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Analyses of the evolution of cooperation often rely on two simplifying

assumptions: (i) individuals interact equally frequently with all social network

members and (ii) they accurately remember each partner’s past cooperation or

defection. Here, we examine how more realistic, skewed patterns of contact—

in which individuals interact primarily with only a subset of their network’s

members—influence cooperation. In addition, we test whether skewed contact

patterns can counteract the decrease in cooperation caused by memory errors

(i.e. forgetting). Finally, we compare two types of memory error that vary

in whether forgotten interactions are replaced with random actions or with

actions from previous encounters. We use evolutionary simulations of

repeated prisoner’s dilemma games that vary agents’ contact patterns, forget-

ting rates and types of memory error. We find that highly skewed contact

patterns foster cooperation and also buffer the detrimental effects of forgetting.

The type of memory error used also influences cooperation rates. Our findings

reveal previously neglected but important roles of contact pattern, type of

memory error and the interaction of contact pattern and memory on

cooperation. Although cognitive limitations may constrain the evolution of

cooperation, social contact patterns can counteract some of these constraints.
1. Introduction
From purchasing rounds of drinks at the local bar to helping a neighbour with a

house repair, cooperative behaviour is a hallmark of human society. Yet, the emer-

gence of cooperation seems to be a puzzling phenomenon: although it increases

the greater good, it incurs costs to donors. To solve this puzzle, researchers have

attempted to identify the factors that lead to the evolution of cooperation. One

important determinant is the ability to reciprocate a partner’s previous actions [1].

Because reciprocity requires repeated interactions with partners [2],

cooperation depends on the social networks in which individuals interact, as

they structure the pattern of interactions [3–5]. For instance, in networks with

highly interconnected clusters of reciprocal cooperators, the benefits of mutual

cooperation are particularly high [6].

To date, investigations on the influence of network structure on cooperation

have primarily focused on the arrangement of connections between agents.

However, the strength (or weight) of the connections—that is, the frequency of

contact between agents—can critically impact network dynamics as well [7,8].

Past contact frequency is critical to cooperation because it increases the probability

of future interactions [9–11] and thus should influence whether reciprocal

cooperation can evolve. For simplicity, most models of cooperation assume

equal contact frequencies with all partners. Empirical investigations, by contrast,

have found that patterns of contact frequencies in social networks are skewed,

with most interactions occurring with only a small fraction of their network’s
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members [10,12]. It is currently unclear how differences in con-

tact patterns—that is, whether the distribution of interactions

across the members of one’s network is equal or skewed—

impact the evolution of cooperation. On the one hand,

skewed contact patterns may create clusters of interactions

and promote cooperation [6,13]. On the other hand, simu-

lations of scale-free social networks have suggested that

cooperation decreases with higher heterogeneity in connection

weights [14]. This study, however, used arbitrary distributions

of connection weights. Here we use agent-based simulations to

investigate how empirically based skew in contact patterns

influences cooperation and interacts with memory.

Many cooperative strategies rely on memory to track

the agent’s and/or the partner’s past behaviour [15–17].

Tit-for-tat, for example, copies the partner’s behaviour from

the previous interaction, requiring that the agent remember

whether the partner cooperated or defected [2]. Therefore,

imperfections in memory due to forgetting can degrade

cooperation for reciprocal strategies [18–20]. Yet, existing

models have not investigated how these cognitive factors inter-

act with the social environment (contact patterns) to influence

the evolution of cooperation, so they may fail to capture a criti-

cal factor in these situations. We test the hypothesis that the

impact of forgetting on cooperation may depend on the pattern

of contact with one’s partners.

Finally, we consider that the impact of forgetting on

cooperation may differ depending on which type of memory

error is assumed. In existing models, an agent forgets its

partner’s action with a particular error rate and then chooses

cooperation and defection with equal probability [18–20].

When agents randomly guess actions like this, they will misre-

member half of the time. We propose a type of error that is new

to models of cooperation in which, rather than randomly

choosing an action, the agent skips the forgotten event and

instead retrieves the memory of the most recent preceding

event that is remembered. Whereas existing models of

cooperation have considered only replacing forgotten inter-

actions with random actions (guessing errors), here we also

investigate memory errors that involve skipping entire epi-

sodes (skipping errors), providing a novel and more complete

account of memory’s role on cooperation. These guessing

and skipping errors map onto errors of commission and omis-

sion, respectively. Distinguishing between these two kinds of

errors led to important developments in the field of memory

(e.g. the reliability of eye-witness testimony and memories of

childhood sexual abuse), but the consequences of this distinc-

tion have yet to be been considered in investigations of the

evolution of cooperation [21].

Using agent-based, evolutionary simulations [22], we

study how patterns of contact in an agent’s social network

and memory failures affect the evolution of cooperation and,

in particular, how these two components interact. We hypo-

thesize that contact pattern will interact with the quality of

memory to influence the evolution of cooperation. When

contact frequency differs between network members, there is

variation in the number of intervening interactions with

other network members that occur between the interactions

of a specific pair. When memory is imperfect, the contact

pattern should influence the evolution of cooperation because

the distribution of contacts determines the number of inter-

vening interactions: the higher the relative frequency of

interactions with a network member, the more recently, on

average, the last interaction with that member will have
occurred. As memory is more accurate for more recent

events [23], there will be fewer memory errors for the inter-

actions with network members with whom interactions are

frequent. Better memory should promote the evolution

of cooperation, but the size of the effect may depend on the

contact pattern.

In our approach, we focus on repeated prisoner’s dilemma

situations [2,24]. In the simulations, each agent employed one

of nine commonly modelled strategies [2,20] when interacting

with other agents. When two agents interacted, they chose an

action (cooperate or defect) and received a payoff based on

the classic prisoner’s dilemma payoff matrix [2]. At the end

of one generation of interactions, the total payoff received by

each agent determined how frequently that agent’s strategy

was represented in the next generation, thereby allowing the

distribution of strategies to evolve over generations.

We implemented three types of contact pattern between

agents (electronic supplementary material, figure S1). In the

no-skew condition, the agents interacted with the members

of their personal network with equal frequency. Many species,

however, do not have the same number of interactions with

everyone in their social network. In humans, the distribution

of contact frequency is highly skewed, such that we frequently

interact with some network members but infrequently interact

with most network members [10,12]. Therefore, our simu-

lations also included two skewed contact patterns: one (high

skew) used a distribution of contacts that matched the empiri-

cal distribution in humans estimated by Pachur et al. [10], and

the other (low skew) used a distribution with skew intermedi-

ate between high and no skew (electronic supplementary

material, figure S1).

When two agents interact, they may use information about

previous interactions, and accessing this information requires

memory. A previous agent-based simulation investigated the

evolution of cooperation across a wide range of forgetting

error rates [20]. The results demonstrated that cooperation

could evolve with very low levels of forgetting, but defection

dominated with forgetting rates higher than 5%. Therefore,

in addition to varying the contact pattern, we varied the

forgetting rate, using a standard forgetting function from cog-

nitive psychology [25,26] (electronic supplementary material,

figure S2). We used empirical estimates of these parameters

from humans [20], along with higher and lower rates. To inves-

tigate the interplay of contact pattern and forgetting in shaping

the evolution of cooperation, we considered memory errors of

both guessing and skipping.

In sum, our simulation investigated how cooperation

evolves under different combinations of contact patterns (no,

low or high skew), forgetting rates and types of memory

error (guessing and skipping errors).
2. Methods
(a) Agents
Each simulated agent was assigned one of nine different strategies:

all cooperate, all defect, tit-for-tat, tit-for-two-tats, generous tit-for-

tat, contrite tit-for-tat, grim trigger, win-stay-lose-shift and random

(electronic supplementary material, table S1). These are commonly

used strategies in the literature [20] that represent a range of reac-

tions to partner actions. Each simulation run started with an equal

number of agents using one of the nine strategies. The population

size was fixed at 90, with 10 agents for each strategy.
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(b) Variation of memory
We varied memory of agents on two dimensions: probability of

forgetting and type of memory error. We modelled the probability

that individuals correctly remembered an interaction in the past

based on the idea that an agent’s intervening interactions increased

forgetting. Specifically, we set the probability of correctly remem-

bering a previous interaction ( p) to a modified version of

Wickelgren’s [25] forgetting function [26]: p ¼ l(k þ 1)2c, where

l and c are parameters defining the starting point and the decay

rate of the forgetting function, and k represents the number of inter-

actions between the target and the current interaction. We created

seven different forgetting rates by varying the two parameters

(electronic supplementary material, figure S2).

We also varied the type of memory error. When skipping

encounters, agents completely forgot the interaction (both the

agent’s and partner’s action) and thus consulted the past history

of interactions to replace the forgotten information with the

actions from the immediately preceding interaction that was

remembered to determine the current action. With random gues-

sing, the agent replaced the memory of a forgotten interaction

with a random memory of actions (cooperate or defect with

equal probability) for both itself and its partner. For both types

of error, these replacement actions were incorporated into the

agent’s history of interactions and used to select the next action

based on its strategy.

(c) Contact patterns
For the simulation, we considered a population of 90 agents. These

agents were placed on a network such that each agent had 10

neighbours. In the no-skew distribution, agents played an equal

number of 10 rounds against all of their neighbours, such that

each agent participated in 100 interactions in total. The other two

environments redistributed the total of 100 interactions per

player. Specifically, we considered the following distribution of

interactions illustrated by three vectors that give the number of

interactions with each partner: no skew k10, 10, 10, 10, 10, 10, 10,

10, 10, 10l, low skew k19, 16, 14, 11, 10, 8, 7, 6, 5, 4l and high skew

k33, 23, 15, 10, 7, 5, 3, 2, 1, 1l (electronic supplementary material,

figure S1). Each agent’s interaction pattern exactly matched the

vector corresponding to its respective skew condition. To create

the complete set of interactions for all agents in a population, an

algorithm first paired each agent with its 10 partners as specified

by the skew vector. Then, it appended all of these interactions

into a single list and randomly shuffled all of the interactions.

(d) Simulation setup
The actions of the two agents determined the payoffs received for an

interaction, based on the classic prisoner’s dilemma payoff matrix

[2] (table 1). We summed the payoffs for each agent’s 100 inter-

actions to generate its fitness score, which determined the

distribution of strategies in the following generation using a roul-

ette-wheel selection operator [27]. The chance of replicating a

specific agent’s strategy was proportional to its share of the total fit-

ness scores among all agents. We repeated this procedure for 250

generations, and for each environment we conducted 1000 repli-

cates. In addition, we conducted sensitivity analysis simulations

that varied the number of interactions per agent (200, 500 and
1500), the payoff matrix and the selection operator. We report the

distribution of strategies and the proportion of cooperative choices

in the final (250th) generation averaged across 1000 trials for

each environment.

(e) Data analysis
We conducted the simulations in MATLAB and analysed the data

using R v. 3.4.4 [28]. MATLAB code, data and R code and packages

used are available in electronic supplementary material and at the

Dryad Data Repository [29] and the Open Science Framework

(https://osf.io/a7d3b/).

3. Results
(a) Cooperation rates
Figure 1 illustrates the effect of contact pattern, forgetting rate

and memory error type on cooperation rates in each of our

39 environments (each point in the figure represents one

environment). Cooperation rates peaked at 98% when there

was no forgetting. As forgetting increased, cooperation rates

dropped, replicating other work showing the fragility of

cooperation when faced with forgetting [18–20]. The rate of

cooperation evolved differently depending on the type of

memory error used. Collapsed across all conditions, mean

cooperation rates were higher for errors caused by skipping

(62%) than for errors caused by guessing (17%). This probably

reflected the fact that, compared to the skipping condition,

agents in the guessing condition were more likely to select a

different action than that expected with perfect memory,

which also resulted in more defection (electronic supplemen-

tary material, figure S3). Thus, when information was lost,

memory that reverted to records of previous interactions

with that partner rather than randomly choosing an action

led to higher levels of cooperation.

Importantly, the detrimental effects of forgetting on the

evolved cooperation rate depended on the degree of skew in

the contact pattern. Specifically, in the conditions with a

highly skewed distribution, the decline in the rate of

cooperation across forgetting rates was less steep than in the

conditions with low- or no-skew contact patterns. In other

words, a skewed distribution buffered the detrimental effects

of forgetting on cooperation. The magnitude of this buffering

effect depended on the forgetting rate and type of memory

error. For illustration, with guessing errors, simulations with

forgetting parameters of l ¼ 1, c ¼ 0.25 and no skew reduced

cooperation rates by 85% compared to perfect memory. The

high-skew condition, however, reduced cooperation rates by

only 71%, thus buffering the drop in cooperation by 14 percen-

tage points. At forgetting rates approximating empirically

measured ones (l ¼ 0.87, c ¼ 0.22), high skew buffered the

drop in cooperation by 7 percentage points. With skipping

errors, the buffering effect of a skewed contact pattern was

even stronger, up to 53 percentage points. Overall, these results

demonstrate that the emergence of cooperation was strongly

affected by the pattern of contact frequency in an agent’s

social network. In addition, the contact pattern buffered nega-

tive effects of forgetting on the evolution of cooperation. These

findings replicated both with a more cooperation-friendly

payoff matrix (electronic supplementary material, figures S4

and S5) and with two other selection operators (electronic

supplementary material, figure S6).

For computational reasons, our simulation only included 10

social partners per agent. But many social animals, including

https://osf.io/a7d3b/
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Figure 1. (a) Mean cooperation rate across all strategies in the final generation varied based on level of skew in contact pattern (no skew, low skew, high skew),
forgetting rate (l specifies starting point, c specifies decay rate) and type of memory error (guessing or skipping). Each agent experienced 100 interactions spread
across 10 partners. Shaded area highlights the empirically derived forgetting parameters. Standard error of the mean error bars are not shown because they are
smaller than the data point symbols. (b) Mean cooperation rate across all strategies in the final generation varied based on the number of interactions that partners
experienced (100, 200, 500 and 1500) and contact pattern skew for the l ¼ 0.87, c ¼ 0.22 skipping condition. (Online version in colour.)
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humans, have many more social partners than this. To deter-

mine whether the buffering effect of contact pattern on

forgetting is influenced by the number of partners, we increased

the number of interactions that the agents experienced in their

lifetime. We inserted these interactions as ‘filler’ interactions

without actually assigning partners or calculating their payoffs.

Instead, they acted as additional intervening interactions, thus

mimicking an increase in the number of partners without sub-

stantially increasing the computational load of the simulation

(see electronic supplementary material for details). Increasing

the number of interactions decreased the cooperation rate.

Most importantly, however, the decrease in cooperation with

increasing numbers of interactions was again buffered by

skew: agents in the no-skew condition showed a much steeper

drop in cooperation with interaction number than those

in the high-skew condition (figure 1). The condition with

1500 interactions is analogous to a social network size of
150 individuals, which matches Dunbar’s [30] estimate for

the size of human social groups. Thus, with an empiri-

cally estimated social network size (1500 interactions or 150

individuals) and contact pattern (high skew), cooperation is

maintained at high levels, even with empirically estimated

forgetting rates.
(b) Strategy composition
Cooperation rates are determined by the composition and

interaction of strategies in the population, so the observed

effects on cooperation rates depend on the architecture of the

decision strategies. To examine how the impact of contact pat-

tern on the detrimental effect of forgetting depends on the

decision strategy, we also investigated how the individual

strategies responded to variations in our environments.

Figure 2 illustrates the effects of contact pattern, forgetting
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rate and type of memory error on three strategies whose per-

formance in a previous study [20] depended on forgetting

rates (electronic supplementary material, figure S7 includes

all strategies). All defect (ALLD) showed the opposite pattern

to the cooperation rate in figure 1: (i) less defection with high

skew and intermediate error rates, and (ii) less defection with

skipping errors than guessing errors. The tit-for-tat-derived

strategies showed similar patterns to each other, so we aggre-

gated them into a TFT family. The results for the TFT family

mirrored those of the cooperation rate, suggesting that the

TFT-derived strategies underpinned the buffering effects on

cooperation rates. The third major strategy influencing

cooperation rates was grim trigger (GRIM). With skipping

errors, skewed contact pattern also buffered GRIM against

memory errors. This was not the case, however, with guessing

errors: GRIM performed worst, with a highly skewed distri-

bution. Therefore, the effects of contact pattern, forgetting

rate and memory error type interacted to have differential

effects on different strategies.
407
4. Discussion
Our simulation results provide several major contributions to

understanding the evolution of cooperation. First, our simu-

lations (1) integrate into models of cooperation manipulations

of contact pattern, forgetting rate and type of memory error,

and (2) use empirically derived estimates of these measures in

humans. Our estimates provide empirically based evaluation

of the cognitive and environmental conditions relevant for the

evolution of cooperation.

Second, our results demonstrate that skewed distributions

of contact can enhance cooperation by buffering effects of for-

getting. This key finding qualifies previous analyses of the

evolution of cooperation and the detrimental role of cognitive

limitations. Our results indicate that future empirical studies

of cooperation should measure patterns of contact across

species and future theoretical studies of cooperation should

incorporate empirically derived distributions of contact

frequency in their models.

Third, the effect of contact patterns and forgetting on

cooperation is mainly driven by TFT-derived strategies (though

win-stay-lose-shift can increase with other payoff matrices; elec-

tronic supplementary material, figure S5). At intermediate

forgetting rates, cooperative strategies (particularly members of

the TFT family) perform better with a highly skewed contact pat-

tern than with low- or no-skew distributions. Skewed contact

patterns allow cooperative strategies to interact more with other

cooperative strategies because more of their total encounters

are allocated to a subset of network members who cooperate.

This parallels a similar phenomenon in scale-free networks in

which clusters of cooperators are created [13]. This buffering

effect of skew is modulated by the type of memory error, with

better performance observed with skipping than guessing.

Fourth, different strategies react differently to the two types

of memory error. The TFT-family strategies are more successful

with highly skewed than non-skewed contact patterns across

both types of forgetting. Though GRIM shows an increase in

frequency with skew for skipping errors, it shows a decrease

in frequency with skew for guessing errors. This results from

GRIM’s trigger rule of constant defection following a single

defection by the partner. With guessing errors, when GRIM

forgets, it randomly chooses between cooperation and
defection, thereby resulting in a 75% chance of triggering con-

stant defection for the future unless another error occurs. This

prevents it from taking advantage of the cooperative nature of

the TFT-family strategies. With skipping errors, however,

when GRIM forgets, it simply goes back one more interaction.

Assuming the partner cooperated in that interaction, this pre-

vents GRIM from triggering constant defection and allows it

to maintain cooperation with cooperative strategies. Thus, the

effectiveness of cooperative strategies depends critically on

specific cognitive processes such as memory.

Fifth, we test a form of memory error that plays an impor-

tant role in human memory but has not been incorporated

into models of cooperation. Skipping errors provide a stronger

buffering effect than guessing errors. Compared with guessing

errors, skipping errors result in a lower percentage of inter-

actions in which agents select a different action than that

expected with perfect memory (electronic supplementary

material, figure S3). Skipping back to previous memories

results in more benign errors than randomly guessing, thereby

maintaining cooperation. Currently, the norm in theoretical

analysis is to implement memory errors only in terms of

random guessing. This, however, is only one way in which

memory error might be implemented, and our results under-

score that different implementations of errors can lead to

different results.

Researchers of cooperation have treated forgetting as an

impediment that may constrain the evolution of cooperation.

A certain rate of forgetting, however, may provide fitness

benefits. For instance, forgetting can be an adaptive response

to a changing environment [9,21,31]. Thus, evolved rates of

forgetting might depend on the structure of interactions.

When there are skipping errors, for example, forgetting can

actually benefit GRIM when interacting with cooperative

strategies. Forgetting a mistaken defection by a partner can

rescue both players from perpetual defection. Therefore, we

must treat forgetting not as a fixed constraint on the evol-

ution of cooperation but as a dynamic trait that may

co-evolve with cooperative strategies. This is evidenced by

empirical work demonstrating that, in some circumstances,

people remember defection better than cooperation [32,33].

Future modelling efforts could incorporate differential for-

getting rates for cooperation and defection. In addition, it

could be useful to empirically investigate memory processes

for cooperation (e.g. differential position effects for coopera-

tors and defectors) in greater detail. Further, the types of

memory error might also co-evolve, such that, when there

are strong selective pressures for cooperation, memory may

evolve to be relatively robust against guessing errors. Future

work is needed to further understand the co-evolution of

cognition and cooperation.

Both social networks [34] and cognition [35] are complex,

dynamic systems whose components yield emergent behav-

iour. Combining these two complex systems can produce

difficult-to-predict interactions. Yet, understanding the evol-

ution of behaviour requires the joint study of the behavioural

environment and cognition, as proposed by Simon’s [36]

notion of bounded rationality. For Simon, understanding

decision-making requires the investigation of both the ‘struc-

ture of task environments and the computational capabilities

of the actor’ ([36], p. 7). Simon’s admonition to study both

the environment and cognition suggests that these two com-

ponents of bounded rationality must be integrated to fully

understand behaviour. Our results support this notion by
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demonstrating an interaction between the environment and

cognition—both must be included to understand the evolution

of cooperation. To fully grasp when and why humans and

other species cooperate, we must model both the structure of

the environment and the cognitive capabilities of the actors

together. With these models in hand, we can make new predic-

tions about the likelihood of cooperation and the frequency of

cooperative strategies evolving across a wide range of species

and environments.
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