
Fax +49 761 4 52 07 14

Information@Karger.com

www.karger.com

Accessible online at: 

www.karger.com/brc

Research Article

Breast Care 2018;13:8–14
DOI: 10.1159/000486949

TILGen: A Program to Investigate Immune Targets in  
Breast Cancer Patients – First Results on the Influence  
of Tumor-Infiltrating Lymphocytes
Franziska Würfel 

a  Ramona Erber 
b  Hanna Huebner 

a  Alexander Hein 
a  Michael P. Lux 

a   
Sebastian Jud 

a  Anita Kremer 
c  Hannah Kranich 

c  Andreas Mackensen 
c  Lothar Häberle 

a,d   
Carolin C. Hack 

a  Claudia Rauh 
a  Marius Wunderle 

a  Paul Gaß 
a  Shahrooz Rabizadeh 

e   
Anna-Lisa Brandl 

a  Hanna Langemann 
a  Bernhard Volz 

a  Naiba Nabieva 
a   

Rüdiger Schulz-Wendtland 
f  Diana Dudziak 

g  Matthias W. Beckmann 
a  Arndt Hartmann 

b   
Peter A. Fasching 

a  Matthias Rübner 
a

a Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN,  
 Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany;  
b Institute of Pathology, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN,  
 Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany;  
c Department of Internal Medicine 5, Haematology and Oncology, University Hospital Erlangen,  
 Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany;  
d Department of Gynecology and Obstetrics, Biostatistics Unit, Erlangen University Hospital,  
 Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany;  
e NantOmics, LLC, Santa Cruz, CA, USA;  
f Institute of Diagnostic Radiology, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN,  
 Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany;  
g Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen,  
 Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany

 procedures aimed at establishing neoepitope-based ther-
apies in this study. Methods: Neoadjuvantly treated HER2-
positive and TNBC patients were eligible for the presented 
analysis concerning the association between TILs and 
pCR. A total of 146 patients could be identified within the 
TILGen study. TILs were evaluated as percentage of stro-
mal tumor tissue in core biopsies at primary diagnosis. 
The phenotype ‘lymphocyte-predominant breast cancer’ 
(LPBC) was associated with pCR by logistic regression 
 adjusted for estrogen receptor status, progesterone recep-
tor status, HER2 status, age at diagnosis, and grading. 
 Results: LPBC was seen in 24 (16.4%) patients. In this pa-
tient group, 66.7% achieved a pCR, while the pCR rate  
was 32.8% in patients with a low TIL count. The adjusted 
odds ratio was 6.60 (95% confidence interval 2.02–21.56; 
p < 0.01). Conclusion: TILs are a strong predictor of pCR in 
TNBC and HER2-positive breast cancer patients. Implica-
tions for the use of this information including the effect on 
prognosis might help to identify patients most likely to 
benefit from a neoepitope-based therapy approach.

© 2018 S. Karger GmbH, Freiburg
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Summary
Background: Despite advancements in the treatment of 
primary and metastatic breast cancer, many patients lack a 
durable response to these treatments. Patients with triple-
negative breast cancer (TNBC) and human epidermal 
growth factor receptor 2(HER2)-positive breast cancer who 
do not have a pathological complete response (pCR) after 
neoadjuvant chemotherapy (NACT) have a very poor prog-
nosis. Tumor-infiltrating lymphocytes (TILs) have been 
identified as a predictive marker for pCR after NACT in 
TNBC and HER2-positive breast cancer. These patient pop-
ulations could also be suitable for novel treatment strate-
gies including neoepitope-based therapies. This work 
analyses the effect of TILs on the pCR in neoadjuvantly 
treated patients in the TILGen study and presents the 
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Introduction

Tumor microenvironment and immune cell interactions play a 

major role in breast cancer progression and therapy response [1]. 

Several studies have demonstrated an effector cell activation to-

wards inflammation which is mediated by an antitumor response 

of the host [2].

However, the majority of breast cancer cells evade immune cell 

recognition by several immune escape mechanisms such as in-

creased expression of immune checkpoint inhibitors, decreased 

major histocompatibility complex (MHC) class I expression or re-

cruitment of tumor-associated regulatory cells, e.g., regulatory T 

cells (Tregs) [3, 4]. The tumor immune microenvironment is 

therefore crucial for both tumor progression and regression [5]. 

Immunogenicity varies between the 4 intrinsic molecular subtypes 

of breast cancer [6], which are represented in clinical routine by 

the hormone receptor(HR)-positive luminal A- and B-like sub-

types (estrogen receptor(ER)- or progesterone receptor(PR)-posi-

tive immunohistochemistry (IHC)), human epidermal growth fac-

tor receptor 2(HER2)-positive breast cancers, and triple-negative 

breast cancers (TNBC). TNBC and HER2-positive subtypes show 

an elevated immunogenicity, indicated by a higher density of tu-

mor-infiltrating lymphocytes (TILs) in the tumor environment [7]. 

Furthermore, the presence of TILs in pretreated TNBC and HER2-

positive breast cancers is associated with improved overall and 

disease-free survival [8]. Additionally, high amounts of TILs are as-

sociated with pathological complete response (pCR) after neoadju-

vant chemotherapy (NACT), regardless of the intrinsic breast can-

cer subtype [9–11]. In order to further facilitate this immunogenic 

potential and to minimize the systemic burdens of chemotherapies, 

targeted immunotherapies have been the focus of current research 

programs [12]. Immune checkpoint inhibitors targeting the 

 programmed cell death 1 receptor (PD-1), its ligands (PD-L1 and 

PD-L2), the cytotoxic T-lymphocyte antigen-4 (CTLA-4), or in-

doleamine-pyrrole-2,3-dioxygenase (IDO) are Food and Drug 

Administration(FDA)-approved drugs for various cancer types 

(e.g., breast and lung cancer or melanoma) [12–16]. PD-1 and 

PD-L1 are physiologically expressed on immunocompetent cells 

including T cells and are overexpressed on TILs and breast cancer 

cells [17]. Breast cancer patients with PD-1-positive TILs or 

PD-L1-positive tumor cells have a worse clinical outcome [18–20]. 

PD-1 inhibitors like pembrolizumab or nivolumab block the PD-1 

pathway and thus are able to reactivate the antitumor response 

within the breast cancer microenvironment [21–23]. Immune-tar-

geted treatment using such immune checkpoint inhibitors relies on 

the overexpression of the target genes in malignant cells or im-

mune cells, but can still affect healthy cells [24]. In order to reduce 

these side effects on healthy cells, a specific cancer cell-based im-

munotherapeutic approach would be necessary. Therefore, the 

identification of suitable molecular targets expressed solely by the 

tumor cells has to be of high priority [25]. Tumor-specific antigens 

(TSAs) or so-called neoepitopes seem to be an attractive target ap-

propriate for cancer-specific therapy [26]. TSAs/neoepitopes 

mainly result from nonsynonymous somatic mutations. Further-

more, immunocompetent cells are able to recognize TSAs/

neoepitopes as being foreign [27]. It was shown that TILs, espe-

cially cytotoxic T cells, recognize TSAs/neoepitopes in breast can-

cer and are able to induce antitumor responses in mice [28]. How-

ever, the knowledge about somatic mutations causing tumor re-

gression is limited [29] and might be unique for each patient.

The aim of the presented work was to obtain first data from the 

iMODE-B/TILGen study by exploring the association between 

TILs from breast cancer core biopsies and pCR in order to confirm 

TILs as a pCR marker, and to describe the further study aims of the 

TILGen study.

Patients and Methods

Patient Selection

TILGen (TILs and genomics) is a predefined substudy of the iMODE-B 

(imaging and molecular detection of breast cancer) study. iMODE-B is con-

cerned with molecular markers at the time of breast cancer diagnosis or pro-

gression, molecular detection, and imaging detection of breast cancer. The 

TILGen study focuses on the identification of antigen-specific TILs in TNBC 

and HER2-positive breast cancer patients in order to identify immunogenic tar-

gets that could help to improve cancer immunotherapy. A description of the 

full procedures of TILGen study inclusion is given in figure 1.

This analysis focuses on the association between TILs at primary diagnosis 

of breast cancer and pCR after NACT. Patients were eligible for inclusion in the 

iMODE-B study if an indication existed for a diagnostic biopsy because of a 

suspicious breast lesion. From May 2015 to April 2017, a total of 587 partici-

pants were recruited into the iMODE-B study in an outpatient clinic setting. 

Patients were excluded in the following hierarchical order: 49 patients were 

Fig. 1. Procedures at study inclusion and selection of TILGen participants.
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never biopsied at our study site, 169 were not diagnosed with breast cancer 

(controls as per iMODE-B protocol), and 31 patients were biopsied not with 

primary breast cancer. Therefore, the iMODE-B study population comprised 

338 patients diagnosed with breast cancer at primary diagnosis. Of those, 192 

patients were excluded because they were not treated with NACT. Thus, the 

final study population consisted of 146 patients treated with NACT within the 

TILGen study (fig. 2).

All patients gave written informed consent, and the study was approved by 

the ethics committee of the University of Erlangen-Nuremberg (no. 4514).

Clinical Data

Patient data was collected prospectively, as required by the certification pro-

cess of the German Cancer Society and by the German Society for the Study of 

Breast Diseases (Deutsche Gesellschaft für Senologie) [30]. A web-based data-

base was used for documentation as previously described [31, 32]. Accordingly, 

each breast cancer case is prospectively documented, including patient and 

tumor characteristics, detailed treatment data, and epidemiological data. Fol-

low-up treatments and disease characteristics were collected for up to 10 years 

after the primary diagnosis. All histological tumor data, such as tumor size, axil-

lary lymph node status, grading, ER status, PR status, and HER2 status were 

documented. As part of the continuous certification process, the quality of the 

data was audited annually. Data obtained from the above-described collection 

and audit processes were used in the analyses presented here.

Histopathological Assessment

All of the histopathological parameters used in this study were directly doc-

umented from the original pathology reports after being reviewed by 2 investi-

gators. IHC staining was performed with an automated staining module with 

supplied antibodies against ER, PR, HER2, and Ki67 according to manufactur-

er’s instruction manual (BenchMark ULTRA IHC/ISH Staining Module, Ven-

tana Medical Systems, Tucson, AZ, USA). ER, PR, and HER2 status as well as 

grading were determined on pre-therapeutic formalin-fixed paraffin-embedded 

(FFPE) breast cancer core biopsies. ER and PR protein expression was deter-

mined via IHC. Positive staining for ER and PR was defined as 1% [33]. HER2 

was assessed with IHC for protein expression, and, if necessary, reflex testing 

with chromogenic in-situ hybridization (CISH) was conducted to proof HER2 

positivity. HER2 gene amplification was determined by staining of the cen-

tromeres of the corresponding chromosome 17 with a staining kit for HER2 

(ZytoDot, 2C SPEC HER2/CEN17, Zyto Vision Ltd., Bremerhaven, Germany). 

HER2 positivity was defined as IHC score 3+ alone or 2+ with positive HER2 

CISH [34]. Proliferation was assessed with the proliferation marker Ki67. The 

cut-off for Ki67 was defined as >20% [35]. Grading before NACT was deter-

mined according to Elston and Ellis [36]. Patients with a ypT0 ypN0 assessment 

after NACT were considered to have pCR according to Sinn et al. [37].

Evaluation of TILs in Core Biopsies

Assessment of TILs followed the recommendations of the International TILs 

Working Group 2014, which are elaborately described by Salgado et al. [38]. For 

each case, we used 1 hematoxylin/eosin slide of FFPE preoperative breast core 

biopsy material. After reviewing the tumor cells, the tumor area and the stromal 

compartment of the tumor were defined. All mononuclear cells, but no polynu-

clear leukocytes, were evaluated as percentage per stromal tumor tissue area and 

only within tumor borders of the invasive carcinoma. Necrosis, regressive fibro-

sis/hyalinization, and inflammation around intraductal tumor components and 

normal lobules were excluded from the scoring area. The percentage of stromal 

TILs was averaged over the complete stromal tumor area and given as continu-

ous variable but without any decimal place [38]. Lymphocyte-predominant 

breast cancer (LPBC) was defined as >50% stromal TILs versus non-LPBC 

( 50% stromal TILs) according to Hendry et al. [39] and Swisher et al. [40].

Statistical Analysis

The influence of the amount of TILs (LPBC vs. non-LPBC) on pCR was in-

vestigated using logistic regression analyses. A simple logistic regression analy-

sis with pCR as outcome and the amount of TILs as predictor was performed in 

order to obtain an unadjusted odds ratio (OR) with 95% confidence interval 

(CI) for LPBC versus non-LPBC. An adjusted OR for the amount of TILs was 

calculated using a multiple logistic regression analysis with the amount of TILs 

as predictor and additionally well-known predictors of pCR: age at diagnosis 

(continuous), clinical staging (cT, cT1 vs. cT2–cT4), grading (G1 and G2 vs. 

G3), ER (positive vs. negative), PR (positive vs. negative), and HER2 (positive 

vs. negative).

All tests were 2-sided, and a p value of <0.05 was regarded as statistically 

significant. Calculations were carried out using the R system for statistical com-

puting (version 3.0.1).

Results

Patient Characteristics

The patient population for this analysis comprised 146 neoad-

juvantly treated breast cancer patients, of which 56 (38.4%) 

Fig. 2. Patient selec-

tion table of the  

iMODE-B study for 

 tumor-infiltrating lym-

phocyte (TIL) analysis.

Table 1. Patient and tumor characteristics by pathological complete response 

(pCR) status

Characteristic No pCR pCR

Patients (n = 146), n (%) 90 (61.6) 56 (38.4)

Age, mean ± SD, years 54.9 ± 13.1 52.9 ± 12.6

ER, n (%)

Negative (n = 55) 22 (40) 33 (60)

Positive (n = 91) 68 (74.7) 23 (25.3)

PR, n (%)

Negative (n = 85) 39 (45.9) 46 (54.1)

Positive (n = 61) 51 (83.6) 10 (16.4)

HER2, n (%)

Negative (n = 96) 69 (71.9) 27 (28.1)

Positive (n = 50) 21 (42) 29 (58)

cT, n (%)

cT1 (n = 56) 34 (60.7) 22 (39.3)

cT2–cT4 (n = 90) 56 (62.2) 34 (37.8)

Grading, n (%)

G1–G2 (n = 41) 32 (78.1)  9 (21.9)

G3 (n = 105) 58 (55.3) 47 (44.7)

LPBC, n (%)

0–50% (n = 122) 82 (67.2) 40 (32.8)

51–100% (n = 24)  8 (33.3) 16 (66.7)

SD = Standard deviation; ER = estrogen receptor; PR = progesterone receptor; 

HER2 = human epidermal growth factor receptor 2; cT = clinical staging; LPBC 

= lymphocyte-predominant breast cancer.
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achieved pCR. Patient characteristics according to pCR status are 

shown in table 1. The average age was 54.9 ± 13.1 years in the non-

pCR and 52.9 ± 12.6 years in the pCR group. Known predictors of 

pCR were associated with it in the expected way. In ER-positive 

patients, 25.3% achieved a pCR, whereas 60% of patients with ER-

negative breast cancer had pCR. PR-negative breast cancer pa-

tients responded to NACT with pCR in 54.1% of cases; for PR 

positivity, only 16.4% were responders. In patients positive for 

HER2, 58% achieved pCR. In patients with HER2-negative breast 

cancer, the pCR rate was 28.1%. All other distributions are shown 

in table 1.

TILs in Core Biopsies

A total of 24 (16.4%) samples had an LPBC phenotype. Patient 

characteristics according to LPBC status are shown in table  2. 

Higher LPBC rates were found in HR-negative samples (ER 27.3%, 

PR 22.3%) compared to HR-positive tumors (ER 9.9%, PR 8.2%). 

14% of HER2-positive and 17.7% of HER2-negative tumors could 

be grouped into LPBC. Interestingly, no cT1 tumor showed an 

LPBC phenotype, while 36.7% of all tumors staged cT2 or higher 

did. Finally 20% of tumors with grading 3 compared to 7.3% with 

grading 1 and 2 were in the LPBC group.

pCR Rates with Regard to LPBC

A total of 66.7% of the patients with LPBC showed a pCR, while 

pCR in non-LPBC patients was 32.8% (fig. 3). Logistic regression 

analysis indicated that the amount of TILs was independently as-

sociated with pCR. The likelihood of a pCR was higher in LPBC 

patients than in non-LPBC patients. The unadjusted OR was 4.1 

(95% CI 1.6–10.4; p < 0.01) and the adjusted OR was 6.6 (95% CI 

2.0–21.6; p < 0.01).

Discussion

In this investigation, we found a higher pCR rate in patients 

with tumors that had an LPBC phenotype (pCR rate 66.7%). In pa-

tients without an LPBC phenotype, the pCR rate was 32.8%. This 

effect was independent of ER, PR, HER2, grading, age at diagnosis, 

and clinical tumor staging with an OR of 6.6 (95% CI 2.0–21.6).

Our findings are in concordance with the data from the Gepar-

Sixto trial in which a high amount of TILs (LPBC: stromal TILs 

60%) was associated with pCR independent of the tumor subtype 

(pCR rate: LPBC 59.9% vs. non-LPBC 33.8%). In addition, Dieci et 

al. [41] also reported pCR rates of 64.7% in LPBC (defined as 60% 

stromal TILs) compared to non-LPBCs with pCR rates of 25%. Our 

results further underline the use of stromal TILs as a predictive 

marker for NACT of primary breast cancer. Other studies con-

firmed that TILs were a strong predictor of pCR in HER2-positive 

breast cancer and TNBC and to a lesser degree in HR-positive 

breast cancers [42]. For example, in a meta-analysis, TILs in neo-

adjuvantly treated HER2-positive breast cancer were analyzed [43]. 

The OR for pCR was 2.46–2.88 depending on the treatment given 

[43]. In 2 German trials, LPBC phenotype ( 60% TILs) was pre-

dictive for pCR with an adjusted OR of 1.87 [44]. These ORs were 

lower than the OR in our total cohort (OR 6.6). However, in our 

cohort, only about one third of the cases were HER2-positive. We 

did not perform an analysis according to molecular subgroup be-

cause the sample size would have been too low to make robust 

statements. However, in concordance with the above-mentioned 

studies, we were able to observe that the majority of analyzed 

tumor samples were HR-negative or HER2-positive with regard to 

pCR and LPBC phenotype (table 2).

The biomaterials and data concerning therapy response and 

prognosis of the TILGen study will be used as a resource in the fu-

ture to identify immunotherapy-related targets or pathways that 

might help with cancer therapies for individual patients, such as 

TSAs/neoepitopes [45]. The vision of the TILGen study is therefore 

to identify TSAs/neoepitopes which could be drivers of immuno-

therapies for these patients. An outline of how this could be 

achieved is shown in fig. 4.

Dramatic improvements in the quality and speed of genomic se-

quencing and analysis as a clinical diagnostic tool for individual 

patients combined with the innovations propelling immuno-on-

cology are paving the way for a new era of truly personalized can-

cer treatment. At the heart of this new hope is the newfound ability 

to rapidly identify and target tumor cells with specific DNA muta-

Table 2. Correlation of lymphocyte-predominant breast cancer (LPBC) with 

patient and tumor characteristics

Characteristic Non-LPBC LPBC

Patients (n = 146), n (%) 122 (83.6) 24 (16.4)

Age, mean ± SD, years  54.1 ± 12.8 54.3 ± 13.9

ER, n (%)

Negative (n = 55)  40 (72.2) 15 (27.3)

Positive (n = 91)  82 (90.1)  9 (9.9)

PR, n (%)

Negative (n = 85)  66 (77.6) 19 (22.3)

Positive (n = 61)  56 (91.8)  5 (8.2)

HER2, n (%)

Negative (n = 96)  79 (82.3) 17 (17.7)

Positive (n = 50)  43 (86)  7 (14)

cT, n (%)

cT1 (n = 56)  56 (100)  0 (0)

cT2–cT4 (n = 90)  66 (73.3) 24 (36.7)

Grading, n (%)

G1–G2 (n = 41)  38 (92.7)  3 (7.3)

G3 (n = 105)  84 (80) 21 (20)

SD = Standard deviation; ER = estrogen receptor; PR = progesterone receptor; 

HER2 = human epidermal growth factor receptor 2; cT = clinical staging.

Fig. 3. Pathological 

complete response 

(pCR) rates in non-

lymphocyte-predomi-

nant breast cancer 

(non-LPBC) versus 

LPBC. pCR after neo-

adjuvant chemotherapy 

was defined according 

to Sinn et al. [37].
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tions unique to each cancer patient. The products of mutated genes 

encoding altered proteins are so-called ‘neoepitopes’ and serve as a 

molecular address to direct and redirect immune cells in the killing 

of cancer cells and to procure long-term immunity. Neoepitopes 

are defined as unique mutations found specifically in a patient’s 

tumor (not normal tissue) that can be targeted by the immune sys-

tem to attack the tumor with minimal off-target toxicity.

Identifying neoepitopes for each patient is made possible by 

high-throughput whole genome or exome sequencing and by the 

direct comparison of abnormal tumor DNA with the patient’s own 

normal DNA. The former widens the search for drugable targets 

(neoepitopes) among the >99% of genome deemed untargetable or 

unimportant by panel sequencing. The latter reduces the signifi-

cantly high false-positive error rates associated with tumor-only 

sequencing techniques [46]. Precision in individualizing treat-

ments targeting neoepitopes further requires confirmation of the 

expression of mutated genes, thus avoiding another potential pit-

fall of false-positive errors and the potential for the altered protein 

to induce immunogenicity. As an example, an expressed 

neoepitope, once confirmed to be presented to immune effector 

cells such as cytotoxic T cells by antigen-presenting cells, is a mo-

lecular address that may be delivered by an immunogenic vehicle, 

much like vaccination against a pathogen. One such vehicle is the 

adenovirus which may be engineered to express within its DNA 

many neoepitopes, and upon injection can locally infect dendritic 

cells which then present an identified neoepitope to the immune 

effector cells. Despite great promise, the use of adenovirus or other 

foreign delivery vehicles remains hindered due to the pre-existence 

or the induction of neutralizing antibodies against them in the pa-

tient’s immune system.

Fig. 4. Objective and 

strategy of the TILGen 

study and therapy con-

cept. The overall objec-

tive of the TILGen 

study is the identifica-

tion of tumor-specific 

antigens (TSAs)/

neoepitopes as well as 

TSA-specific T cells, 

and the implementation 

of TSA/neo epitope-

specific targeted ther-

apy. The workflow with 

each working step is 

 illustrated in numbers 

(1–16): 1) blood sample 

collection for isolation 

of germline DNA;  

2) collection of fresh 

frozen breast cancer 

core biopsies for isola-

tion of tumor DNA and 

RNA; 3) isolation and 

cultivation of antigen-

presenting cells (APCs); 

4) T-cell expansion out 

of tumor-infiltrating 

lymphocytes (TILs) 

from core biopsy;  

5) whole genome se-

quencing; 6) determina-

tion of likely antigenic 

sequences by compar-

ing germline and tumor 

DNA; 7) synthesis of 

likely antigenic pep-

tides; 8) loading of anti-

genic peptides on APCs; 

9) co-cultivation of pep-

tide-loaded APCs and 

isolated tumor T cells to measure T cell response and identify TSAs and TSA-specific T cell clones; 10) production of cancer vaccine with regard to TSA; 11) expan-

sion of TSA-specific T cells; 12) production of chimeric antigen receptor (CAR) natural killer cells (NK) or CAR T cells; 13) production of TSA-specific humanized 

antibodies; 14) low-dose radiation therapy; 15) metronomic chemotherapy; 16) treatment option with e.g. metronomic chemotherapy in combination with TSA 

vaccination, TSA-specific T cells, and radiation.
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This limitation has been overcome e.g. by engineered adenovi-

ruses, which are capable of safely vaccinating and re-vaccinating 

against hundreds of neoepitopes and tumor-associated antigens 

despite pre-existing immunity against adenovirus [47]. Remarka-

ble results have thus far been published demonstrating the delivery 

of tumor-associated antigens by this engineered adenovirus in a 

cohort of late-stage colorectal cancer patients [48].

The use of neoepitopes to guide treatment personalization is a 

mere extension of the in-practice use of advanced genomics and 

quantitative proteomics to identify and calculate the expression 

levels of TSAs. For example, sequencing genomic amplification in 

and quantifying proteomic alteration of the tumor-associated anti-

gen HER2 has added significant precision to the use of HER2-tar-

geting therapies such as trastuzumab [49]. Conversely, a TSA may 

initially be discovered as a novel expression antigen but reclassified 

due to its existence in large subsets of cancer patients. One such 

TSA is brachyury, a developmental protein found to be abnormally 

expressed during the epithelial-mesenchymal transition in chor-

doma and other cancers [50]. Using a heat-killed yeast platform 

designed to evade immune neutralization while inducing an im-

munogenic response against its payload, a phase I trial of yeast-

brachyury resulted in specific T-cell immune responses in the ma-

jority of the trial’s 34 patients despite heavy pretreatment and met-

astatic disease, and stable disease in 2 chordoma patients and 1 

colorectal cancer patient [51]. A randomized phase II study using 

this platform is ongoing for chordoma patients. Similarly, the yeast 

platform has been used to engender T-cell responses against mu-

tant KRAS in cancer patients, which despite their common appear-

ance in multiple cancers can be thought of as neoepitopes given 

that a KRAS mutation is the result of a single nucleotide change in 

the KRAS gene which results in the coding of a novel (non-self) 

protein [52].

One of the challenges with neoepitope discovery and targeting 

will be the management of Big Data: teraflops of compute re-

sources in a cloud environment to generate terabytes of sequencing 

data, including whole genome and/or whole exome sequencing, 

RNA sequencing, and molecular modeling of immune presenta-

tion of neoepitopes [53]. To meet the demands of heterogeneity, 

analysis and long-term storage of data from multiple biopsies for 

each patient is a further challenge. These activities require compute 

and storage under HIPAA (Health Insurance Portability and Ac-

countability Act), and high-speed and large-bandwidth connectiv-

ity for rapidly transiting sequence data from sequencing labs to su-

percompute/cloud environments such that derivation and delivery 

of neoepitope targeting platforms is enabled in actionable time for 

each patient. These challenges require significant infrastructure 

and resources, and are overcome in private, dedicated Big Data su-

percompute clouds interconnected by dedicated fiber infrastruc-

ture capable of transporting terabytes of data at terabits per second. 

The latter are implemented for the benefit of financial trading mar-

kets, and now have been retrofitted to meet the needs of sequenc-

ing analysis and neoepitope discovery.

These perspectives are the background to further developing the 

TILGen study into a feeder mechanism for immunotherapeutic tri-

als that explore the usage of vaccines, chimeric antigen receptor 

(CAR) T cells, CAR natural killer cells, and other targeted thera-

peutics as part of personalized medicine, which might mean the 

development of therapeutics on a n = 1 basis.

In summary, the confirmation of TILs as an independent 

marker for pCR is a first promising result from the iMODE-B/

TILGen study. As patients without a pCR have a very unfavorable 

prognosis, this population may benefit from an improved immune 

response to the tumor and from a neoepitope-based therapy ap-

proach. To what extent information about TILs and chemotherapy 

response can be used to predict response to neoepitope-based ther-

apies remains to be investigated. Also patients in the advanced 

therapeutic setting who have failed to respond to primary breast 

cancer treatment could be candidates for such a therapy. Which 

combination therapies (low-dose chemotherapy and radiation, 

checkpoint inhibition, other immune-supportive therapies) are 

best to combine with such a treatment will also be the aim of future 

research.
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