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ABSTRACT

Objective: To automatically recognize self-acknowledged limitations in clinical research publications to support

efforts in improving research transparency.
Methods: To develop our recognition methods, we used a set of 8431 sentences from 1197 PubMed Central

articles. A subset of these sentences was manually annotated for training/testing, and inter-annotator agree-

ment was calculated. We cast the recognition problem as a binary classification task, in which we determine

whether a given sentence from a publication discusses self-acknowledged limitations or not. We experimented

with three methods: a rule-based approach based on document structure, supervised machine learning, and a

semi-supervised method that uses self-training to expand the training set in order to improve classification per-

formance. The machine learning algorithms used were logistic regression (LR) and support vector machines

(SVM).
Results: Annotators had good agreement in labeling limitation sentences (Krippendorff’s a¼0.781). Of the three

methods used, the rule-based method yielded the best performance with 91.5% accuracy (95% CI [90.1-92.9]),

while self-training with SVM led to a small improvement over fully supervised learning (89.9%, 95% CI [88.4-

91.4] vs 89.6%, 95% CI [88.1-91.1]).
Conclusions: The approach presented can be incorporated into the workflows of stakeholders focusing on re-

search transparency to improve reporting of limitations in clinical studies.
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INTRODUCTION

In clinical research, study design, execution, and interpretation of

results can limit the relevance and applicability of findings. It is im-

portant for researchers to acknowledge potential problems and

biases as limitations and discuss their magnitude when publishing

their findings. This allows stakeholders, such as peer reviewers, jour-

nal editors, systematic reviewers, clinicians, and policymakers, to

better understand a finding, place it in proper context, assess the po-

tential errors involved, and ascribe to the finding a credibility level.1

Conversely, failure to discuss limitations (a form of “spin”2) may

mislead readers to view findings more favorably. Acknowledging

limitations can also improve research transparency and reproduc-

ibility, thus, reducing research waste.3

Despite the importance of limitations in interpreting research

findings, authors of biomedical articles often fail to discuss them. A

study of 400 articles from six highly-ranked journals showed that

only 17% used at least one word denoting limitations.4 A study on

the effect of peer review on manuscript quality found that the ac-

knowledgement of limitations was the most problematic among 34
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items of manuscript quality at submission.5 More recently, ter Riet

et al.6 analyzed 300 biomedical articles and found that 27% did not

report limitations. While this is an improvement over earlier reports,

it also shows that failure to acknowledge limitations is still a signifi-

cant problem in the biomedical literature.

Reporting guidelines (e.g., CONSORT,7 ARRIVE8) have been

proposed to promote the transparency and accuracy of reporting for

biomedical studies, and they often include discussion of limitations

as a checklist item. Although such guidelines have been endorsed by

high-profile biomedical journals and compliance with them is

associated with improved reporting quality,9 adherence remains

sub-optimal.10

Text mining tools can automate assessment of a publication by

locating key statements corresponding to specific reporting guideline

items or alerting of their absence. This can help not only journal edi-

tors and peer reviewers in enforcing transparency, but also system-

atic reviewers who aim to identify rigorous studies and clinicians

looking for the best available clinical evidence.11 Our overarching

goal is to develop such text mining tools. In this study, we specifi-

cally focus on reporting of limitations, due to its centrality to inter-

pretation of research findings.4

Related Work
Studies of self-acknowledged limitations often relied on manual

analysis of manuscripts and resulting publications5,6 or on simple

keyword searches.4

Information extraction from scientific publications is a well-

studied task in biomedical text mining. Among other purposes, infor-

mation extraction methods have been developed to automate article

selection for inclusion in systematic reviews,12 to identify PICO ele-

ments (problem/population, intervention, comparison, and outcome)

for evidence-based medicine,13–16 to recognize key elements of ran-

domized clinical trials,17 and to extract data deposition statements.18

Statistical learning approaches with varying degrees of supervi-

sion and rule-based techniques as well as hybrid approaches incor-

porating both have been explored. For example, rules based on

UMLS Metathesaurus19 concepts and regular expressions have been

used to extract population information from abstracts.13 Fully su-

pervised techniques that rely on annotated data for training have

most commonly been explored, and learning algorithms such as

SVM, Random Forest, and Conditional Random Fields (CRF) have

been proposed.14–15,17–18 Approaches vary in their task formulation:

binary classification,13,18 multi-label classification,17 or sequence la-

beling.14,18 Commonly used features include n-grams, part-of-

speech, section, position, and sequence information.

When annotated data is limited, semi-supervised learning

approaches have been used to construct somewhat noisy datasets

from external resources. Wallace et al.16 used free-text summaries of

PICO elements in the Cochrane Database of Systematic Reviews

(CDSR) to automatically generate sentence-level annotations for

PICO elements. Marshall et al.20 used risk of bias judgments in

CDSR to semi-automatically generate labels for risk of bias state-

ments in clinical trial publications.

Hybrid approaches that combine statistical learning with rules often

work well in practice. For instance, to identify key clinical trial elements

(e.g., eligibility criteria, primary outcomes) from relevant publications,

Kiritchenko et al.17 combined an array of sentence-level classifiers with

regular expressions to extract the exact phrase for that element.

We are not aware of any biomedical text mining work specifi-

cally addressing self-acknowledged limitations. Previous research on

rhetorical structure of scientific articles categorized sentences or pas-

sages according to their function within this structure.21–25 The cate-

gories identified in such work were often coarse-grained (Aim,

Result, etc.), although self-acknowledged limitations were recog-

nized as a rhetorical move in the Knowledge Claim Discourse

Model.25 To our knowledge, no automatic recognition approach

has been presented for this category.

METHODS

Below, we describe our dataset construction and the methods used

to recognize self-acknowledged limitation sentences: a relatively

simple rule-based method along with supervised and semi-

supervised approaches.

Corpus Construction
We constructed a collection of sentences from PubMed Central full-

text articles published in 2017. We followed the approach reported in

ter Riet et al.,6 which ensured a broad selection of papers from general

medical and specialty journals. Meta-analyses and systematic reviews

were excluded to avoid confusion between the limitations of the in-

cluded studies and those of the reviews themselves (further selection

details are available in the Supplementary Material). The search was

conducted on April 12, 2017 and resulted in 1238 articles. XML ver-

sions of the articles were downloaded from PubMed Central. Forty-

one articles with no usable content (abstract or full-text) were ex-

cluded, leaving 1197 articles for further consideration.

For training and testing, we selected a subset of sentences from

these articles, based on two observations regarding section structure.

First, self-acknowledged limitations often appear in Discussion,

Conclusion, or in dedicated sections with the words limitation or

weakness in the title. Second, when not discussed in dedicated sec-

tions, limitations can appear in paragraphs introduced by a sentence

containing those words (e.g., Our study has several limitations.).

We used our own rule-based method26 for sentence splitting and the

Stanford CoreNLP toolkit27 for tokenization.

Based on the observations above, we automatically selected senten-

ces that potentially discuss limitations (with some noise) (nPOS

¼2516). We ignored all sentences with fewer than 30 characters, as

that often indicated a sentence splitting error. Limitation sentences, if

present, constitute a small proportion of all sentences in a full-text arti-

cle. To generate a somewhat balanced dataset, we limited the number

of potentially negative instances selected from an article, as follows:

• If the article was 50 sentences long or shorter, the number of po-

tentially negative instances was set to the number of sentences di-

vided by 10, rounded to the nearest integer less than or equal to

the ratio.
• If no potentially positive instances were identified, the maximum

number of negative instances was set to 4. Otherwise, the num-

ber of negative instances was equal to the number of potentially

positive instances.

Given these constraints, a subset of potentially negative instances

was randomly selected, resulting in 5915 potentially negative instan-

ces (nNEG), for a total of 8431 sentences (nPOSþnNEG)1. We split

this dataset into three:

1 This sentence selection process also constitutes our baseline method.
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• SEED: 752 sentences (257 potentially positive, 34%) from 98

articles
• TEST: 1505 sentences (479 potentially positive, 32%) from 198

articles
• UNLABELED: 6174 sentences (1780 potentially positive, 29%)

from 901 articles

The number of SEED articles reflected the amount of sentence la-

beling that could realistically be done in a short time (one working

day) and was determined based on preliminary annotation per-

formed by one of the authors (HK).

Manual Annotation
Manual annotation was performed on the SEED and TEST sets. An-

notation guidelines were developed by two of the authors (HK and

GtR) and are provided in the Supplementary Material. Sentences

reporting limitations were labeled as POS and those that did not as

NEG. Example annotations for three consecutive sentences from an

article (PMC5120936) are provided below.

(1) Our study has a number of limitations. (NEG)

(2) First, our findings are limited by the fact that we were unable to

enroll our original calculated sample due to slow accrual. (POS)

(3) However, an increase in sample size is unlikely to change our

findings as an interim review by the DSMB determined that a

sample size of 65 using the same assumptions as the original cal-

culation have a power of 70% to 90% for the standard devia-

tion ranging from 0.3 to 0.5. (NEG)

The first sentence is a negative instance, because it merely

announces limitations. The second sentence is a positive instance,

since it discusses small sample size as a limitation. The third sentence

is also negative, since the authors downplay the significance of the

sample size but do not discuss a new limitation.

All four authors annotated the SEED set. One of the authors

(GtR) adjudicated the disagreements. Next, three annotators (GR,

MM, and GtR) annotated the TEST set to be used for evaluation.

Each sentence in this set was double-annotated and then adjudi-

cated by the author who did not participate in annotation of this

set (HK). We calculated inter-annotator agreement using Krippen-

dorff’s a, which accommodates more than two annotators and

missing annotations. We used Microsoft Excel for sentence

annotation.

Automatic Recognition of Limitation Sentences
The rule-based method is a refinement of the automatic labeling

method used to construct the dataset, and consists of two steps.

First, it identifies whether the sentence belongs to a limitation

zone, and next, it determines whether the sentence is a limitation-

introducing sentence, mitigation sentence, or a citation sentence.

If the sentence is in a limitation zone, but does not belong to one

of these types, it is recognized as a limitation sentence.

A limitation zone is defined as a sequence of sentences that dis-

cuss limitations. Our method determines such zones as follows:

• If a section title includes a limitation lemma (limitation, weak-

ness) but not a strength lemma (strength), the entire section is a

limitation zone.
• If the title includes both limitation and strength lemmas, a subse-

quence in the section is a limitation zone. To determine this sub-

sequence, it first identifies the first sentence containing a

limitation lemma (limitation, weakness). Then, it identifies the

first subsequent sentence containing a strength lemma

(strength).
• If both are identified, the limitation zone is the subsequence

between these sentences, including the limitation sentence

and excluding the strength sentence.
• If only a limitation sentence is identified, the limitation zone

includes this sentence as well as the subsequent sentences to

the end of the section.
• If neither is identified, it checks whether the limitation or

strength lemma appears first in the title. If the limitation

lemma appears first, it takes the first half of the sentences in

the section as the limitation zone. Otherwise, it takes the sec-

ond half.
• If the title of a section includes either discussion or conclusion, it

determines whether any section paragraph begins with a

limitation-introducing sentence (described below). If so, the par-

agraph constitutes a limitation zone.

A limitation-introducing sentence satisfies one of the following

constraints:

• It ends with the plural form of a limitation lemma (limitations,

weaknesses).
• It contains a plural form of a limitation lemma and has 10 tokens

or fewer.

To recognize a mitigation sentence, the method first identifies

whether the limitation zone itemizes limitations, by searching for a

sentence-initial discourse marker that provides this function (first,

firstly, second, secondly, third, thirdly, fourth, and fifth). Next, it

ensures that the sentence in question begins with a contrastive

marker (however, nevertheless, or nonetheless). A citation sentence

is recognized with a simple regular expression that detects square

brackets and reference numbers.

With these rules, the second sentence in Example (1) is recog-

nized as a limitation sentence. The first and third are non-

limitation sentences (limitation-introducing and mitigation, re-

spectively).

Semi-supervised learning with self-training

Semi-supervised learning was used to assess whether we can leverage

a small number of manually annotated sentences and a much larger

set of unlabeled sentences to obtain good classification performance.

If successful, said approach can potentially reduce the burden of

time-consuming and labor-intensive annotation and make the devel-

opment of the envisaged text mining tools more feasible and scal-

able, since unlabeled data from the biomedical literature can be

easily obtained.

Self-training is a semi-supervised learning technique,28 in which

the basic idea is to iteratively choose a proportion of the unlabeled

data to augment the labeled data for training to improve accuracy.

Given a set of labeled data L and unlabeled data U, a classifier C is

trained on L, and U is classified with C. Next, a subset U’ � U for

which C has high confidence is selected. Finally, U’ is removed from

U and added to L, and the steps are repeated until the algorithm

converges. In our case, L is initially the SEED set, and U is the

UNLABELED set.

Self-training approaches vary in how the subset U’ is determined

and when the algorithm is stopped. We established two types of

threshold parameters to determine the subset and the stopping

criteria. We used an absolute probability threshold for each class

(aPOS and aNEG) and a probability interval for the POS class (bPOS).
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Absolute probability threshold indicates the lowest probability

allowed for a given class in any self-training epoch. The probability

interval indicates the lowest probability for the POS class in a given

epoch. A bPOS value of 0.9 indicates that POS probability for an in-

stance has to be within 90% of the probability of the positive in-

stance with the highest confidence to be added to U0. That is, if the

highest probability among instances labeled POS is 0.9, a given in-

stance needs to have at least 0.81 probability of being POS to be

added to the expanded set. Further, we keep the proportion of POS/

NEG instances in the augmented dataset roughly the same as that in

the SEED set. Self-training converges when no instances are labeled

POS with high enough probability (Pr(POS)< aPOS), or when all the

unlabeled sentences are added to the expanded set.

Self-training can be applied to any supervised learning algorithm.

We used support vector machines (SVM) and logistic regression

(LR) as learning algorithms, with their LIBLINEAR implementa-

tion.29 The regularization parameter C was set to 1 for both algo-

rithms using grid search. As confidence scores, we used posterior

probabilities produced by LR. SVM does not produce probabilities.

We obtained probabilities by fitting a standard sigmoid function

over scores produced by SVM.

The features we used for learning are lexical and positional fea-

tures:

• n-grams: Lemmatized unigrams and bigrams extracted from the

sentence.
• Top section name: Name of the top-level section in which the

sentence appears.
• Innermost section name: Name of the innermost subsection to

which the sentence belongs.
• Limitation paragraph: Binary feature that indicates whether the

sentence is in a paragraph that begins with a limitation-

introducing sentence.
• Limitation-strength paragraph: Binary feature indicating

whether the sentence is in a paragraph that begins with a limita-

tion- or strength-introducing sentence. The lemmas strength and

strong were used to identify strength-introducing sentences.

RESULTS

Manual Annotation
Table 1 shows the distribution of manually annotated instances in

the SEED and TEST sets.

Krippendorff’s a for inter-annotator agreement in the SEED and

the TEST sets were 0.774 and 0.789, respectively, bringing the over-

all agreement to 0.781, considered good agreement.

Limitation Recognition
We evaluated the recognition methods using precision, recall, and F1

score for the POS class and overall accuracy. We also calculated

95% confidence intervals. We present the main results in Table 2.

The baseline method, used to construct the corpus, yielded a reason-

able performance (86.4% accuracy). The rule-based method, mak-

ing several well-targeted enhancements to the baseline, achieved the

best accuracy (91.5%). Machine learning in fully supervised mode

was less successful (89.5% and 89.6% accuracy with LR and SVM,

respectively). Both LR and SVM classifiers yielded comparable pre-

cision to the rule-based method, while other metrics were signifi-

cantly higher for the rule-based method. We obtained higher recall

and F1 score with LR, while SVM yielded the highest precision.

Only the recall difference between the two algorithms was statisti-

cally significant. Self-training improved SVM performance slightly

in all metrics, whereas it led to a drop in precision and accuracy of

the LR classifier. We also used the results of the rule-based method

to leverage the UNLABELED set. Assigning the labels predicted by

the rule-based method to all instances in the UNLABELED set, we

obtained the best accuracy overall (91.9% with SVM).

While the dataset we constructed is more balanced than one

based on random sampling of sentences would be, it is still skewed

towards negative instances (Table 1). To test whether a more bal-

anced dataset could improve machine learning performance, we

undersampled negative examples from the SEED test for training

(Table 3). A slightly more balanced set (1: 3 ratio) yielded a minor

improvement over the entire SEED set (90.0% vs 89.6%). Moving

towards balanced data tended to lower precision while improving

recall.

We also experimented with varying the size of the training set.

We set aside approximately 20% of the entire annotated dataset

(457 instances) as the held out set and varied the number of training

examples from 10% of the rest of the dataset (225 instances) to

80% (1800 instances). Increasing the training data size improved

the results up to a point (55% in Table 3). Performance with the

more traditional 80-20 split was not the highest, though still higher

than that obtained with the split reported in Table 2 (shown in

italics in Table 3).

DISCUSSION

Our manual annotation confirmed ter Riet et al.’s6 findings regard-

ing prevalence of self-acknowledged limitation reporting in clinical

publications (further dataset characteristics are provided in the Sup-

plementary Material). In clinical publications, self-acknowledged

limitations are often highly localized, usually with its own dedicated

section or paragraph. Limitation sections/paragraphs are generally a

mix of limitation statements and other statements that downplay

these limitations or discuss steps taken to mitigate them. Our rules

captured this to some extent, achieving good accuracy (91.5%). A

common strategy used in scientific writing is to interweave the dis-

cussion of strengths and limitations of a study, which can present

challenges for automatic approaches.

Machine Learning Performance
The poor performance of machine learning approaches was unex-

pected. Other statistical learning algorithms we explored (e.g., Ran-

dom Forest) did not improve performance over those reported here.

We also incorporated more sophisticated features used in similar

work (e.g., more fine-grained position information, tense, modality)

and features based on our rules (e.g., presence of citations, itemized

lists, or mitigating sentences), but these had no positive effect either.

Various sampling approaches yielded slightly better results. It seems

clear that more data does not necessarily lead to better classification,

but the question of how much data is sufficient or what data compo-

Table 1. Distribution of manually annotated sentences. Each SEED

set sentence was annotated by four annotators. Each TEST set sen-

tence was annotated by two out of three annotators

Type SEED Pct. TEST Pct. TOTAL Pct.

Limitation (POS) 164 21.8% 303 20.1% 467 20.7%

Non-limitation (NEG) 588 78.2% 1202 79.9% 1790 79.3%

TOTAL 752 1505 2257
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sition is adequate remains, and is likely problem-dependent. To

measure the effect of features on classification performance, we con-

ducted an ablation study in which we excluded a distinct set of fea-

tures from consideration. The results (provided in Supplementary

Material) indicated that n-gram features were most effective, fol-

lowed by paragraph features. The effect of section features on per-

formance was smallest.

Overall, the effect of self-training was small, with a slight im-

provement in SVM accuracy and a slight degradation in LR accu-

racy. Using smaller initial training sets, self-training with LR also

led to a small performance improvement (2.4% accuracy improve-

ment with 150 initial training examples); however, this improve-

ment vanished with larger initial sets (full results provided in

Supplementary Material). Whether the improvement obtained with

self-training is worth the computational effort remains an open

question. With an initial set of 150 examples, self-training with LR

converged in 17 epochs and the expanded training set consisted of

5836 examples, for an accuracy improvement of 2.4%. On the other

hand, recall improved by 42% at the expense of a small reduction in

precision (1.5%). For our purposes, it seems more important not to

miss limitation sentences; thus, a small loss in precision with a sig-

nificant improvement in recall may justify the additional self-

training effort. In self-training, the models resulting from intermedi-

ary epochs sometimes yielded better performance on the test set;

therefore, it might be possible to design better stopping criteria. Us-

ing the labels predicted by the rule-based method for expansion

yielded best overall performance, indicating that the rules we de-

vised were robust. Furthermore, this rule-based expansion repre-

sents an alternative approach to labeling data at a low cost (with

some noise), assuming a simple rule-based approach can be devised

for the task under consideration. In addition to the threshold-based

approach presented here, we also experimented with another, more

sophisticated self-training approach (self-training with selection-by-

rejection30) which did not improve performance.

Error Analysis
Analyzing the errors made by the rule-based method, we found that

some of our assumptions were not reflected in some articles, leading

to false positive errors. For example, we assumed that in a “strength

and limitation” section, every sentence addressed a strength or a lim-

itation. In the following passage, which concludes such a section

(PMC5120917), no specific strength or limitation is discussed.

(2) In conclusion, the present study shows that women with UL are

at greater risk of prevalence of MetS regardless of confounding

factors. We suggest the biological mechanism responsible for UL

may involve IR aggravation, . . .

In some cases, we were unable to determine that the limitations

discussed were those of other studies. An example that led to several

false positive errors is given below (PMC5120938):

(3) Although several studies have demonstrated the beneficial effect

of portal hyperperfusion on hepatic regeneration in LDLT recipi-

ents, these studies have certain limitations. . .

Such statements can be distinguished by the presence of phrases

like these studies. Owing to the incremental nature of rule-based

methods, it would be feasible to add such a rule to improve perfor-

mance.

We missed some limitation sentences due to the presence of cita-

tions, which we interpreted as indicating a limitation of another

study. An example is given below (PMC5120923):

Table 2. Automatic limitation recognition results (LR¼ logistic regression, SVM¼ support vector machines). The 95% confidence intervals

are shown in square brackets. All numbers are percentages. For LR, self-training parameters used were aPOS¼0.7, aNEG¼0.95, bPOS¼0.9. For

SVM, they were aPOS¼0.7, aNEG¼0.8, bPOS¼0.9.

Method Precision Recall F1 score Accuracy

Baseline 62.6 [60.2-65.0] 81.2 [79.2-83.2] 70.7 [68.4-73.0] 86.4 [84.7-88.1]

Rules 75.8 [73.6-78.0] 84.8 [83.0-86.6] 80.0 [78.0-82.0] 91.5 [90.1-92.9]

Fully supervised learning with SEED for training

LR 73.0 [70.8-75.2] 75.9 [73.7-78.1] 74.4 [72.2-76.6] 89.5 [88.0-91.1]

SVM 76.6 [74.5-78.7] 69.3 [67.0-71.6] 72.8 [70.6-75.1] 89.6 [88.1-91.1]

Leveraging UNLABELED for training

Self-training (LR) 69.4 [67.2-71.8] 84.2 [82.4-86.0] 76.1 [74.0-78.3] 89.4 [87.8-91.0]

Self-training (SVM) 77.1 [75.0-79.2] 71.0 [68.7-73.3] 73.9 [71.7-76.1] 89.9 [88.4-91.4]

Rule-based expansion (LR) 77.4 [75.3-79.5] 81.2 [79.2-83.2] 79.2 [77.2-81.3] 91.4 [90.0-92.8]

Rule-based expansion (SVM) 77.8 [75.7-79.9] 83.5 [81.6-85.4] 80.6 [78.6-82.6] 91.9 [90.5-93.3]

Table 3. Automatic limitation recognition results with varying train-

ing data composition and size. The results shown are for the SVM

classifier. POS: NEG ratio of 1: 1 indicates a balanced dataset. The

SEED-TEST split we used to obtain the results in Table 2 is shown

in italics (33.3).

Method Precision Recall F1 score Accuracy

Undersampling NEG instances

POS: NEG Ratio

1: 1 62.4 89.4 73.5 87.0

1: 2 71.2 79.2 75.0 89.4

1: 3 75.7 73.9 74.8 90.0

Training split size as a proportion of the annotated dataset

(SEEDþTEST)

Training Pct.

10 74.5 67.6 70.9 86.9

20 75.8 69.4 72.5 87.5

30 78.6 71.3 74.8 88.6

33.3 77.8 71.3 74.4 88.4

40 78.0 72.2 75.0 88.6

55 81.8 75.0 78.3 90.2

70 83.5 70.4 76.4 89.7

80 83.3 69.4 75.8 89.5
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(4) First, the scale that was used in our study might be a crude mea-

sure, although it has been validated for evaluating occupational

stress [10].

A small number of limitations appeared outside a specific limita-

tion zone, while in other cases, our inability to identify the

limitation-introducing statement led to false negative errors. In the

example below (PMC5120933), the second sentence was not recog-

nized as a limitation.

(5) This study has intrinsic limitations and pitfalls in the diagnosis,

outcome, and patient population. . . . . For these reasons, the inci-

dence of AIHA may have been underestimated.

We also found that the triggers we used for itemized lists (first,

finally, etc.) can be expanded to include words like additionally and

moreover for improved accuracy.

Limitations of Our Study
Our study has several limitations. While we aimed for a fair sample

of articles, our dataset may not be representative of the clinical re-

search literature. Our sentence selection method was the same as

the baseline method, which might have introduced bias towards

“positive” sentences, although we tried to minimize this bias by

manual sentence annotation. We hand-crafted features for machine

learning based on our observations and intuitions; however, these

features may not be optimal. Exploring representation learning31

(i.e., automatic discovery of representations needed for feature de-

tection) could prove fruitful. Self-training is one of the simplest

semi-supervised learning methods. More sophisticated

approaches28 could yield more significant performance improve-

ments.

CONCLUSION

We presented an annotated dataset of self-acknowledged limitation

sentences and developed automatic methods to recognize such

statements. Our rule-based method, despite its relative simplicity,

outperformed the supervised machine learning methods. Self-

training yielded minor differences over fully supervised methods.

While the performance of the rule-based method may be somewhat

study-specific, it also suggests that such methods, often dismissed

as being difficult to develop and brittle, should not be assumed in-

ferior to the statistical learning methods. Depending on the prob-

lem, they can lead to more parsimonious models with greater

predictive power, using a fraction of the training data. The dataset

resulting from this study is publicly available (https://doi.org/

10.5061/dryad.06ds7) and the rule-based method is available upon

request.

There are several future directions for this study. Recognizing

limitation sentences is a useful first step toward recognition and clas-

sification of individual limitations stated in these sentences, which

could be used to generate a limitation profile of a publication. Such

work depends on the construction of a taxonomy of limitation types

(e.g., limitations of internal validity, such as measurement errors,

and those of external validity, such as selected study populations6)

We also plan to apply our methodology at a large scale to biomedi-

cal articles, which would benefit applications that focus on reporting

rigor and transparency.
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