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Abstract

Chemical use in society is growing rapidly and is one of the five major pressures on biodiversity 

worldwide. Since empirical toxicity studies of pollutants generally focus on a handful of model 

organisms, reliable approaches are needed to assess sensitivity to chemicals across the wide 

variety of species in the environment. Phylogenetic comparative methods (PCM) offer a promising 

approach for toxicity extrapolation incorporating known evolutionary relationships among species. 

If phylogenetic signal in toxicity data is high – i.e., closely related species are more similarly 

sensitive as compared to distantly related species – PCM could ultimately help predict species 

sensitivity when toxicity data are lacking. Here, we present the largest ever test of phylogenetic 

signal in toxicity data by combining phylogenetic data from fish with acute mortality data for 42 

chemicals spanning 10 different chemical classes. Phylogenetic signal is high for some chemicals, 

particularly organophosphate pesticides, but not necessarily for many chemicals in other classes 

(e.g., metals, organochlorines). These results demonstrate that PCM may be useful for toxicity 

extrapolation in untested species for those chemicals with clear phylogenetic signal. This study 

provides a framework for using PCM to understand the patterns and causes of variation in species 

sensitivity to pollutants.
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INTRODUCTION

The number of chemicals manufactured and released into the environment has grown 

rapidly, with an estimated 85,000 and 100,000 chemicals registered commercially in the 

United States (U.S. EPA, 2017a) and Europe (Schwarzenbach et al., 2006), respectively. 

Moreover, global chemical production is projected to quadruple by 2050 from 2000 levels 

(Wilson and Schwarzman, 2009). Because of their pervasive use in society, many types of 
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chemicals, including pesticides, industrial chemicals, pharmaceuticals, and household 

cleaning products can be found across all environmental media (Pool and Rusch, 2014), 

leading to widespread exposure of many species and ecosystems. Chemical pollutants have 

therefore been indicated as one of the five major pressures on biodiversity worldwide 

(Secretariat of the Convention on Biological Diversity, 2010), whose loss threatens the 

health of ecosystems and the services they provide (Hooper et al., 2012; Köhler and 

Triebskorn, 2013; Millennium Ecosystem Assessment, 2005; Vörösmarty et al., 2010). 

Surprisingly, only a few studies have investigated chemical impacts on biodiversity, and have 

found that pollutants can lead to dramatic regional species losses (Beketov et al., 2013) and 

even pose continental-scale risks to species diversity (Malaj et al., 2014).

On of the challenges to understanding the range of chemical impacts across species and 

ecosystems is the lack of empirical toxicity data for most chemicals and species (Strempel et 

al., 2012). Bold initiatives such as the European Union’s (EU) Registration, Evaluation, 

Authorization, and Restriction of Chemicals (REACH) legislation (European Commission, 

2006), which requires that chemical manufacturers and importers provide basic hazard data 

for all high-volume chemicals, are helping to reduce this knowledge gap. Yet, regulatory 

toxicity tests focus on a small number of model organisms to represent potential chemical 

impacts on the wide range of species in the environment (Backhaus et al., 2012; OECD, 

2017; U.S. EPA, 2017b). Reliance on these surrogate species can be attributed, in part, to the 

significant resources required for toxicity testing and the small number of laboratory test 

species available. However, a key yet unanswered question is to what extent model 

organisms’ responses to toxic chemicals are representative of the highly diverse range of 

species found in nature. To address this major information gap, we need tools that allow us 

to understand and ultimately predict variation in sensitivity across a wide range of species.

Phylogenetic comparative methods (PCM) (Felsenstein, 1985; Harvey and Pagel, 1991) 

provide a promising framework for examining cross-species patterns in chemical sensitivity 

using fundamental principles from evolutionary biology. Central to PCM is the assumption 

that species exhibit similarity in phenotypic characteristics in direct proportion to their 

degree of phylogenetic relatedness (i.e., their shared evolutionary history) (Felsenstein, 

1985; Harvey and Pagel, 1991). “Phylogenetic signal” is the degree to which trait variation 

among species corresponds to their common evolution, and it is detected in many types of 

traits (Freckleton et al., 2002). Most importantly, phylogenetic signal is particularly strong 

for body size and physiological traits, the latter of which are integral to how organisms 

respond to chemical exposures. Thus, we expect substantial phylogenetic signal in species 

sensitivity to pollutants. Should this be the case, PCM could ultimately help predict species 

sensitivity using known phylogenetic relationships between tested and untested species.

A major issue when working with cross-species data is that phylogenetic pseudoreplication 

may be caused by the presence of phylogenetic signal in the data (i.e., the degree of 

similarity in trait values between species due to their common ancestry). As a result, cross-

species data cannot be treated as independent, violating a fundamental statistical assumption 

(Felsenstein, 1985; Harvey and Pagel, 1991; Freckleton et al 2002, Pagel 1999). PCM 

accounts for phylogenetic pseudoreplication by explicitly incorporating phylogeny of the 

studied species into statistical models (Felsenstein, 1985; Harvey and Pagel, 1991). Thus, 
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PCM can help explain both patterns of species phenotypic values given their phylogenetic 

relationships and incorporate phylogenetic relationships into statistical models when 

investigating the effect of different explanatory factors (e.g., ecology, life history, 

morphology) on these same phenotypic values (Felsenstein, 1985; Harvey and Pagel, 1991, 

Freckleton et al 2002, Pagel 1999). For example, Chiari et al. (2015) show that there is 

strong phylogenetic signal in species sensitivity to copper sulfate in amphibians, but also 

that temperature explains more of the variation in acute mortality once phylogeny has been 

accounted for using PCM.

Crucially, PCM provides an important theoretical framework for understanding the 

biological basis for variation in species sensitivity to chemicals. It is now well known that 

adverse effects from chemicals are the result of many interactions across multiple levels of 

biological organization, from molecular initiating events all the way up to apical outcomes 

(e.g., survival, growth, reproduction), and even population effects (Ankley et al., 2010). To 

some degree, variation in adverse outcomes among species is due to structural differences in 

target receptor proteins that define a chemical’s mechanism of action (LaLone et al., 2016). 

Like most protein sequences, these sequences are generally conserved among closely related 

species. Many other factors can influence sensitivity in a given species, including general 

morpho-physiological characteristics, such as body size and metabolic rate, the rate of 

chemical uptake (Buchwalter and Luoma, 2005), the ability to biotransform or eliminate a 

given compound (Groh et al., 2015; van den Hurk et al., 2017), behavioral responses to 

chemical exposure (Sandahl et al., 2005; Scholz et al., 2000), or life history strategies (Stark 

et al., 2004). Thus, variation in chemical sensitivity cannot be fully explained by examining 

effects at any single level of biological organization and many of the characteristics 

underpinning sensitivity are likely to exhibit some level of phylogenetic signal. PCM 

integrates all these levels by placing the phenotype (e.g., measures of chemical sensitivity) 

into a phylogenetic framework in which closely related species are expected to respond more 

similarly at all of these levels.

The few previous studies applying PCM or other phylogenetic approaches to toxicity data 

indicate that there is a strong correspondence between evolutionary relationships and species 

sensitivity (Buchwalter et al., 2008; Carew et al., 2011; Chiari et al., 2015; Guénard et al., 

2011, 2014; Hammond et al., 2012; Poteat and Buchwalter, 2014). While these studies have 

revealed important patterns, they have primarily looked at either a single chemical or a small 

group of related chemicals: so drawing general conclusions for the many diverse chemicals 

currently released in the environment is difficult. Here, we greatly expand the scope of 

previous studies by examining acute toxicity of 42 different chemicals spanning multiple 

classes (e.g., pesticides, metals) across a wide range of fish species. Fish are the most highly 

tested organisms in regulatory toxicology (Knöbel et al., 2012) as they provide essential 

information on sensitivity to toxicants in two different environments (saltwater and 

freshwater), are important for human consumption, and represent organisms at higher 

trophic levels in aquatic ecosystem function. Therefore, fish are an ideal focal group for 

examining phylogenetic patterns in species sensitivity to chemicals and its utility for 

assessing ecological risk.

Hylton et al. Page 3

Ecol Appl. Author manuscript; available in PMC 2019 April 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



MATERIALS AND METHODS

Species sensitivity data for fish, measured as LC50 (median lethal concentration, 50%), were 

acquired from the United States Environmental Protection Agency’s (U.S. EPA) Web-based 

Interspecies Correlation Estimation (Web-ICE) Database Version 3.3 (Raimondo et al., 

2015). The Web-ICE database represents a curated and highly standardized database of 

acute toxicity values. Experimental temperature data were also compiled from Web-ICE 

because it affects species sensitivity to a multitude of chemicals (Chiari et al., 2015). In 

order to maximize uniformity among the dataset, LC50 and experimental temperature values 

were only used if they were generated by studies conducted with juvenile fish over a 96-hour 

chemical exposure duration. Only chemicals with LC50 data for 10 or more unique fish 

species were used to ensure sufficient statistical power, which in comparative studies is the 

number of species. If more than one LC50 value was available for a given species-chemical 

pair, the geometric mean was calculated. If toxicity studies for that species were conducted 

at different experimental temperatures, the geometric mean of those temperatures was used. 

Mode of action (MOA) – the general physiological interaction through which a chemical 

causes toxicity in an organism – was assigned to each chemical using EPA’s MOAtox 

classification scheme (Barron et al., 2015).

Phylogenetic signal was estimated from log10-transformed LC50 data using the phylogenetic 

generalized least squares model (PGLS) implemented in the package caper version 0.5.2 

(Orme, 2013) for the R computing environment (R Core Team, 2016). We used a published 

phylogenetic tree (Rabosky et al., 2013) generated from a matrix of 13 genes in all PGLS 

analyses. The degree of phylogenetic signal in the data is quantified through the parameter 

λ, which can vary between 0 and 1 (Freckleton et al., 2002; Pagel, 1997). A λ value of 0 

indicates no phylogenetic signal (independent evolution) and species can be considered 

statistically independent. A value of 1 indicates very strong phylogenetic signal conforming 

to a Brownian motion model of evolution (i.e., the degree of similarity between species due 

to common ancestry is directly proportional to the time of shared evolution). Because λ can 

take any value between these two extremes, caper generates tests evaluating to what extent 

the estimated maximum likelihood λ value for the data differs from the extremes using a 

standard likelihood ratio test (Freckleton et al., 2002; Pagel, 1997). In a PGLS linear model 

with independent explanatory variables, λ is estimated on the model’s residuals (Freckleton 

et al., 2002; Pagel, 1999).

We estimated λ values for individual chemicals. For all chemicals, λ was first estimated for 

a PGLS model with LC50 as the dependent variable and experimental temperature as the 

independent variable. For chemicals in which there was no significant relationship between 

LC50 and temperature, λ was then estimated for LC50 alone. Visual inspection of the 

diagnostic plots generated in caper indicated that all the assumptions of linear models with 

predictor variables were met, and we did not identify any outliers, defined as any species 

whose residual was over three standard deviations from the mean of residuals. We then used 

a χ2 statistical test in R to evaluate the impact of sample size on detecting a λ significantly 

greater than 0 versus not significantly different from 0 for chemicals with 15 or more species 

versus less than 15 species.
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We also tested for the potential confounding effect of species adaptation to salinity levels on 

LC50, as it is highly debated whether freshwater and saltwater fish species differ in their 

sensitivity to chemicals due to differences in underlying physiology or due to the physical 

properties of chemicals in freshwater versus saltwater (Wheeler et al., 2002). To this end, we 

coded species adaptation to salinity as a binary variable (freshwater/saltwater). We added 

salinity as a second predictor (with temperature, if significant) in PGLS models for the four 

chemicals (carbaryl, chlorpyrifos, copper, and zinc) with at least five freshwater and five 

saltwater species. The threshold for significance for predictors in all analyses was α=0.05.

RESULTS AND DISCUSSION

Our dataset includes 42 chemicals with LC50 data for 10 or more fish species in the 

phylogenetic tree (Table 1). Most of these chemicals are pesticides, predominantly 

insecticides, including 12 organophosphates (OP), 9 organochlorines, 5 carbamates, and 3 

pyrethroids. Other chemicals such as metals or inorganics have a wide range of industrial or 

agricultural uses. Temperature is a significant predictor of LC50 for 12 of the 42 chemicals 

analyzed, but the effect of temperature on toxicity varies among chemicals within each class 

(Table 1). When significant, temperature is positively associated with LC50 (i.e., higher 

temperature corresponds to lower sensitivity) for 9 chemicals, but negatively associated for 

EPN, parathion and aminocarb (Table 1). Overall, regardless of whether we also include 

experimental temperature (depending on whether it is a significant predictor of LC50 or not), 

the phylogenetic signal is significantly greater than 0 for 10 of the 42 chemicals examined. 

Only for one chemical, parathion, are temperature and phylogenetic signal both significant. 

The λ values are intermediate to high (λ>0.5) for all of the OPs except fenitrothion 

(λ=0.223) and coumaphos (λ=0), and significantly greater than 0 in 7 out of the 12 OPs 

(p<0.05; Table 1). Conversely, the phylogenetic signal for organochlorines – the next most 

represented chemical class in the dataset – is weak, with only 3 of 9 chemicals with λ>0.5, 

and only one, Lindane, with a λ value significantly greater than 0 (λ=0.574). Of chemicals 

among other classes, only 2 show phylogenetic signal significantly higher than 0: 

bioethanomethrin (λ=0.942), a pyrethroid insecticide, and captan (λ=0.912), a phthalamide 

fungicide. There is no obvious pattern in λ values based on chemical MOA (Table 1). 

Salinity (t12=-4.0, df=12, p<0.05), but not temperature (t12=0.92, p=0.37), is a significant 

predictor of LC50 only for a single chemical, chlorpyrifos.

As for any statistical model, the power to estimate λ and differentiate between the estimated 

value and its extremes, 0 or 1, decreases with small sample sizes (Freckleton et al., 2002). 

However, using a χ2 test, we find no significant difference in the proportion of chemicals 

with λ values significantly greater than 0 (χ2 value=1.08; p=0.11) between chemicals with 

less than 15 species versus those with 15 or more species. Still, since OPs and carbamates 

possess the same MOA (cholinesterase inhibition), it is still possible that lack of consistency 

in phylogenetic signal between these classes is due to sample size.

Visual display of the LC50 values for OPs shows that sensitivity levels cluster by fish 

taxonomic family for most chemicals (Figure 1a), which explains the high level of 

phylogenetic signal found for this chemical class. Conversely, toxicity values do not cluster 

at the family level for organochlorines (Figure 1b). Inspection of LC50 data overlaid onto the 
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fish phylogenetic tree (Figure 2) shows that individual fish clades exhibit consistent levels of 

sensitivity across several OPs. Perciform (e.g., Lepomis macrochirus) and salmoniform (e.g., 

Oncorhynchus mykiss) fish species are typically the most sensitive (lowest LC50 values), 

while cyprinodontiform fish (e.g., Poecilia reticulata) are moderately sensitive, and 

cypriniform (e.g., Cyprinus carpio) and siluriform (e.g., Ictalurus punctatus) fish were 

generally the least sensitive.

These results have important implications for developing reliable predictions of toxicity for 

species that cannot be easily tested, as well as better understanding the biological basis of 

toxicity variation across species and chemical classes. Our study uses the largest toxicity 

dataset to date to test whether sensitivity differences among species can be explained by 

their evolutionary relationships. Surprisingly, we find that this holds true for some, but not 

necessarily all, classes of chemicals. In contrast, most earlier studies applying PCM to 

chemical response data – although few in number – report an association with phylogenic 

relationships (Buchwalter et al., 2008; Carew et al., 2011; Chiari et al., 2015; Hammond et 

al., 2012). Our finding of mixed phylogenetic signal among chemicals suggests there are 

potential data limitations or biological factors that could influence the relationship between 

phylogeny and species sensitivity.

Small species sample sizes, heterogeneous chemical representation, or laboratory 

experimental effects are all potential data limitations that could explain the lack of consistent 

phylogenetic signal across chemicals. Although our study is by far the largest to date to 

measure phylogenetic signal in toxicity data, there remain few chemicals with appreciable 

species data, most of which are pesticides. This is because the bulk of chemical testing in 

fish, for example, is still conducted on common model organisms such as rainbow trout 

(Oncorhynchus mykiss), fathead minnow (Pimephales promelas), and bluegill (Lepomis 
macrochirus) (OECD, 2017; U.S. EPA, 2017b). Moreover, there are historically stricter 

regulatory data requirements for pesticides versus industrial chemicals in the U.S. Although 

we do not find that λ values differ significantly for chemicals above or below a sample size 

threshold of 15 fish species, much larger species-chemical datasets would likely generate 

more robust λ estimates (Freckleton et al., 2002). Although toxicity data used in our study 

are consistent across exposure duration and life stage, other experimental variables such as 

exposure method (e.g., static versus flow-through), stability of chemical over the exposure 

duration, water quality, use of solvents, animal source and husbandry, and researcher 

technique could all produce variation in results. Future datasets with larger species sample 

sizes would help assess and limit the impact of such experimental factors.

There are also biological factors that could explain the mixed phylogenetic signal across 

chemicals and chemical classes, and could help guide future studies. Interspecific variation 

in proteins that are critical to a chemical’s mechanism of action can change the 

conformation of ligand-binding domains and influence binding affinities of various 

xenobiotic agents (LaLone et al., 2016). Future work could investigate protein variation 

among fish species for OPs, which inhibit acetylcholinesterase (Fukuto, 1990), versus 

organochlorines, which either inhibit sodium channels or GABA-gated chloride channels 

(Coats, 1990). It is possible that the protein variation in OP targets is more strongly 

associated with phylogeny and thus responsible for the more consistent phylogenetic signal 
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observed in this group of chemicals. Species sensitivity variation can also arise from 

differences in chemical uptake and bioaccumulation (Buchwalter et al., 2008) or the ability 

to biotransform or eliminate a compound. The latter was recently demonstrated in several 

groups of fish with varying sensitivities corresponding to different induction rates of 

Cytochrome P450 detoxification enzymes (van den Hurk et al., 2017). Thus, follow-up 

studies could examine interspecific variation in xenobiotic molecular targets, and adsorption, 

distribution, metabolism, and elimination of chemicals with strong versus absent 

phylogenetic signal.

General morpho-physiological characteristics of species such as body size, metabolic rate, 

and energy use can also influence species responses to chemicals (Muller et al., 2010). Such 

factors may not only influence acute toxicity, as examined in our study, but also the 

physiological and resource challenges posed by sublethal or chronic chemical exposures. It 

is important to note that such broad characteristics or organisms, can – and usually do – 

exhibit strong phylogenetic signal themselves (Freckleton et al., 2002; Garland et al., 2005). 

Thus, application of PCM to toxicity data is not only important for understanding how 

species evolutionary history has shaped patterns in species sensitivity, but also to statistically 

account for the influence of phylogeny on other explanatory factors related to physiology or 

ecology.

Given the pervasive use of chemicals in society, which is expected to increase over the 

coming decades, it is imperative to develop approaches to understand and assess risk to the 

wide breadth of species in the environment using limited resources. Evolutionary biology 

provides a useful framework with which to form expectations about how diverse sets of 

species will respond to chemical exposure based on their degree of shared evolutionary 

history. Our study serves as an important step in grasping the power and usefulness of PCM 

for understanding the patterns and causes of variation in species sensitivity to pollutants. It 

suggests that the relationship between phylogeny and acute toxicity data is not consistent 

among chemicals or chemical classes. Future work should focus on disentangling the 

experimental versus biological factors that contribute to this pattern of mixed phylogenetic 

signal. Such further examination would benefit from increased representation of diverse fish 

species in toxicity tests beyond pesticides and the use of a wider array of fish species in 

toxicity tests outside of the major regulatory aquatic toxicity test organisms.
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Figure 1. 
Fish sensitivity to (a) organophosphate insecticides and (b) organochlorine compounds 

organized by taxonomic family. Only families with 10 or more species in the dataset are 

represented.
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Figure 2. 
Phylogeny of fish with toxicity data overlaid from five organophosphates (malathion (Mal), 

azinphos-methyl (AZM), diazinon (Diaz), methyl parathion (MP), and trichlorfon (Tri)) with 

strong phylogenetic signal (i.e., λ > 0.5 and significantly different from 0). Toxicity data 

percentiles represent scaling of the LC50 for each species-chemical pair as a proportion 

between the lowest and highest log-LC50 value across all species for a given chemical. Fish 

family names are included in the tree next to corresponding taxon branches.
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