or feelings of

another person, especially when those beliefs differ from

one’s own beliefs [136]. In recent years, the term has been

used to describe other situations involving the ‘self’ and

‘other’, including abstracted social behaviour (e.g. shapes per-

forming social-like behaviours), trait judgements and strategic

social games, among other tasks [171]. It is further complicated

by the fact that ToM relies on thinking about another person,

making it difficult to experimentally isolate from social cogni-

tion. Here, we focus on the original definition of ToM,

inferring the beliefs of others, and specifically focus on the

use of verbal stimuli, e.g. inferring one’s beliefs from a written

story about his/her circumstances and behaviours. This is often

studied by contrasting responses to ‘false belief’ stories, in

which a protagonist acts according to information that the

reader knows to be false, against ‘photo’ descriptions, in

which an outdated photograph is described with some infor-

mation that the reader knows is no longer true [172]. Both

conditions involve verbal descriptions of some false infor-

mation, but only the false belief stories involve imagining the

beliefs of another person.

As in other domains of abstract semantics, ToM tasks

often rely on social cognition and/or emotion perception.

There is debate as to how these domains are related. It is gen-

erally agreed that emotion perception is an affective process

while ToM is a cognitive one; yet, ToM is often required to

infer the emotional state of another person, and both pro-

cesses could reasonably fall under the umbrella of social

cognition [173]. Mitchell & Phillips describe several cognitive
models comparing ToM and emotion processing. They may

be separate mechanisms that differ in how much arousal is

required (ToM is ‘cold’, emotions are ‘hot’; [174]); they may

be connected processes which are accessed serially, such

that emotional processing precedes ToM [175], or they may

have a superset–subset relationship, in which ToM is a com-

plex process that includes emotion [176,177]. In all of these

models, it is acknowledged that ToM is a more complex,

high-level process than emotion processing.

(a) Methods
Only studies that investigated ToM by means of verbal

stimuli were included for the ALE meta-analysis. We

included foci from experiments that contrasted sentences or

vignettes describing the mental states of others (typically

beliefs) with a sentence or story about the protagonist’s phys-

ical circumstances or a non-ToM scene; or that contrasted

tasks which require inference about another’s beliefs with

tasks that require non-ToM comprehension. Twenty-eight

separate contrasts were included (electronic supplementary

material, table S3), with a total of 250 foci from 554

participants (figure 1).

(b) Results
Seven significant clusters of activation, with a total of 15

peaks, were found across the ToM studies. Activations fell

in the bilateral medial frontal cortex (dmPFC and vmPFC),

TPJ, middle superior temporal sulcus (STS), precuneus/pCi,

left SFG, ACC, ATL and the right middle frontal gyrus

(MFG) (table 4 and figure 2).

(c) Discussion
The areas seen in the domain of ToM have a great deal of over-

lap with the areas in the moral reasoning meta-analysis, with

the addition of the ATL mid-STS. In a meta-analysis, Schurz

et al. [178] showed that the TPJ and medial frontal cortex are

the most task-indifferent regions that are involved in ToM,

and they are also the most consistent areas to emerge during

verbal narrative tasks. The STS has also been implicated in

the ‘ToM network’, although this area is somewhat less consist-

ent and may rely specifically on social animations [147] or

inferring desires, rather than beliefs, of another person [179].

It also emerged in a semantic meta-analysis [15], where most

studies did not involve inference about others’ beliefs or

desires. The description of these areas as a ‘network’ may not

be entirely accurate, however; these areas play important

roles in the cognitive processes involved in ToM, but their

specific functions are likely distinct between regions.

The TPJ, overlapping with both morality and emotion

domains, is consistently activated while imagining another’s

thoughts [146], emotional state [180] or beliefs [147]. The TPJ

is also activated across a wide variety of ToM-related modal-

ities and tasks, e.g. during entirely visual tasks that require

taking the perspective of another [181] and the interpretation

of jokes that require inference about others’ beliefs [148,182].

The TPJ is also involved in making moral judgements of

others based on their intentions [138,183], even in children

[184], consistent with the TPJ’s involvement in the morality

analysis above. Like in studies of morality, there is some dis-

agreement over whether there are separate lateralized roles

for the right and left TPJ in ToM processing. For example,



Table 4. Clusters for the ToM meta-analysis.

clust. hem. brain area BA x y z ALE vol. (mm3)

1 ventromedial prefrontal cortex 10 0 48 2 0.030 9304

R dorsomedial prefrontal cortex 9 2 50 34 0.030

L 24 50 16 0.023

R middle frontal gyrus 10 2 44 28 0.017

L superior frontal gyrus 9 220 50 36 0.016

anterior cingulate 32 22 36 10 0.013

2 L temporo-parietal junction 39 250 258 20 0.056 6112

3 L precuneus 7 22 256 32 0.036 5944

0 258 24 0.025

4 R temporo-parietal junction 39 48 254 24 0.048 5264

5 R superior temporal sulcus 22 50 218 28 0.026 2928

6 L 254 224 26 0.023 1760

7 L anterior temporal lobe 21 250 0 222 0.017 1504

256 26 212 0.015

242 2 230 0.011
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the left TPJ is activated by false belief stories and also by

‘false sign’ stories that involve a protagonist being misled,

but do not explicitly require consideration of the protago-

nist’s beliefs [185,186]. The right TPJ, on the other hand,

may be involved in detecting an incongruity between the pro-

tagonist’s behaviour and his/her environment [185,186], or it

may be a more domain-general monitor of working memory

and attentional demands [187,188]. In either case, it is clear

that both left and right TPJ play a role in both ToM and mor-

ality domains [189–191]. Its likely functions are more general,

which are considered in the General discussion.

The medial frontal cortex is a very consistent area of acti-

vation during ToM studies [192,193] using both verbal and

nonverbal tasks [194], but also like the TPJ, its role in cogni-

tion may not be specific to ToM, because it has also been

implicated in other forms of social and emotional processing

[122,192]. As discussed above, there are also differences

between the specific roles of dmPFC and vmPFC

[109,195,196] as well as medial and lateral subregions [179].

In the current analysis, the verbal ToM studies included

peaks in all relevant subregions of the medial frontal cortex.

The ACC, in addition to ToM tasks, also emerges during

tasks that require introspecting about one’s own beliefs or jud-

gements [176,197]. It is also involved in similar higher-order

social and especially affective tasks, such as understanding

jokes [148] and processing abstract or affective words

[108,180], and was seen in our emotion meta-analysis,

suggested to play a role in modulating activity in amygdala.

Finally, the ATL emerged during ToM processing, in con-

junction with emotional processing in the left hemisphere.

This is unsurprising, given that the ATL is involved in detect-

ing the emotional states of others [198,199] or making moral

judgements about others [200], which require ToM. This

likely reflects the ATL’s role in emotional and social

processing, as discussed earlier.

Thus, the neural areas involved in ToM overlap substan-

tially with those of other domains, in particular morality and

emotional processing. Morality and ToM tasks often entail
similar cognitive abilities, namely considering the mental

and emotional states of others.
6. Domain-general abstract processing
Finally, an ALE meta-analysis was performed collapsing across

peaks from all four domains. Six clusters of activation, with a

total of 16 peaks, were found across all domains (104 exper-

iments, 1884 participants and 763 foci). Activations fell in the

bilateral TPJ, dmPFC, vmPFC, left MFG, SFG, precuneus/pCi,

ATL and the right ACC (table 5 and figure 3, pink/purple).

These regions overlap with the semantic system identified

in Binder et al. [15], which reflected predominantly concrete

semantics.4 To perform a direct comparison with the results

of Binder et al., and to better identify concrete semantics, we

used peaks from that study after eliminating contrasts and

tasks that targeted abstract or metaphoric content (e.g. affective

judgement). This resulted in 981 peaks (of the original 1145). An

ALE analysis using these peaks (using the same threshold used

for other domains here) is depicted in figure 3 (blue/purple).

Considering the abstract map, the contrast between figures 1

and 3 (and the circumscribed left ATL/IFG activation in [14]) is

striking: the former shows activations that are widely distribu-

ted and involves most regions other than primary sensory and

ventral temporal regions, while figure 3 shows a relatively cir-

cumscribed set of regions. In one sense, the meta-analysis in

figure 3 does not contain false negatives by definition, in that

it is meant to detect consistent activation controlling for the

total number of peaks. But in another sense, such an analysis

can create false negatives if heterogeneous tasks and domains

are included. A significant proportion of the cortex involved

in abstract concept processing does not show up on the map,

not necessarily because the peaks from individual studies are

false positives or are unreliable, but because they reflect differ-

ent underlying processes. Even within a single domain, such as

emotions, the distribution of peaks is much more extensive than

what is obtained in the emotion map in figure 2. In this sense,



Table 5. Areas activated in the meta-analysis across all domains.

clust. hem. brain area BA x y z ALE vol. (mm3)

1 R dorsomedial prefrontal cortex 9 0 48 32 0.054 19 376

0 50 26 0.051

ventromedial prefrontal cortex 0 48 2 0.045

L middle frontal gyrus 28 40 26 0.025

R anterior cingulate 4 34 14 0.020

L superior frontal gyrus 214 32 44 0.020

2 L temporo-parietal junction 250 258 18 0.088 8680

3 L precuneus 24 256 24 0.065 8536

4 R temporo-parietal junction 39 48 256 24 0.071 5368

5 L anterior temporal lobe 250 4 220 0.031 2736

242 10 228 0.023

244 2 228 0.022

6 L inferior parietal lobule 40 242 244 38 0.022 2192

248 240 48

250 240 44

252 244 32

L Rabstract
both
concrete

Figure 3. Results of the meta-analysis collapsing across all four abstract
domains are shown in pink/purple. Activation from a meta-analysis of
peaks from Binder et al. [15], after removing abstract peaks, is depicted in
blue/purple, with purple showing the overlap between the two.
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the conclusion that abstract processing relies on only a small set

of regions is misleading. This highlights the importance of the

specific stimuli chosen for an experiment, the task and the con-

trol conditions, which can lead to variability within and across

domains. Any negative conclusions based on a meta-analysis

(the lack of involvement of a region in a domain) should be trea-

ted with caution if there is a chance that the stimuli, tasks or

controls reflect heterogeneous processes.

Regions overlapping between domain-general abstract

processing and concrete concepts were bilateral TPJ, precu-

neus/pCi, dmPFC and vmPFC, with a left . right pattern,

and are discussed below.
7. General discussion and conclusion
We examined the representation of concepts related to numeri-

cal, emotional, moral and ToM processing. Basic number

concepts showed a signature in bilateral IPS that extended into
SPL. This supports the idea of spatial and body/finger-based

representation of numbers. Verbally mediated emotion concepts

activated areas associated with emotion processing and regu-

lation, including the left amygdala and the right OFC,

supporting grounding of emotion concepts in emotional experi-

ence. Higher-order, inferential processes of morality and ToM

show partial overlap with areas associated with emotion proces-

sing in medial PFC and ATL, and also show activation in general

concrete semantic areas, namely AG, precuneus/pCi and ATL.

Apart from partial grounding in emotions, this suggests access

to episodic/semantic content, as opposed to a process that is

fundamentally different from other types of semantics.

The meta-analysis across the four abstract conceptual

domains revealed a map (figure 3) that shows significant over-

lap with a map based on concrete concepts and includes

bilateral AG/TPJ, dmPFC, vmPFC, precuneus/pCi and the

left ATL. (Numbers do not significantly contribute to these

areas, but the other three domains do.) Using a large set of con-

cepts that varied in their sensory-motor attributes, a recent

study [201] identified several ‘hub’ areas that were commonly

activated by all attributes, which included all of the areas seen

here, with the notable exception of ATL. ATL has also been

suggested to be a semantic hub region [202,203].

We suggest that the reason for the similarity of activation

patterns between two seemingly very different types of

semantics (concrete concepts versus emotions and abstract-

inferential processing) can be explained by the role of social

and episodic knowledge and the semantic content of the

episodes. For precuneus/pCi, two functional subdivisions

have been suggested, where the anterior section is involved

in mental imagery, and the posterior region in episodic

memory retrieval [170]. In a meta-analysis comparing episodic

encoding and retrieval, precuneus/pCi was upregulated for

retrieval compared with encoding [204]. A related function

of this area is in egocentric versus allocentric spatial processing

[205,206]. The overlap map revealed that the retrosplenial

cortex was activated for concrete but not for abstract concepts,
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while a more dorsal section in the right precuneus showed the

opposite pattern. While retrosplenial cortex plays multiple

roles associated with episodic memory, it is especially impor-

tant for spatial memory [207,208]. Activation of retrosplenial

(along with parahippocampal) cortex for concrete but not for

abstract concepts suggests a more direct reliance on spatial

content for concrete concepts, while abstract concepts evoke

episodic memories that are less spatial in nature.

AG has been proposed to be involved in a wide variety of

functions (see [71] for a review). It features prominently in con-

crete concept processing and has been proposed to integrate

sensory-motor features [5,15,201,209,210]. While bilateral AG

is seen in concrete . abstract contrasts, it also responds to

abstract concepts when compared with a non-semantic control

condition [108,211]. Beyond integrating features of static con-

crete concepts, it is likely to have a special role in integrating

information across time, in processing events and relations.

The left AG has been associated with understanding stories

[119,212], verb argument structures [213] and thematic

relations [214,215]. Boylan et al. [216] tested the response of

AG to several types of two-word combinations, and found

that it tracked the presence of an event-denoting verb, support-

ing the view that AG responds to event structure. Along

with precuneus/pCi, AG is also a central node in the

default-mode network [217,218] in the resting state, which is

rich in episodic, prospective, introspective and semantic con-

tent involving objects, relations, plans, emotions, people and

events [5,163,219,220]. Recently, Thakral et al. [221] found

that applying rTMS to the left AG reduced the amount of epi-

sodic details produced during simulation and memory tasks

based on event words (but not during a free association

task), providing evidence for its role in episodic simulation

and episodic memory. The set of common regions identified

here was also found during sustained episodic simulations

[222]. Spunt et al. [22] found activation of the same network

seen here, consisting of AG, ATL, precuneus/pCi and mPFC,

when actions (riding a bike) were processed at high levels of

abstraction (Why ride a bike? To get exercise) versus low levels

of abstraction (How to ride a bike? Grip handlebars). The ‘why’

question brings episodic or situational context into play.

Based on a review of such findings, Rugg & King [223] recently

proposed that AG represents retrieved episodic information,

supported by a more general role in representing multi-

modal and multi-domain information. Along the same lines,

Ramanan et al. [224] proposed that AG is the critical contribu-

tor to episodic reconstruction across past, future and

atemporal contexts, and actively represents and integrates dis-

parate sensory-perceptual details into a rich multi-modal

‘contextual layer’. In summary, processes that are common

across these abstract domains appear to be related to event

and relation processing, episodic recall, imagery and emotion

processing, and are also triggered by concrete concepts.

(a) Representing abstract concepts: a proposal and
implications for theories

We suggest that event- or situation-based representations pro-

vide one mechanism for understanding and grounding of

many types of abstract concepts. Exemplars and prototypes

for concrete object categories (apple) are objects. Objects with

a certain range of feature values (e.g. colours, patterns,

shapes, sizes and tastes), or those with a family resemblance

to other apples, constitute ‘good’ or acceptable instances of
apples. For some abstract concepts, exemplars and prototypes

are events, and family resemblance is computed over event

structures. Concepts inhabit a space whose dimensions include

event-based or situational information, interoception, introspec-

tion, and sensory-motor features that contribute to varying

degrees. For example, we hypothesize that event-based rep-

resentations are critical for conceptual processing related to

morality and ToM, as well as for concepts related to social con-

structs ( justice and democracy), which is supplemented by

interoceptive affect. For emotion concepts, interoception plays

a central role, supplemented by event representations. Intro-

spection is most salient for concepts related to cognition

(thought and consideration). Number concepts rely on body-

part-based and spatial representations, with little contribution

from events. There is no categorical distinction between con-

crete and abstract concepts, but the reliance on event-based,

interoceptive, introspective and sensory-motor dimensions dif-

fers. Concrete object concepts, in general, rely more strongly on

sensory-motor properties, but other dimensions can play a

greater role for specific concepts (e.g. interoceptive affect can

play a greater role for concrete object concepts with salient

emotional features, such as knife; event information contributes

to picnic), or due to task demands. An additional dimension

that can contribute to some abstract concepts is metaphoric rep-

resentation, which is not examined here. Abstract concepts can

be understood by analogies to concrete domains [225–227],

exemplified by metaphors such as grasping an idea or moving
up in the company. Here, correspondence is established between

understanding and physical grasp, and between power/

authority and higher spatial location, respectively.

Space does not permit discussion of the behavioural

findings here, but we note that consistent with the current

proposal, a number of investigators have pointed out the impor-

tance of contextual, and especially relational or social,

information for at least some types of abstract concepts, and pro-

vided behavioural evidence in healthy subjects [18,85,228–230].

Additionally, in the treatment of persons with aphasia, training

on abstract concepts ( justice) leads to generalization to related

but untrained concrete concepts ( jury), but not vice versa

[231,232]. This is also consistent with event-based represen-

tations of these abstract concepts that activate concrete entities

contained therein. The current study builds on this body of

work and provides new evidence from neuroimaging that is

not limited by behavioural tasks such as property generation,

or explicit consideration of a situation.

While we have provided preliminary neuroimaging evi-

dence in support of some of these hypotheses, a very

limited set of abstract concepts was examined here, and it is

clear that much work remains to be done to devise ways of

partitioning abstract concepts, and to delineate the dimen-

sions and their relative contributions to their representation.

Nonetheless, these findings provide constraints on theories

of concept representation. Both classical theories, Dual

Coding and Context Availability, assume two differing mech-

anisms that apply to the entire categories of abstract and

concrete concepts. This trend of a hybrid approach is also

seen in recent theories. A single mechanism dedicated to

abstract concept processing carries with it an implicit

assumption that not being concrete is a good unifying prin-

ciple. For example, some models combine embodied and

distributional information that is used predominantly for

concrete and abstract concepts, respectively [233–235]. Simi-

lar to the Dual Coding theory, Dove [236,237] proposed a
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view where abstract concepts rely on amodal symbols, which

acquire meaning only from their relationship with other sym-

bols. Accounts that propose a single and amodal mechanism

for abstract concept representation are challenged by the cur-

rent results, for the two reasons outlined above: (i) there are

important differences in how different types of abstract con-

cepts are represented; and (ii) the areas that are commonly

activated across abstract domains overlap with those for con-
crete concepts, and those implicated in episodic memory,

event processing, imagery and emotions. The current results

fit most naturally within the framework of situated cognition

(e.g. [238–241]) and can be interpreted as being most compa-

tible with situated theories, such as Language and Situated

Simulation [241] and the Words as Social Tools (WAT)

[230,242] proposals. WAT emphasizes the importance of

social information that is accessed through words. Activation

of areas involved in event representation, episodic memory,

emotions and concrete concepts is consistent with retrieval

of social interaction memories that have all of these com-

ponents. While there was no clear support for the other

aspect of the theory which postulates linguistic, mouth-

related and phonological basis for all types of abstract

concepts, negative results are not necessarily conclusive,

as emphasized earlier. The Affective Embodiment view

[83,243] proposes that affective experience and emotional

development are crucial for abstract concepts, and sensory-

motor experience is important for concrete concepts.

Emotions provide a bootstrapping mechanism for acquisition

of abstract words. Although the ‘core’ regions associated with

emotion processing, amygdala and OFC, were not activated

by all abstract domains, the common activation of mPFC

and ACC, involved in emotion processing and regulation,

can be interpreted as being broadly consistent with this view,

at least for the types of abstract concepts examined here.

Finally, it is worth keeping in mind that many, if not

most, brain areas are highly multi-functional. Areas such as

mPFC, OFC, insula and precuneus/pCi are activated in a

staggering variety of studies and have numerous functional

interpretations. The interpretations that we argue for are sup-

ported by a large body of literature, and not just by one or

two isolated studies. Nonetheless, caution should be used

deriving functional interpretations from these activations,

with consideration given to alternative views and possibili-

ties, especially with regard to complex processes such as

introspection and interoception, as our understanding of

the functions and connectivity of these regions increases.

(b) Conclusions
We have provided evidence that both differences and simi-

larities exist in the representation of the four types of abstract

concepts considered here. We show that the representation of

abstract concepts is much more widespread in the brain than
is often assumed. Emotional and number concepts can be

grounded directly in emotional, spatial or action-related brain

circuits. Higher-order abstract processes of morality and ToM

can also be processed and grounded through events, episodic

memories and simulations, which in turn rely on emotions, ima-

gery and lower-order concepts. The differences suggest that the

way in which various types of abstract concepts are represented

can differ substantially. While ‘abstract’ is a useful label to situ-

ate oneself in the general area, faster progress can potentially be

made if theory development focuses on varieties of abstract con-

cepts and their characteristics, and explores possibly different

formats and mechanisms. Promising initial steps in this direc-

tion have been taken by a number of investigators (e.g.

[82,244–246]). Theory-driven, top-down approaches (e.g. start-

ing by examining categories devised by linguists, available in

a thesaurus) and data-driven bottom-up approaches are both

promising ways of teasing apart potential categories of abstract

concepts from complex high-dimensional neuroimaging or be-

havioural data. Based on the similarities in activation between

the domains, we also propose that events or situations may con-

stitute an important dimension in representing many types of

abstract concepts. Categories of abstract concepts may differen-

tially weight event-based, interoceptive, introspective and

sensory-motor information.
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Endnotes
1Here, interoception refers to the sensory perception of internal body
states. Introspection is used to refer to reflection on one’s mental pro-
cesses, such as reasoning, thoughts, beliefs and will.
2We thank an anonymous reviewer for pointing out these counting
systems.
3Here, we use the term ‘TPJ’ for consistency with the terminology typi-
cally adopted in morality and ToM studies. However, it is worth
pointing out that this term is used to refer to a variable set of anatom-
ical regions that includes AG, lateral occipital cortex, STS, SMG and
pMTG. Often activations that are entirely contained in one of these
regions are described as being in the TPJ, which seems unnecessarily
vague and creates potential for incorrect reverse inference.
4To rule out activations due to executive processing demands, Binder
et al. [15] eliminated contrasts that had greater difficulty for the con-
dition of interest relative to that of the control condition. Because
abstract conditions frequently have greater difficulty/reaction time,
many such contrasts were excluded, resulting in an increase in bias
towards concrete semantics, which stemmed from the fact that
there were many more studies of concrete concepts to begin with.
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