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Abstract

Abstract knowledge about the tasks we encounter enables us to rapidly and flexibly adapt to novel 

task contexts. Previous research has focused primarily on abstract rules that leverage shared 

structure in stimulus-response (S-R) mappings as the basis of such task knowledge. Here we 

provide evidence that working memory (WM) gating policies – a type of control policy required 

for internal control of WM during a task – constitute a form of abstract task knowledge that can be 

transferred across contexts. In two experiments, we report specific evidence for the transfer of 

selective WM gating policies across changes of task context. We show that this transfer is not tied 

to shared structure in S-R mappings, but instead in the dynamic structure of the task. Collectively, 

our results highlight the importance of WM gating policies in particular, and control policies in 

general, as a key component of the task knowledge that supports flexible behavior and task 

generalization.
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1. Introduction

Humans display remarkable cognitive flexibility in novel task environments (McClelland, 

2009). Given only verbal instruction, we rapidly adapt to new tasks, often achieving 

asymptotic levels of performance within just a few trials (Ackerman, 1988; Bhandari & 

Duncan, 2014; Ruge & Wolfensteller, 2010; Wolfensteller & Ruge, 2011). Such rapid 

adaptation relies, in part, on abstract task knowledge transferred from prior experience with 

other tasks. Abstract task knowledge captures regularities in the space of task environments, 

and can thus speed up learning in the new environment by reducing the size of the learning 

problem (Botvinick, Niv, & Barto, 2009; Cole, Etzel, Zacks, Schneider, & Braver, 2011; 

Collins & Frank, 2013; Gershman & Niv, 2010).
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What form does such abstract task knowledge take? The vast majority of prior studies 

seeking to address this question have focused on rules, or stimulus-response (S-R) mappings 

as the basis of task knowledge. In these frameworks, abstract rules generalize prior 

knowledge and thus constrain the (usually) very large space of stimulus-response-outcome 

contingencies afforded by a novel task environment (Badre, Kayser, & D’Esposito, 2010). 

Such rules can both be instructed (Cohen-Kdoshay & Meiran, 2007, 2009; Cole, Bagic, 

Kass, & Schneider, 2010; Meiran, Pereg, Kessler, Cole, & Braver, 2015; Ruge & 

Wolfensteller, 2010) or transferred from prior experiences (Cole et al., 2011; Collins & 

Frank, 2013) to rapidly enable successful behavior in novel environments.

The implementation of a task, however, requires more than just the knowledge of stimulus-

response contingencies. Even the simplest everyday task environments have dynamical 

structure, with events unfolding in a specific order, and with specific timing (Radvansky & 

Zacks, 2014). To achieve task goals in a dynamic task environment, then, one must also 

learn an internal control policy or task model aligned to the task’s dynamic structure for the 

moment-by-moment control of internal cognitive processing (Bhandari & Duncan, 2014; 

Duncan et al., 2008). Such implementational control policies are not typically 

communicated via instruction and must be discovered and implemented “on the fly”, 

through task experience. In other words, a ‘task-set’ must incorporate knowledge about 

implementational control contingencies beyond those specified in stimulus-response 

mappings (Rogers & Monsell, 1995).

In this paper, we ask whether control policies are themselves a form of abstract task 

knowledge that, like rules, can be transferred to novel task contexts. Just like different real-

world tasks often share stimulus-response-outcome contingencies, they also share other 

forms dynamic structure (Botvinick, Weinstein, Solway, & Barto, 2015; Schank & Abelson, 

1977). Such shared structure affords an opportunity for generalization of internal control 

policies. Instead of learning new control policies from scratch, humans may build repertoires 

of internal control policies that are re-used in novel tasks.

We operationalize this question within the domain of working memory (WM) control – i.e. 

the selective use of working memory. WM control has been extensively analyzed within the 

gating framework (see Fig. 1), in which access to WM is controlled by a set of input and 

output gates (Chatham & Badre, 2015; O’Reilly and Frank, 2006; Todd, Niv, & Cohen, 

2009). The contents of WM can be selectively updated by operating an input gate that 

determines whether stimulus information can enter WM. Similarly, operating a selective 

output gate allows WM to selectively influence downstream. Learning to perform a WM 

task, therefore, involves learning a gating policy for operating input and output gates in a 

moment-by-moment, task-appropriate manner (Frank & Badre, 2012). In the context of 

WM, a gating policy is an example of a control policy that must be aligned to the dynamic 

structure of the task. By learning such WM gating policies and transferring them across task 

contexts, humans may be able to exploit regularities in the dynamic structure of tasks.

To test this possibility, we adopt the 2nd order WM control task employed by Chatham, 

Frank, and Badre (2014). In their task, participants saw a sequence of three items on every 

trial, one of which specified a context. The context signaled which of the other two items in 
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the sequence was the target item. Critically, there were two kinds of task structures – 

‘context first’ (CF) trials, on which the first item in the sequence was the context item, and 

‘context last’ (CL) trials, in which the last item in the sequence was the context item. CF and 

CL trials afford the use of different WM gating policies. On a CL trial, subjects had to 

employ a ‘selective output-gating policy’ that allowed the storage of both lower level items 

in WM (a non-selective input-gating operation), and the retrieval of the target item for 

guiding response selection (a selective output-gating operation). On a CF trial, while a 

similar selective output-gating policy could be employed, a more efficient ‘selective input-

gating policy’ was possible. Such a policy would enable proactive coding of the contextual 

cue in WM, followed by selective input-gating of only the relevant lower-level item 

contingent on context. This allows a reduction in both, WM load, and interference from the 

competing non-target during response selection. Indeed, Chatham et al. (2014) presented 

evidence that CF and CL trials are treated differently and that well-trained subjects employ 

selective input-gating policies on CF trials to improve performance relative to CL trials on 

which the selective output-gating policy is required.

In the context of this WM control task, we ask whether selective gating policies learned in 

one task setting are transferred to a novel task setting. For instance, subjects exposed to an 

environment with only CL trials would learn a selective output-gating policy. Would this 

policy transfer to a new block with CF trials? In Experiment 1 we find a pattern of transfer 

effects that support the hypothesis that a previously learned gating policy influences initial 

behavior in a novel setting. We replicate these findings in Experiment 2. In addition, we 

provide evidence that transferred gating policies are dissociable from S-R mappings and 

have a much larger influence on subsequent behavior. We interpret these findings as 

evidence that internal control policies comprise an important form of structural task 

knowledge that supports behavior in novel situations.

2. Experiment 1

2.1. Methods

2.1.1. Participants—85 adult, right-handed participants (34 males, 51 females; age-range: 

18–30, M = 21.4, SD = 2.7) from the Providence, RI area were recruited to take part in a 

computer-based behavioral experiment. We endeavored to collect between 18 and 20 

participants in each of four groups based on approximate effect sizes suggested by pilot data. 

1 participant was excluded for prior neurological injuries, 3 were excluded as they were on 

psychoactive medication. 5 participants were excluded because of low performance (< 70% 

accuracy) on the task. This left 76 participants (30 males, 46 females; age-range: 18–29, M 

= 21.3, SD = 2.6). Participants were randomly assigned to four groups of 19 each and there 

were no group differences in age or gender ratio (p > .250). We subsequently recruited 

another 38 participants to serve as additional control groups (17 males, 21 females; age-

range: 18–30, M = 22, SD = 3.9). All participants had normal or corrected-to-normal vision, 

and no reported neurological or psychological disorders. All participants gave informed, 

written consent as approved by the Human Research Protections Office of Brown University, 

and they were compensated for their participation.
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2.1.2. Apparatus—Experiments were conducted on a computer running the Mac OSX 

operating system. The stimulus delivery program was written in MATLAB 2013b, using the 

Psychophysics Toolbox. Responses were collected via a standard keyboard. All analyses 

were carried out in MATLAB 2013b and SPSS 22.

2.1.3. Task and experiment design—Participants were instructed to perform a 2nd 

order working memory control task (Fig. 2). On each trial, they saw a sequence of three 

items on the computer screen: a number (11 or 53), a letter (A or G), and a symbol (π or ⊙). 

The number served as a higher-level contextual cue, which specified the lower level items 

(letter or symbol) that would be the target on each trial. The relationships between the 

contextual cues and the lower level items were specified by the rule trees shown in Fig. 2(a). 

Participants were asked to memorize these rule trees before the task began, and were given 

an opportunity to review the trees for as long as they wanted at the beginning of each block.

To illustrate a trial, consider the sequence 11…A…π (Fig. 2(b)). As per the rule trees, 11 

indicates that either of the letters, A or G, would be a target on that trial. Therefore, in the 

above example sequence, A, and not π, is the target. Each trial concluded with a response 

panel (presented at the same time as the last item in the sequence) that consisted of two pairs 

of items at the lower left or right of the screen.

Participants had to indicate whether the target item for that trial appeared as part of the left 

pair (left key) or the right pair (right key). In the example, the left key would be the correct 

response as it contained the ‘A’ target. The location of the letters and symbols in the target 

panel was randomized trial-to-trial such that all items appeared with equal frequency on the 

left and right across all trials. Further, 50% of the trials were ‘incongruent’ in that the lower-

level items which appeared in the sequence were associated with different response keys in 

the response panel, and participants could not perform accurately without attending to the 

contextual cue. Participants were instructed to respond as fast as possible, while being 

accurate. Response panels were randomized so that on half the trials the left key was the 

correct response.

Apart from the position of the contextual item in the sequence (either first or last), the 

position of the lower level items was randomized and balanced between first, last, or middle 

position in the three-item sequence, such that there were equal numbers of each possible trial 

type in the block. All stimuli were presented in white, on a black background. The first two 

items in the sequence were each presented for 300 ms, while the final item (along with the 

response panel) was self-timed with response required within a window of 3000 ms. The 

inter-stimulus interval was jittered between 600 ms and 1600 ms, while the inter-trial 

interval was fixed at 500 ms. A fixation cross was displayed during each interval.

Two different trial structures were employed (Fig. 2(b)). In the ‘context first’ (CF) structure, 

the contextual cue (the number) appeared at the beginning of the sequence. In the ‘context 

last’ (CL) structure, the context cue appeared at the end of the sequence. CF and CL trial 

structures afforded the use of different WM gating policies: CL trials required a ‘selective 

output-gating policy’, whereas efficient behavior in CF trials could be supported by a 

‘selective input-gating policy’. Instructions were worded to be neutral with respect to trial-
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structure and examples of both trial structures were provided to participants during 

instruction (see Supplementary Materials). They were also explicitly told that they might see 

both kinds of trial structures during the experiment. Participants were not given any prior 

practice on either trial structure.

Participants were randomly assigned to one of four groups. Each group carried out two, 

forty-eight trial blocks of the task: a ‘training’ block and a ‘test’ block (Fig. 2(c)). Within 

each block, the trial structure (CF or CL) was always fully predictable, providing an 

opportunity to learn an efficient gating policy. For two groups, the trial structure remained 

the same between blocks (CF - > CF or CL - > CL). For the other two groups, the trial 

structure switched (CL - > CF or CF - > CL). Importantly, the task rules (Fig. 2(a)) always 

remained the same across blocks. Therefore, the design allowed us to dissociate transfer 

effects from any effects of rule learning.

We subsequently ran two additional group of participants. One group (CF - > CL - > CF), 

was similar to the CL - > CF group in that they carried out a CF test block immediately after 

a CL training block. But this group also carried out a block of CF trials prior to the CL 

block. This allowed us to test the possibility that performance decrements observed in the 

CL - > CF group test block were simply due to the obligatory perseveration of the last-used 

gating policy rather than a deliberate transfer of a gating policy. Participants in this group 

had the chance to learn both selective-input gating and selective-output gating policies prior 

to the CF test block. An obligatory perseveration account would predict that the CL - > CF 

group and the CF - > CL - > CF group participants would show similar initial performance 

in the test block. On the other hand, a deliberate transfer account would predict that the CF - 

> CL - > CF group would adapt more quickly to the CF test block thus showing improved 

initial performance.

Another group (CF2 - > CF) served to control for the effects of WM load in the CL - > CF 

group. In the training block of the CL - > CF group, two items must be maintained in WM 

memory on each trial, making the task more difficult. Therefore, any negative transfer 

effects observed may be due to the fatigue or motivation loss induced by the higher load or 

the difficulty of the task rather than the change in trial structure. To control for this, in the 

CF2 - > CF group, the training task consisted of rules in which each contextual item was 

associated context with four lower-level items. On each trial, context was presented first, 

followed by two pairs of items, one of which was relevant. Participants were required to 

keep both relevant lower-level items in WM, as either of them could be the target item. 

Therefore, the CF2 - > CF served as a control with equivalent WM load during training as 

the CL - > CF group, but no change in trial structure.

2.1.4. Data analysis—Analyses utilized response accuracy and response time (RT) 

measures. All RT analyses focused only on trials where participants responded correctly. In 

addition, we discarded trials in which participants responded in less than 250 ms. RTs were 

log-transformed prior to statistical analyses. For analyses of transfer effects, we computed 

mean RT and response accuracy separately for eight trial bins of six trials each, motivated by 

our prediction that transfer would most affect the initial trials in a task.
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2.2. Results

Overall, participants performed well at the task (Table 1). As seen in previous studies 

(Chatham et al., 2014), CF was performed more accurately (94.4% vs. 90.9%; [t (112) = 

2.38, p = .019, d = 0.44]) and more efficiently (915 ms vs. 1261 ms; [t (112) = 7.94, p < .

001, d = 1.19]) than CL, providing evidence that participants take advantage of the trial 

structure to selectively input gate lower level items. Note that this was despite the fact that 

the context stimulus was displayed for longer in the CL condition than in the CF condition. 

Summary statistics of performance for each group and each block are shown in Table 2.

2.2.1. Transfer effects—Our primary question is whether working memory gating 

policies learned in one block are transferred to a subsequent block. Such transfer predicts 

improvements (positive transfer) or decrements (negative transfer) in performance on 

subsequent blocks conditional on the nature of the prior experience. To this end, we focus on 

the effects of prior experience with a trial structure on performance with the same or new 

trial structure in subsequent blocks. A summary of the ANOVAs performed to test for 

transfer effects are summarized in Table 3.

First, we compared performance data from test blocks when the trial structure changed, CL - 

> CF and CF - > CL, with the corresponding training blocks with the same trial structure. 

Log-transformed RT data from the blocks where the structure changed were analyzed using 

two separate mixed-model ANOVAs (for CF and CL trial structures) with trial bin (1–8) as a 

within-subject factor and training history as a between-subject factor. Note that the training 

history factor has two levels – ‘no prior training’ and ‘prior training with different structure’. 

This reflects a comparison between the training block in the no-change group (CF - > CF, 

for example) and the test block in the structure-change group (CL - > CF, for example)).

For the CF condition (Fig. 3(a)), the ANOVA revealed a main effect of trial bin [F (7, 252) = 

7.82, p < .001, ηp
2 = 0.178] and a trial bin × training history interaction [F (7, 252) = 3.15, p 

= .003, ηp
2= 0.081]. A post hoc t-test [t (36) = 2.75, p = .009, d = 0.89] showed a trend of 

the participants in the CL - > CF being slower in the 1st trial bin though this difference was 

marginal after a Bonferroni correction.

It is possible that the effect of prior training with the CL trial structure on CF response times 

was driven by differences in working memory load (CL trial structures produce a higher 

WM load) or task difficulty during training. To rule out this possibility, we considered 

performance of the CF2 - > CF group. In the CF2 training block, context was always 

presented first, but participants were required to maintain two lower-level items in WM 

rather than just one (see methods). Therefore, the task produced an equivalent WM load 

during training as the CL - > CF group, but no change in trial structure. Indeed, response 

times in the CF2 training block were significantly higher than in a CF training block [t(36) = 

3.72, p < .001, d = 0.98], and somewhat lower than the CL training block [two-sample t-test: 

t (36) = −2.2 p = .054, d = 0.80]. To test whether the slower responding observed in the test 

block of the CL - > CF group could be accounted for by WM load or difficulty, we first ran a 

mixed-model ANOVA comparing the test block of the CF2 - > CF group with the training 

block of the CF - > CF group (analogous to the earlier comparison of the CL - > CF test 

block with the CF - > CF test block). If the higher WM load contributes to slowing in the 
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test block, we should observe an analogous trial bin × training history interaction. However, 

while we found a significant main effect of trial bin [F (7, 252) = 2.68, p = .024 

(Greenhouse-Geisser corrected), ηp2 = 0.069], there was neither a significant main effect of 

the training history [F (1, 36) = 1.21, p > .1, ηp
2= 0.032], nor a significant trial bin × training 

history interaction [F (7, 252) = 1.31, p > .1, ηp2 = 0.035]. To confirm that participants 

showed a slowing in responses in the CL - > CF test block over and above that caused by the 

WM load, we ran another mixed-model ANOVA, this time directly comparing the test 

blocks of the CF2 -> CF and CL - > CF groups. We found a significant trial bin × training 

history interaction [F (7, 252) = 2.78, p = .008, ηp
2= 0.072] along with a significant main 

effect of trial bin [F (7, 252) = 8.91, p < .001, ηp
2= 0.198].

For the CL condition (Fig. 3(b)), the main effect of trial bin was significant [F (7, 252) = 

3.13, p = .003, ηp
2= 0.08] reflecting a quadratic speeding or RT over trial bin [F(1, 36) 

=14.02, p = .001, ηp
2 = 0.280], but the trial bin × training history interaction was non-

significant [F(7, 252) = 0.94, p > .250, ηp
2 = 0.026].

Similar analyses of accuracy data for the CF and CL conditions are summarized in Table 3. 

In summary, we found no evidence for performance decrements. We did observe an 

improvement in accuracy in the CF - > CL condition test block, compared to the CL - > CL 

training block as evidenced by a training history × trial bin interaction. Post-hoc tests 

comparing each trial bin were non-significant after a Bonferroni correction. Two participants 

in the CL - > CL group performed poorly in the training block (< 60% correct) and may be 

driving this improvement. The ANOVA after removing these two outliers again showed a 

significant, but less reliable trial bin × training history interaction [F (1, 16) = 2.39, 

Greenhouse-Geisser corrected p = .044, ηp
2 = 0.07].

Next, we compared the training and test blocks RTs from participants in the CF - > CF and 

CL - > CL groups using a trial bin × block ANOVA. A transfer of a WM gating policy 

would predict improved performance (positive transfer). Data from the CF - > CF group 

were analyzed with a repeated measures ANOVA with trial bin (8 levels: 1–8) and block (2 

levels: training or test) as within subject factors. The main effect of trial bin was non-

significant [F (7, 126) = 1.04, p > .250, ηp
2= 0.055], while the main effect of block was 

marginal [F (1, 18) = 4.55, p = .047, ηp
2 = 0.202]. On the other hand, the trial bin × block 

interaction was significant [F (7, 126) = 3.64, p = .001, ηp
2 = 0.168]. Bonferroni-corrected 

(α = 0.006), post hoc paired t-tests revealed that this interaction was driven by faster RTs in 

the first trial bin in the test block compared to the training block [t (18) = 3.31, p = .004, d = 

0.76]. A similar analysis of the CL - > CL group data revealed a main effect of trial bin [F(7, 

126) = 2.62, p = .015, ηp
2 = 0.127], while the main effect of block [F(7, 126) = 1.76, p = .

100, ηp
2 = 0.089], and the trial bin × block interaction were non-significant [F(7, 126) = 

1.04, p > .250, ηp
2 = 0.054].

ANOVA of the accuracy data in the CF - > CF group showed a marginal main effect of block 

[F (1, 18) = 4.56, p = .056, ηp
2 = 0.188]. All other effects were non-significant [p > .1]. For 

the CL - > CL group, again, the main effect of block was marginal [F (1, 18) = 4.3, p = .053, 

ηp
2 = 0.193] and the main effect of trial bin was significant [F (7, 126) = 3.27, p = .003, ηp

2 

= 0.54]. The interaction was non-significant [F (7, 126) = 1.83, p = .088, ηp
2 = 0.09]. Two 
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participants in the CL - > CL group performed poorly in the training block (< 60% correct). 

The ANOVA after removing these two outliers showed no main effect of block [F (1, 16) = 

1.89, p > .1, ηp2 = 0.11], a marginal effect of trial bin [F (7, 112) = 2.13, p = .05, ηp
2 = 0.12] 

and a significant marginal block × trial bin interaction [F (7, 112) = 2.28, p = .033, ηp
2 = 

0.125] with a trend toward improved accuracies in the first trial bin [t (16) = 2.46, p = .025, 

d = 0.60] that did not survive a Bonferroni correction.

In summary, we found evidence of asymmetric negative transfer effects. Participants with 

prior experience with the CL trial structure responded more slowly on early trials of a 

subsequent CF block compared to those who had no prior experience. On the other hand, 

prior training with the CF trial structure had no effect on performance in a subsequent CL 

block. We also found evidence of performance improvements on repetition of the same trial 

structure. Participants with prior experience with the CF trial structure were significantly 

faster on the early trials of a subsequent CF block. Participants in the CF - > CF groups were 

also marginally more accurate in the test block compared to the training block, while those 

in the CL - > CL group showed a trend toward more accurate performance in the first trial 

bin of the test block. These performance improvements are consistent with the positive 

transfer of a gating policy, though they may also reflect practice with the S-R rules.

2.2.2. Obligatory v/s deliberate transfer—In the previous analyses, we found that 

participants with prior experience with the CL trial structure responded more slowly on early 

trials of a subsequent CF block compared to those who had no prior experience. An 

important question concerns whether this effect was due to participants deliberately 

transferring a gating policy, or simply perseverating with the previously used policy in an 

obligatory manner. To test this, we compared the test blocks from the CF - > CL - > CF 

group and the CL - > CF groups in a mixed-model ANOVA with trial bin and training 

history as factors. If participants briefly perseverate with the previously used policy, we 

would expect participants in the CF - > CL -> CF group to show some slowing in RT as the 

CL - > CF group. On the other hand, if transfer is deliberate, the CF - > CL - > CF group 

would be expected to reinstate the selective input gating policy they learnt in the initial CF 

block, thus producing little or no slowing. We found a significant main effect of trial bin [F 
(7, 252) = 9.28, p < .001, ηp

2 = 0.205] and a significant trial bin×training history interaction 

[F (7, 252) = 4.3, p = .003, ηp2 = 0.080]. Participants in the CL - > CF group were indeed 

slower in the first and second trial bin of the test block compared to participants in the CF - 

> CL - > CF group as con-firmed by Bonferroni-corrected t-tests [Trial bin 1: t (18) = 3.68, p 
< .001, d = 1.03; Trial bin 2: t (18) = 3.35, p = .002, d = 0.96].

Comparison of the test blocks in the CF - > CL - > CF group with the training block of the 

CF - > CF group (just as for the CL - > CF group in the prior section) showed a marginally 

significant main effect of trial bin [F (7, 252) = 2.11, p = .04, ηp2 = 0.05] and training 

history [F (1, 36) = 1.98, p = .038, ηp
2 = 0.205] and a significant trial bin × training history 

interaction [F (7, 252) = 2.33, p = .026, ηp
2 = 0.061]. But the main effect of training history 

and the train bin × training history interaction were driven by faster responses in the CF - > 

CL -> CF test block compared to the CF - > CF training block. Therefore, despite the 

immediately previous CL block, participants were in fact faster compared to a CF training 
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block, presumably due to a combination of positive transfer of a gating policy learnt in the 

earlier CF block, and practice with the S-R mappings.

To further test the unique effects of gating policy transfer and minimize the contribution of 

practice, we compared the RTs in the first trial bin of the CL - > CF group and the CF - > CL 

- > CF while correcting for baseline differences (respectively, the CF - > CF training and test 

blocks) in a general linear model. We evaluated the contrast [(CL - > CF test) – (CF - > CF 

training)] – [(CF - > CL - > CF test) – (CF - > CF test)] and found a significant effect [F (7, 

252) = 5.44, p = .023, ηp
2 = 0.633]. This result makes it unlikely that participants simply 

perseverated with the last used policy in an obligatory manner. Instead, our results are 

consistent with a deliberate transfer of a selective output gating policy.

2.2.3. Target position effects—In the previous section, we found evidence consistent 

with transfer of gating policies across task contexts. On this account, participants learn a 

gating policy in the training block which they transfer to the test block. Initial performance 

in the test block, is supported by the transferred policy. Participants in the CF - > CF group 

learn a selective input-gating policy in the initial CF training block thus enabling efficient 

performance in the subsequent CF test block. Participants in the CL - > CF group, on the 

other hand, learn a selective output-gating policy in the training block. This policy continues 

to support performance in the changed circumstances of the CF test block, but at the cost of 

slower responses. In contrast, in the CF - > CL group, a transferred selective input-gating 

policy would not support performance in the changed circumstances, thus immediately 

requiring the deployment of a new policy. This account predicts that initial behavior in the 

CL -> CF test block is under the control of a selective output-gating policy, while initial 

behavior in the CF - > CF test block is under the control of a selective input-gating policy, 

despite both the block being identical.

A feature of the task design allows us to test these predictions. CF trials come in two forms, 

those in which the target item is in the second position (target middle), and those in which 

the target item is in the last position (target last). The final response decision requires 

knowledge of the target item, and therefore cannot be initiated or prepared for until target 

selection has taken place. Critically, the timing of target selection is contingent on the kind 

of gating policy that one employs. Under a selective output-gating policy, target selection 

does not proceed until the final item is presented. Therefore, no benefit can be gained on 

target-middle trials on which target information is available early. On the other hand, under a 

selective input-gating policy, target selection occurs at the level of input-gating. Therefore, 

on target-middle CF trials, target selection can occur once the second item in the sequence is 

processed, and one can begin preparing for the upcoming response decision; for example, 

setting up an attentional set to search for the target item in the response panel. Thus, under 

an input-gating policy only, a target position benefit can be expected on target-middle vs. 

target-last trials. No such benefit would follow from an output-gating policy.

Consistent with the account developed above, if participants in the CL - > CF group transfer 

a selective output-gating policy from the training block, target position benefits should be 

unavailable on the early trials of the test block. As participants learn a selective input-gating 

policy with experience, target position benefits would become available later in the block. 
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On the other hand, in the CF - > CF test blocks participants are more likely to transfer a 

selective input-gating policy (Chatham et al., 2014) and robust target position benefits 

should be observed on the early trials as well. Finally, target position benefits should not be 

observed at all in the CL - > CL and CF - > CL test blocks, which thus serve as a negative 

control.

Target position benefits were computed by subtracting log-transformed RTs on target-middle 

trials from those on target-last trials and are plotted in Fig. 3(c) and (d). A summary of the 

ANOVAs performed to test for transfer effects are summarized in Table 3. To begin with, we 

employed one-sample t-tests to examine the presence of target position benefits. As 

predicted, no target position benefit was found on the early (first 12) trials of the test block 

in the CL - > CF group [one sample t (18) = 0.89, p > .250, d = 0.2]. On the other hand, a 

robust target position effect was observed on the late (last 12) trials [one-sample t (18) = 

5.62, p < .001, d = 1.29]. A paired t-test confirmed a significant effect of trial bin on the size 

of the target position benefit [t (18) = 2.86, p = .010, d = 0.66].

We next compared target position benefits in the CL - > CF and CF -> CF test blocks. A 

mixed-model ANOVA with trial bin (2 levels: first 12 trials bin, last 12 trials bin) as a 

within-subject factor and group (2 levels: CF - > CF, CL - > CF) as a between-subject factor 

confirmed a significant trial bin × group interaction [F (1, 36) = 4.61, p = .039, ηp
2 = 0.114]. 

As a final control, we examined target position benefits in the CL - > CL test block and 

found no evidence of a target position benefit. On the early trials, however, there was a slight 

target position cost [t (18) = -2.6, p = .020, d = −0.6].

In summary, these results provide specific and clear evidence for the transfer of a selective 

output-gating policy from the training to the test block in the CL - > CF group, and the 

learning of selective input-gating policy with experience in the test block.

3. Experiment 2

The results of Experiment 1 provide evidence for the transfer of working memory gating 

policies. We observed an asymmetric negative transfer across changes in trial structure, even 

as S-R rule structure was held constant. We also observed target-position effects that 

provided specific evidence for the transfer of a selective output-gating policy learnt in the 

CL task context to a CF task context. In addition, we found an improvement in performance 

when the same trial structure was held constant across the training and the test blocks. Such 

improvements are consistent with the transfer of a gating policy, but could also be explained 

with a simpler practice account because the S-R rules were also held constant.

In Experiment 2, we attempted to replicate and extend these findings. We carried out a 

stronger test of the hypothesis that gating policies and S-R rules are separable forms of task 

knowledge by independently manipulating prior experience with an S-R rule vs. a trial 

structure. This also enabled to test between the transfer and practice accounts of the 

performance improvements. We replicated the effects of prior experience with a trial 

structure, and found that changing the rules has little effect on later performance.
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3.1. Methods

3.1.1. Participants—117 adult, right-handed participants (45 males, 72 females; age-

range: 18–30, M = 21.6, SD = 2.6) from the Providence, RI area were recruited to take part 

in the computer-based experiment. We endeavored to collect between 18 and 20 participants 

in each of six groups based on approximate effect sizes suggested by pilot data and 

Experiment 1. 4 participants were excluded as they were on psychoactive medication. 5 

participants were excluded because of low performance (< 70% accuracy) on the task. This 

left 108 participants (40 males, 68 females; age-range: 18–30, M = 21.4, SD = 2.6). All 

remaining participants had normal or corrected-to-normal vision, and no reported 

neurological or psychological disorders. All participants gave informed, written consent as 

approved by the Human Research Protections Office of Brown University, and they were 

compensated for their participation.

3.1.2. Task and experiment design—Experiment 2 used the same task as Experiment 

1. Participants were randomly assigned to one of six experimental groups. Four of these 

groups performed identical transfer conditions to the four conditions used in Experiment 1. 

Two additional groups (CF - > CL (different rules) and CL - > CF (different rules), were 

presented with novel rules at the beginning of each block. The new rules utilized the same 

categories (numbers for context, letters and symbols for lower-level items) but a novel set of 

numbers, letters and symbols. The assignment of each rule set to the training and test block 

was counterbalanced across participants and groups.

3.2. Results

Overall performance was strong and comparable between the two experiments (Table 1). 

Summary statistics for all measures are displayed in Table 2. Results are presented in two 

sections. In the first section, we replicate the transfer effects and target position effects from 

Experiment 1. In the final section, we turn to a comparison of the same-rule and different-

rule groups.

3.2.1. Transfer effects and target position effects—Behavioural results from the 

same rule conditions are plotted in Fig. 4 and the results of the ANOVAs are presented in 

Table 4. In summary, we replicated the asymmetric negative transfer effects from 

Experiment 1, finding a significant trial bin × training history interaction [F (7, 238) = 4.99, 

p < .001, ηp
2 = 0.128] on RTs in the CF condition (Fig. 4(a)), but not the CL condition (Fig. 

4(b)). We also obtained an asymmetric positive transfer effect, with a significant trial bin × 

block interaction on response accuracies in the CF - > CF, [F (7, 238) = 4.90, p < .001, ηp
2 = 

0.214], but not the CL - > CL conditions.

We also replicated the pattern of target position effects observed in Experiment 1. A non-

significant trend for a target position cost was observed on the early (first 12) trials of the 

test block in the CL - > CF group [one sample t (17) = −1.92, p = .072, d = −0.45]. A 

significant target position benefit was observed on the late (last 12) trials [one-sample t (17) 

= 2.83, p = .012, d = 0.67]. A paired t-test confirmed a significant effect of trial bin on the 

size of the target position benefit [t (18) = 2.95, p = .009, d = 0.70]. ANOVAs (full detail 

provided in Table 4) confirmed that a significant trial bin (first 12 vs. last 12 trials) × training 
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history interaction was present for the CF condition, [F (7, 238) = 4.55, p = .04, ηp
2 = 0.118] 

but not for the CL condition [F (7, 238) = 1.55, p = .222, ηp
2 = 0.044].

3.2.2. Effect of rule versus trial structure change—Finally, we turn to a comparison 

of the same-rule and different-rule groups and examine the relative influence of prior 

experience with rules vs. trial structures on subsequent performance.

Log-transformed RT data from the test blocks of four groups: CF -> CF (same rule), CL - > 

CF (same rule), CF - > CF (different rule) and CL - > CF (different rule) (Fig. 4(c)and (d)) 

were analyzed with a mixed-model with trial bin (8 levels: 1–8) as a within-subject factor 

and previous trial structure (2 levels: same trial structure, different trial structure) and 

previous rule (2 levels: same rule, different rule) as between-subject factors. The ANOVA 

revealed a significant main effect of trial bin [F (7, 476) = 19.39, p < .001, ηp
2 = 0.222] and 

a trial bin × previous trial structure interaction [F (7, 476) = 13.31, p < .001, ηp
2 = 0.164]. 

Importantly, neither the main effect of the previous rule [F (7, 476) = 0.001, p > .250, ηp
2 = 

0.00], nor the three-way interaction between trial bin, previous trial structure, and previous 

rule [F (1, 68) = 0.03, p > .250, ηp
2 = 0.00] was significant, suggesting that prior experience 

with a rule had no influence on subsequent performance. To further confirm that prior 

experience with a rule did not subtly influence the slope of the RT curves in the CL - > CF 

test blocks (Fig. 4(c)), we fit power functions to each subject’s curve and entered the 

estimated parameters into an independent-sample t-test comparing the rule change and no 

rule change group. We found no reliable differences [t (34) = 0.68, p = .208, d = 0.23].

Analysis of the accuracy data, similarly, revealed a significant main effect of previous trial 

structure [F (1, 68) = 7.75, p = .007, ηp
2 = 0.102] and a trial bin × previous trial structure 

interaction [F (7, 476) = 3.45, p = .001, ηp
2 = 0.048]. Again, the main effect of the previous 

rule was non-significant [F (1, 68) = 0.622, p > .250, ηp2 = 0.009] as was the three-way 

interaction between trial bin, previous trial structure, and previous rule [F (7, 476) = 0.89, p 
> .250, ηp

2 = 0.013].

We also specifically compared positive transfer effects in the same rule and different rule 

groups. Log-transformed RT data from both training and test blocks of the CF - > CF (same 

rule), and CF - > CF (different rule) groups were analyzed with a mixed-model with block (2 

levels: training or test) and trial bin (8 levels: 1–8) as within-subject factors and previous 

rule (2 levels: same rule, different rule) as a between-subject factor. The ANOVA revealed 

significant main effects of block [F (1, 238) = 10.07, p = .003, ηp2 = 0.229] and trial bin [F 
(7, 238) = 3.03, p = .005, ηp

2= 0.082], and a significant block × trial bin interaction [F (7, 

238) = 3.20, p = .003, ηp2 = 0.086]. Importantly, the main effect of the previous rule was 

non-significant [F (1, 34) = 0.31, p > .250, ηp2 = 0.009] while the three-way interaction 

between trial bin, previous trial structure, and previous rule was marginally non-significant 

[F (1, 68) = 1.99, p = .068, ηp2 = 0.055]. Overall, this suggests that while prior rule 

experience may have some influence on subsequent performance, the positive transfer effect 

is largely driven by prior experience with a trial structure.
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4. Discussion

Psychologists have focused almost exclusively on the relations between stimuli, contexts, 

responses and outcomes as a framework for understanding cognitive control and our ability 

to adapt and generalize to novel task environments. In this paper, we developed the 

hypothesis that internal control policies, required for coordinating cognitive processing 

during a task, form an essential component of task knowledge independently of the stimulus-

response (S-R) rule structure of the task. Thus, we sought to test whether control policies 

can be learned and transferred to novel task situations separate from S-R rules. We tested 

this hypothesis in the context of a working memory control task, leveraging previous 

findings that subjects learn different selective gating policies for context first or context last 

trial structures (Chatham et al., 2014). We argue that the results presented in this paper are 

clear evidence in support of the hypothesis.

First, the experiments provide evidence of negative transfer. Participants with prior 

experience with a CL block were slower to respond on the initial trials of a subsequent CF 

block compared to participants with no prior experience. This effect was not driven simply 

by WM load experienced during the CL block, as participants in the CF2 -> CF group, who 

were matched for load, did not show such slowing. Importantly, the negative transfer effects 

were asymmetric, in that they were not obtained in participants carrying out a CL block after 

having previously experienced a CF block. Thus, simply encountering a novel trial structure 

or a task switch was not a cause of the initial slowing. Rather, such an asymmetric effect is 

consistent with gating policy transfer, as the selective output gating policy learnt in a CL 

block can support performance on CF trials, but a selective input gating policy learnt in a CF 

block cannot support performance on CL trials. Finally, such transfer appeared to be 

deliberate, as participants with prior experience of both CF and CL trial structures were not 

slowed on the initial trials of a CF block that immediately followed a CL block. In other 

words, rather than simply perseverating with the last used policy, participants transferred the 

appropriate gating policy to the new task context.

Second, the pattern of target position effects we observed provided specific evidence of the 

transfer of a gating policy. As previously discussed, target position benefits are contingent 

on utilizing a selective input-gating strategy. Participants who had previously experience the 

CF trial structure showed a target position effect on the initial trials of a subsequent CF 

block, but not those who had previously experienced only the CL trial structure. Therefore, 

the early trial behavior in the test block was consistent with the use of a gating policy tuned 

to the previously experienced trial structure. In other words, initial slowing observed in the 

test block of the CL - > CF group was due to negative transfer of a less efficient gating 

policy. Toward the end of the block, however, as they gained experience and the negative 

transfer effects on RT diminished, a robust target position benefit emerged. This result 

directly supports our contention that participants transferred a selective output-gating policy 

from the CL to CF block.

Our experiments also provided evidence for performance improvements that may reflect the 

positive transfer of a gating policy. In Experiment 1, participants in CF - > CF group were 

significantly faster in the first trial bin, and marginally more accurate overall in the test block 
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as compared to the training block. Given that the S-R mappings were held constant, such an 

improvement may simply reflect practice with the S-R mappings. However, the interruption 

of a task by an intervening cue like an instruction screen is known to produce restart costs 

(Allport & Wylie, 2000; Poljac, Koch, & Bekkering, 2009). Such a restart cost is observed 

even when no other competing task has been instructed, and is considerably larger when 

other interfering tasks have been instructed and has been interpreted as reflecting an effortful 

reinstatement of the task set (Allport & Wylie, 2000). Indeed, the restart cost can be 

equivalent in magnitude as the first trial RT when the task is first encountered (Allport & 

Wylie, 2000). However, here we found that initial response times in the test block were 

faster than initial response times in the training block and not significantly different from 

terminal response times in the training block. These results are consistent with participants 

learning and transfer an efficient selective input-gating policy, and thus avoiding the cost 

associated with relying on selective output-gating on the initial trials of the test block as they 

effortfully reinstated an efficient policy.

A key feature of Experiment 1 is that these learning and transfer effects occurred without 

any change in the prevailing S-R rule structure. To further test the independence of internal 

control policies from S-R rules, Experiment 2 independently manipulated prior experience 

with an S-R rule versus the trial structure. We found that both negative and positive transfer 

effects are primarily driven by prior experience with a trial structure, regardless of whether 

the specific rules were repeated or were new. Strikingly, participants were more accurate on 

the second CF block in the CF - > CF condition, even when they were required to use 

different (instructed) S-R rules in each block, thus providing stronger evidence that this 

improvement was due to the positive transfer of a gating policy. While more complex 

practice accounts cannot be ruled by this data, collectively these results are consistent with 

the transfer of a selective input-gating gating policy contributing to these improvements.

The results from Experiment 2 suggest that S-R rules and gating policies may be dissociable 

aspects of task knowledge and that gating policies are abstract entities, not tied to specific S-

R mappings. However, we note that our rule change manipulation was minimal – only 

individual contextual and lower-level items in the task were changed, while keeping 

category structure intact. Therefore, generalization may alternatively reflect category 

knowledge rather than an abstract gating policy. It is plausible that a stronger manipulation 

of rule or overall task context would produce larger effects of prior rule experience that may 

interact with gating policy transfer. Indeed, previous studies have demonstrated transfer of 

task rules (Badre, Kayser, & D’Esposito, 2010; Cole et al., 2011; Collins & Frank, 2013; 

Shanks & Darby, 1998). Future work will be necessary to define the precise relationship 

between the constructs of rules and gating policies.

Abstract gating policies that are separable from the content (like S-R mappings) have been 

invoked by two very different theoretical proposals to account for such generalization 

phenomena (Kriete, Noelle, Cohen, & O’Reilly, 2013; Taatgen, 2013) Kriete, Noelle, 

Cohen, and O’Reilly (2013) developed a corticostriatal neural network model incorporating 

an indirection (‘pointer’) mechanism (implemented by a gating policy). In their model, such 

a mechanism supports the separate WM representation of ‘roles’ and their ‘fillers’. With 

such an architecture, it would be possible to learn and transfer policies independent of the 
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specific ‘fillers’ though this has not been implemented in the context of WM gating. On the 

other hand, working within a symbolic, production system framework, Taatgen (2013) 

developed the primitive element theory wherein production rules are decomposed into 

simpler elements, some of which carry out the task-general job of routing information. Once 

such task-general rule elements are learnt, they can be used in other tasks independent of the 

task-specific elements. Such task-general rule elements responsible for routing information 

bear a close resemblance with abstract gating policies that we consider here. In addition, we 

suggest that generalization may also be achieved by modifying domain general properties of 

control like action-selection decision thresholds, WM input-gating thresholds, or arousal 

levels.

More generally, our results show that internal control policies carry an important form of 

task knowledge about the dynamics (order and timings of events) of the task, separate from 

the specific S-R mappings. Such dynamics dictate the order and timing in which different 

cognitive processes must be engaged. Control policies tuned to such dynamic structure can 

be transferred across task contexts. Our results add to a growing literature on structure 
learning, extending its principles to the domain of cognitive control policies (Braun, 

Mehring, & Wolpert, 2010; Collins & Frank, 2013; Gershman, Blei, & Niv, 2010; Huys et 

al., 2015; Rougier, Noelle, Braver, Cohen, & O’Reilly, 2005). Structure learning refers to 

our ability to identify and leverage invariant structure in the space of natural tasks to 

improve learning of novel tasks (Botvinick et al., 2009, 2015; Gershman & Niv, 2010; 

Tenenbaum, Kemp, Griffiths, & Goodman, 2011).

For example, Collins and Frank (2013) showed that human participants learn to represent 

‘task-sets’ (sets of S-R mappings) as abstract entities that can be generalized (or re-used) 

across different contexts. In the domain of motor skill learning, Braun, Aertsen, Wolpert, 

and Mehring (2009) showed that humans are able to extract the invariant structure in the 

space of mappings between sensory inputs and motor programs for reaching behavior, thus 

improving performance on previously unseen motor tasks. Our results extend these ideas to 

cognitive control policies, demonstrating that humans exploit a different form of shared 

structure present in the task dynamics. A tendency to exploit such structure affords the 

opportunity for re-using previously learned control policies in novel task settings, thus 

reducing the time and effort required to adapt. On the flip side, such a tendency would also 

lead to poorer initial performance when the transferred policy is not a good fit for the 

dynamic structure of the new task.

Within the domain of working memory, the hypothesis that task regularities can be exploited 

for a more efficient use of a limited WM capacity has a long tradition beginning with the 

notion of ‘chunking’ (Miller, 1956; Simon, 1974) More recently, several researchers have 

demonstrated that humans learn to exploit statistical regularities in the space of to-be-

remembered items to form compressed WM representations (Brady, Konkle, & Alvarez, 

2009; Mathy & Feldman, 2012; see Orhan, Sims, Jacobs, & Knill, 2014 for a review), 

allowing an increase in the number of items than can be remembered. Our contribution to 

this literature is to demonstrate that humans also exploit regularities in the dynamics of the 

task (i.e. in the relative sequential position of the contextual cues and lower-level items in 
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our task) and learn efficient, generalizable policies for controlling access to WM (selective 

input or output gating policies).

In this paper, we have chosen to interpret our results within the gating framework. However, 

our primary claim is that control policies carry structural knowledge about task dynamics. 

This claim is not tied to the gating framework exclusively. It is possible to interpret these 

results within other frameworks of WM or cognitive control. For instance, our notions of 

selective input v/s output gating policies bear some resemblance to the distinctions between 

proactive v/s reactive modes of cognitive control postulated within the dual mechanisms of 

control (DMC) framework (Braver, 2012). On this view, selective input-gating policies rely 

on a proactive mode in which a goal-relevant contextual representation is activated and 

sustained in the anticipation of future control demand. On the other hand, selective output-

gating policies rely on a reactive mode in which the goal-relevant contextual representation 

is transiently activated when the control demand arises. From this perspective, our findings 

could also be interpreted as evidence for the transfer of a control mode across different task 

contexts. Note, however, that in the DMC framework, the transient and reactive engagement 

of control is triggered, ‘on-the-fly’, when current control demands increase. Our finding of 

transfer of a selective output-gating policy from the CL to CF task in our experiments strains 

against the notion of reactive control. Instead, our results are more consistent with the 

learning and transfer of a reactive control policy, regardless of the current control demands.

Similarly, our results may also be interpreted within the ‘attention to WM’ framework 

(Oberauer & Hein, 2012). On this view, WM is postulated to have a region of direct access 

that can represent multiple items or elements over a delay as bindings between items and 

retrieval cues. Input gating is equivalent to an attentional process that selectively encodes an 

item within the region of direct access by establishing such a binding. Output gating, on the 

other hand, is equivalent to shifting the ‘focus of attention’ to a single WM representation by 

priming the relevant retrieval cue. A gating policy, then, is equivalent to an attentional 

control policy. Within this framework, our results would imply that participants build control 

policies that are tuned to the dynamics of attentional allocation demands, and transfer them 

to other task contexts independent of the specific bindings between items and cues.

Several questions about the nature of gating policy transfer remain open. For instance, our 

results only demonstrate ‘near transfer’ of gating policies – i.e. over a short time scale and 

between very similar task contexts. The present results leave open whether humans transfer 

gating policies across very different tasks that require analogous selective use of working 

memory. Evidence of such transfer would lead to the hypothesis that people build repertoires 

of gating policies that can be re-used in different kinds of novel task contexts and store them 

over longer time scales. A related question concerns whether the transfer is flexibly and 

adaptively controlled. In previous work on the learning and transfer of abstract ‘task-sets’, 

for example, it has been argued that transfer is flexible in that participants make adaptive 

decisions about whether to re-use one of many previously learned task-sets or build a new 

one (Collins & Frank, 2013; Collins & Koechlin, 2012). Our finding that practice with the 

CF trial structure in an earlier block markedly attenuates the negative transfer effect on a 

later block, hints that such transfer is deliberate, though more direct evidence would be 

required to conclusively demonstrate that such transfer is truly flexible.
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In conclusion, our study highlights the importance of WM gating policies in particular, and 

control policies in general, as a key component of the task knowledge that supports flexible 

behavior and task generalization. Understanding the mechanisms supporting broad 

generalization of gating policies would be critical to explaining the remarkable flexibility of 

human cognition.
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Fig. 1. 
Simple model of working memory control within the gating framework. Access to WM is 

controlled via the operation of an input gate that determines whether a stimulus is updated 

into WM. On the other side, an output gate controls whether or not information within WM 

can influence on behavior. Two broad classes of policies can be distinguished for selective 

use of WM – ones that achieve selection via selective input-gating, and ones that rely on 

selection via output-gating. Adapted from Hazy, Frank, and O’Reilly R (2007).
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Fig. 2. 
Experiment 1 task and experiment design. (a) Rule trees linking contextual items to lower-

level items. Participants memorized the rule trees prior to beginning the task and were given 

an opportunity to review at the beginning of each block. (b) Sample context first (CF) and 

context last (CL) trials. The contextual item (number) indicated which of the other two items 

in the sequence is the target item. Each trial concluded with a response panel that consisted 

of two pairs of items. Participants indicated with a key press which pair contained the 

correct target item (denoted by a hand with a tick mark). (C) Participants were assigned to 

one of four experimental groups. Each group completed two blocks (‘training’ and ‘test’), 

whose trial structure was determined by group membership.
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Fig. 3. 
(a) and (b) Transfer effects for CF (a) and CL (b) trial structures. Mean RT for each 6-trial 

bin is plotted as a function of training history - no prior training (circles), prior training with 

same structure (squares), or different trial structure (triangles). Error bars reflect 95% 

confidence intervals. (c) and (d) Target position effects for CF (c) and CL (d) trial structures. 

Mean target position benefit in RT (target-middle RT – target-last RT) plotted for early (first 

12 trials – dark grey bars) and late (last 12 trials – light grey bars) in test blocks of CF - > CF 

and CL - > CF conditions (c) and CL - > CL and CF - > CL conditions (d). RTs were log-

transformed. Error bars reflect 95% confidence intervals.
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Fig. 4. 
Results from Experiment 2. (a) and (b) – Transfer effects for CF (a) and CL (b) trial 

structures when rules remain the same. Mean RT for each 6-trial bin is plotted as a function 

of training history - no prior training (circles), prior training with same structure (squares), 

or different trial structure (triangles). Transfer effects observed in Experiment 1 are 

replicated here. (c) and (d) - Comparison of negative (c) and positive (d) transfer effects in 

the different-rule (open shapes, dashed lines) and corresponding same-rule groups (filled 

shapes, solid lines). The transfer effects are primarily driven by previous experience with a 

trial structure rather than with a rule. Error bars reflect 95% confidence intervals.
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Table 1

Experiment 1 & 2 summary of performance data.a

Trial structure Accuracy (% correct) Response time (ms)

Experiment 1

CF 94.4 ± 0.02 915 ± 60

CL 90.9 ± 0.02 1261 ± 61

Overall 92.6 ± 0.01 1088 ± 53

Experiment 2

CF 92.2 ± 0.09 881 ± 294

CL 90.6 ± 0.08 1250 ± 236

Overall 91.4 ± 0.08 1066 ± 267

a
Summary statistics are means and 95% confidential intervals.
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Table 2

Experiment 1 & 2 group-wise summary of performance data.a

Training block(s) Test block

Group Accuracy (% correct) Response time (ms) Accuracy (% correct) Response time (ms)

Experiment 1

CF → CF 92.0 ± 0.05 971 ± 118 97.4 ± 0.01 907 ± 94

CL → CF 91.6 ± 0.04 1304 ± 102 95.3 ± 0.03 910 ± 96

CL → CL 88.3 ± 0.06 1317 ± 92 94.5 ± 0.02 1266 ± 83

CF → CL 92.7 ± 0.03 896 ± 118 89.7 ± 0.04 1188 ± 125

CL2 → CF 92.6 ± 0.06 1182 ± 103 94.5 ± 0.09 806 ± 92

CF → CL → CF CF: 91.8 ± 0.06
CL: 90.4 ± 0.04

CF: 889 ± 111
CL: 1176 ± 84

92.5 ± 0.04 741 ± 60

Experiment 2

Same rules for each block

CF → CF 94.2 ± 0.03 905 ± 116 96.1 ± 0.04 839 ± 98

CL → CF 93.8 ± 0.06 1299 ± 135 90.1 ± 0.05 883 ± 162

CL → CL 94.1 ± 0.02 1175 ± 77 95.0 ± 0.03 1208 ± 71

CF → CL 87.2 ± 0.02 928 ± 182 90.5 ± 0.03 1367 ± 121

Different rules for each block

CF → CF 95.4 ± 0.02 820 ± 69 95.0 ± 0.02 806 ± 65

CL → CF 89.8 ± 0.05 1202 ± 110 87.2 ± 0.07 983 ± 174

a
Summary statistics are means and 95% confidence intervals.
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