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Abstract

Genome-wide association studies (GWAS) have transformed our understanding of testicular germ 

cell tumour (TGCT) susceptibility but much of the heritability remains unexplained. Here we 

report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 7,319 

TGCT cases and 23,082 controls. We identify 19 new TGCT risk loci, approximately doubling the 

number of known TGCT risk loci to 44. By performing in-situ Hi-C in TGCT cells, we provide 

evidence for a network of physical interactions between all 44 TGCT risk SNPs and candidate 

causal genes. Our findings reveal widespread disruption of developmental transcriptional 

regulators as a basis of TGCT susceptibility, consistent with failed primordial germ cell 

differentiation as an initiating step in oncogenesis1. Defective microtubule assembly and 

dysregulation of KIT-MAPK signalling also feature as recurrently disrupted pathways. Our 

findings support a polygenic model of risk and provide insight into the biological basis of TGCT.
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Testicular germ cell tumour (TGCT) is the most common cancer in men aged 18-45, with 

over 52,000 new cases diagnosed annually worldwide2. The development of TGCT is 

strongly influenced by inherited genetic factors, which contributes to nearly half of all 

disease risk3 and is reflected in the 4-to-8 fold increased risk shown in siblings of cases4–7. 

Our understanding of TGCT susceptibility has been transformed by recent genome-wide 

association studies (GWAS), which have so far identified 25 independent risk loci for 

TGCT8–18. Although projections indicate that additional risk variants for TGCT can be 

discovered by GWAS19, studies to date have been based on comparatively small sample 

sizes which have had limited power to detect common risk variants20.
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To gain a more comprehensive insight into TGCT aetiology we performed a new GWAS 

with substantially increased power, followed by a meta-analysis with existing GWAS and 

replication genotyping (totalling 7,319 cases/23,082 controls). Here we report both the 

discovery of 19 new TGCT susceptibility loci and refined risk estimates for the previously 

reported loci. In addition, we have investigated the gene regulatory mechanisms underlying 

the genetic associations observed at all 44 TGCT GWAS risk loci by performing in-situ 
chromosome conformation capture in TGCT cells (Hi-C) to characterize chromatin 

interactions between predisposition SNPs and target genes, integrating these data with a 

range of publicly available TGCT functional genomics data.

We conducted a new GWAS using the Oncoarray platform (3,206 UK TGCT cases/7,422 

UK controls), followed by a meta-analysis combining the two largest published TGCT 

GWAS datasets11,16 (986 UK cases/4,946 UK controls, 1,327 Scandinavian cases/6,687 

Scandinavian controls) (Fig. 1). To increase genomic resolution, we imputed >10 million 

SNPs using the 1000 Genomes Project as a reference panel. Quantile-Quantile (Q-Q) plots 

for SNPs with minor allele frequency (MAF) >5% post imputation did not show evidence of 

substantive over-dispersion (λ1000=1.03, Supplementary Fig. 1). We derived joint odds 

ratios (ORs) and 95% confidence intervals (CIs) under a fixed-effects model for each SNP 

with MAF >0.01. Finally we sought validation of 37 SNPs associated at P < 5.0 x 10-6, 

which did not map to known TGCT risk loci and displayed a consistent OR across all 

GWAS datasets, by genotyping an additional 1,801 TGCT cases and 4,027 controls from the 

UK. After meta-analysis of the three GWAS and replication series, we identified genome-

wide significant associations (i.e. P < 5 x 10-8) at 19 new loci (Table 1). We found no 

evidence for significant interactions between risk loci.

To the extent that they have been deciphered, many GWAS risk loci map to non-coding 

regions of the genome and influence gene regulation. Across the 44 independent TGCT risk 

loci (19 new and 25 previously reported), we confirmed a significant enrichment of 

enhancer/promoter associated histone marks, including H3K4me1, H3K4me3 and H3K9ac, 

using available ChIP-Seq data from the TGCT cell line NTERA2 (P<5.0x10-3) 

(Supplementary Table 1). Moreover this enrichment showed tissue specificity when 

compared to 41 other cell lines from the ENCODE21 project (Supplementary Fig. 2). These 

observations support the assertion that the TGCT predisposition loci influence risk through 

effects on cis-regulatory networks, and are involved in transcriptional initiation and 

enhancement. Since genomic spatial proximity and chromatin looping interactions are 

fundamental for regulation of gene expression we performed in situ capture Hi-C of 

promoters in NTERA2 cells to link risk loci to candidate target genes. We also sought to 

gain insight into the possible biological mechanisms for the associations by performing 

tissue-specific expression quantitative trait loci (eQTL) analysis for all risk SNP and target 

gene pairs (Supplementary Fig. 3, Supplementary Table 2). We analysed RNA-seq data from 

both normal testis (GTEx project22) and TGCT (TCGA), acknowledging that the latter may 

be affected by the issue of tumour purity, in addition to dysregulated gene expression that 

typifies cancer. Accepting this limitation and that further validation may be required, eQTL 

analysis was conducted in both datasets based on the established network of enhancer/

promoter variants, to maximise our ability to find statistically significant associations after 

correcting for multiple testing. We additionally annotated risk loci with variants predicted to 
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disrupt binding motifs of germ cell specific transcription factors (TF) (see methods). Finally, 

direct promoter variants and non-synonymous coding mutations for genes within the 44 risk 

loci were denoted (Table 2, Fig. 2).

Although preliminary and requiring functional validation, three candidate disease 

mechanisms emerge from analysis across the 44 loci. Firstly, 10 of the risk loci contain 

candidate genes linked to developmental transcriptional regulation, as evidenced by Hi-C 

looping interactions (at 8p23.1, 20q13.2), eQTL effects (at 4q22.3, 8p23.1), promoter 

variants (at 8q13.3, 9p24.3, 12q15, 17q12, 19p12) and coding variants (at 2p13.3, 16q24.2) 

(Table 2). Notably the new TGCT risk locus at 8p23.1 features a looping chromatin 

interaction from risk SNP rs17153755 to the promoter of GATA4, which is supported by an 

overlapping predicted strong enhancer region and a nominal eQTL effect (TCGA data, 

P=3.1 x 10-2) (Fig. 3a). The rs17153755 risk allele was associated with down-regulation of 

GATA4 expression, consistent with the hypothesised role of GATA4 as a tumor suppressor 

gene23,24. In addition the risk locus at 16q24.2 only contains a single gene ZFPM1 (alias 

FOG, Friend of GATA1), which encodes an essential regulator of GATA125, in which we 

noted a predicted damaging 26 missense polymorphism (rs3751673, 

NP_722520.2:p.Arg22Gly). The GATA family of transcription factors are expressed 

throughout postnatal testicular development27, and play a key role in ensuring correct tissue 

specification and differentiation28. We also observed promoter variants at 8q13.3 and 

9p24.3, providing support respectively for the role of PRDM14 and DMRT1 in TGCT 

oncogenesis, both of which encode important transcriptional regulators of germ cell 

specification and sex determination29–32. Of final note the new locus at 20q13.2 was 

characterized by a predicted disrupted POU5F1 binding motif, together with a looping Hi-C 

contact from risk SNP rs12481572 to the promoter of SALL4, a gene associated with the 

maintenance of pluripotency in embryonic stem cells33.

Secondly, candidate genes with roles related to microtubule/chromosomal assembly were 

implicated at five TGCT risk loci, supported by Hi-C looping interactions (at 1q22, 

15q25.2), eQTL effects (at 15q25.2, 17q22), promoter variants (at 1q22, 4q24) and coding 

variants (at 21q22.3). Notably at locus 17q22 we observed a promoter variant (rs302875) 

which displays a strong eQTL effect (GTEx data, P=4.9 x 10-7) on TEX14 (Testis-Expressed 

14), which encodes an important regulator of kinetochore-microtubule assembly in testicular 

germ cells14,34,35. At new risk locus 15q25.2 we identified a nominal eQTL association 

(rs2304416, TCGA data, P=3.2 x 10-2) and accompanying chromatin looping interaction 

with mitotic spindle assembly related gene WDR7336 (Fig. 3b). WDR73 encodes a protein 

with a crucial role in the regulation of microtubule organization during interphase37 and 

biallelic mutations cause Galloway-Mowat Syndrome, a human syndrome of nephrosis and 

neuronal dysmigration. Finally the functional analysis also highlighted microtubule 

assembly related genes PMF1, CENPE and PCNT 38–41 as candidates at 1q22, 4q24 and 

21q22.3 respectively.

Thirdly, the central role of KIT-MAPK signalling in TGCT oncogenesis was further 

supported at four loci, by Hi-C looping interactions (at 11q14.1, 15q22.31), eQTL effects (at 

6p21.31) and promoter variants (at 6p21.31, 11q14.1, 15q22.31). Recent tumour sequencing 

studies have established that KIT is the major somatic driver gene for TGCT42 and a 
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relationship between the previously identified risk SNP rs995030 (12q21) and KITLG 
expression has been demonstrated through allele-specific p53 binding by Zeron-Medina et 

al43. Here we report a new locus at 15q22.31, containing a variant within the promoter of 

MAP2K1 (Fig. 3c), which raises the prospect of further elucidating mechanisms of KIT-

MAPK signalling in driving TGCTs. MAP2K1 (alias MEK1) is downstream of c-Kit and 

MEK1 inhibition slows primordial germ cell growth in the presence of KIT ligand44. If 

MAP2K1 is confirmed as a causal gene at 15q22.31, the study of somatic KIT mutational 

status in patients carrying the risk allele at 15q22.31 should be highly informative. In 

addition, within the 11q14.1 risk locus, we identify a candidate promoter variant for GAB2, 
which encodes a docking protein for signal transduction to MAPK and PI3K pathways 

which interacts directly with KIT45. Finally in our analysis we identify both a candidate 

promoter variant and a nominal eQTL effect for BAK1 (6p21.31)(TCGA data, P=1.9 x 

10-2), which encodes a protein regulating apoptosis which binds with KIT40. While we have 

sought to decipher the functional basis of risk loci based on the cumulative weight of 

evidence across eQTL, Hi-C and ChIP-seq data, a limitation has been reliance on relatively 

small sample size for eQTL analysis. Access to larger eQTL datasets in testicular tissue are 

likely in the future to address this deficiency enabling a better definition of the causal basis 

of TGCT risk at each locus.

The 44 risk loci which have now been identified for TGCT collectively account for 34% of 

the (father-to-son) familial risk and hence have potential clinical utility for personalized risk 

profiling. To assess this potential, we constructed polygenic risk scores (PRS) for TGCT, 

considering the combined effect of all risk SNPs modelled under a log-normal relative risk 

distribution. Using this approach the men in the top 1% of genetic risk have a relative risk of 

14 which translates to a 7% lifetime risk of TGCT (Supplementary Fig. 4).

In summary, we have performed a new TGCT GWAS, identifying 19 new risk loci for 

TGCT, approximately doubling the number of previously reported SNPs. Using capture Hi-

C we have generated a chromatin interaction map for TGCT, providing direct physical 

interactions between non-coding risk SNPs and target gene promoters. Moreover integration 

of these data together with ChIP-seq chromatin profiling and RNA-seq eQTL analysis, 

accepting certain caveats, has allowed us to gain preliminary but unbiased tissue-specific 

insight into the biological basis of TGCT susceptibility. This analysis suggests a model of 

TGCT susceptibility based on transcriptional dysregulation, which is likely to contribute to 

the developmental arrest of primordial germ cells coupled with chromosomal instability 

through defective microtubule function and accompanied upregulation of KIT-MAPK 

signalling.

Methods

Sample description

TGCT cases were from the UK (n=5,992) and Scandinavia (n=1,327). The UK cases were 

ascertained from two studies (1) a UK study of familial testicular cancer and (2) a systematic 

collection of UK collection of TGCT cases. Case recruitment was via the UK Testicular 

Cancer Collaboration, a group of oncologists and surgeons treating TGCT in the UK 

(Supplementary note 1). The studies were co-ordinated at the Institute of Cancer Research 
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(ICR). Samples and information were obtained with full informed consent and Medical 

Research and Ethics Committee approval (MREC02/06/66 and 06/MRE06/41). Additional 

(n=1,327) case samples of Scandinavian origin were used from a previously published 

GWAS16.

Control samples for the primary GWAS were all taken from within the UK. Specifically 

2,976 cancer-free, male controls were recruited through two studies within the PRACTICAL 

Consortium (Supplementary note 2): (1) the UK Genetic Prostate Cancer Study (UKGPCS) 

(age <65), a study conducted through the Royal Marsden NHS Foundation Trust and (2) 

SEARCH (Study of Epidemiology & Risk Factors in Cancer), recruited via GP practices in 

East Anglia (2003-2009). 4,446 cancer-free female controls from across the UK were 

recruited via the Breast Cancer Association Consortium (BCAC). Controls from the UK 

previously published GWAS11 were from two sources within the UK: 2,482 controls were 

from the 1958 Birth Cohort (1958BC), and 2,587 controls were identified through the UK 

National Blood Service (NBS) and were genotyped as part of the Wellcome Trust Case 

Control Consortium. Additional (n=6,687) control samples of Scandinavian origin were 

used in the meta-analysis, and have been previously described16. Control samples for 

replication genotyping (n=4,027) were taken from two studies, the national study of 

colorectal cancer genetics (NSCCG)46 and GEnetic Lung CAncer Predisposition Study 

(GELCAPS)47. NSCCG and GELCAP controls were spouses of cancer patients with no 

personal history of cancer at time of ascertainment.

Primary GWAS

Genotyping was conducted using a custom Infinium OncoArray-500K BeadChip 

(Oncoarray) from Illumina (Illumina, San Diego, CA, USA), comprising a 250K SNP 

genome-wide backbone and 250K SNP custom content selected across multiple consortia 

within COGS (Collaborative Oncological Gene-environment Study). Oncoarray genotyping 

was conducted in accordance with the manufacturer’s recommendations by the Edinburgh 

Clinical Research Facility, Wellcome Trust CRF, Western General Hospital, Edinburgh EH4 

2XU.

Published GWAS

The UK and Scandinavian GWAS have been previously reported8,11,13. Briefly the UK 

GWAS comprised 986 cases genotyped on the Illumina HumanCNV370-Duo bead array 

(Ilumina, San Diego, CA, USA) and 4,946 controls genotyped on the Illumina Infinium 

1.2M array. We analysed data on a common set of 314,861 SNPs successfully genotyped by 

both arrays. The Scandinavian GWAS 16, comprised 1,326 cases and 6,687 controls 

genotyped using the Human OmniExpressExome-8v1 Illumina array.

Quality Control of GWAS

Oncoarray data was filtered as follows, we excluded individuals with low call rate (<95%), 

with abnormal autosomal heterozygosity or with >10% non-European ancestry (based on 

multi-dimensional scaling). We filtered out all SNPs with minor allele frequency <1%, a call 

rate of <95% in cases or controls or with a minor allele frequency of 1–5% and a call rate of 

<99%, and SNPs deviating from Hardy-Weinberg equilibrium (10-12 in controls and 10-5 in 
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cases). The final number of SNPs passing quality control filters was 371,504. Quality 

control (QC) procedures for the UK and Scandinavian GWAS have been previously 

described8,11,13,16.

Imputation

Genome-wide imputation was performed for all GWAS datasets. The 1000 genomes phase 1 

data (Sept-13 release) was used as a reference panel, with haplotypes pre-phased using 

SHAPEIT248. Imputation was performed using IMPUTE2 software49 and association 

between imputed genotype and TGCT was tested using SNPTEST 50, under a frequentist 

model of association. QC was performed on the imputed SNPs; excluding those with INFO 

score < 0.8 and MAF < 0.01.

Replication genotyping

Replication genotyping of the 37 SNPs was performed by allele-specific KASPar allele-

specific SNV primers51. Genotyping was conducted by LGC Limited, Unit 1-2 Trident 

Industrial Estate, Pindar Road, Hoddesdon, UK.

Statistical Analysis

Study sample size was chosen in order to achieve >50% power to detect common variants, 

defined as MAF > 5%, OR > 1.320. For Oncoarray data tests of association between 

imputed SNPs and TGCT was performed under a probabilistic dosage model in in 

SNPTESTv2.552, adjusting for principal components. Inflation in the test statistics was 

observed at only modest levels, λ1000=1.03. The inflation factor λ was based on the 90% 

least-significant SNPs53. The adequacy of the case-control matching and possibility of 

differential genotyping of cases and controls were formally evaluated using Q-Q plots of test 

statistics (Supplementary Fig. 1). Population ancestry structure for the UK and Scandinavian 

cohorts was assessed through visualisation of the first two principle components 

(Supplementary Fig. 5); stable ancestral clustering was observed (Supplementary Table 3).

Statistical analysis of previously reported GWAS was performed as previously 

described8,11,13,16,54. Meta-analyses were performed using the fixed-effects inverse-

variance method based on the β estimates and standard errors from each study using META 

v1.655. Cochran's Q-statistic to test for heterogeneity and the I2 statistic to quantify the 

proportion of the total variation due to heterogeneity were calculated56. For each new locus 

we examined evidence of departure from a log-additive (multiplicative) model, to assess any 

genotype specific effect. Using the Oncoarray data individual genotype data ORs were 

calculated for heterozygote (ORhet) and homozygote (ORhom) genotypes, which were 

compared to the per allele ORs. We tested for a difference in these 1d.f. and 2d.f. logistic 

regression models to assess for evidence of deviation (P<0.05) from a log-additive model. 

Using Oncoarray data we examined for statistical interaction between any of the 44 TGCT 

predisposition loci by evaluating the effect of adding an interaction term to the regression 

model, adjusted for stage, using a likelihood ratio test (using a significance threshold of P < 

2.58 x 10-5 to account for 1,936 tests). Regional plots were generated using visPIG 

software57 (Supplementary Fig. 6). Polygenic risk scores (PRS) were constructed using the 

methodology of Pharoah et al58, based on a log-normal distribution LN (µ, σ2) with mean µ 
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and variance σ2 (i.e. relative risk is normally distributed on a logarithmic scale). The 0.5% 

lifetime risk of TGCT risk was based on 2014 UK data59, multiplied by relative risk to give 

lifetime risk per percentile of the PRS. For calculation of the proportion of TGCT genetic 

risk explained by the 44 loci, a father-to-son relative risk of four was used.

Chromatin mark enrichment analysis

To examine enrichment in specific ChIP-seq tracks across risk loci we adapted the variant 

set enrichment method of Cowper-Sal lari et al60. Briefly, for each risk locus, a region of 

strong LD was defined (i.e. R2 > 0.8 and D’ > 0.8), and SNPs mapping to these regions were 

termed the associated variant set (AVS). Histone ChIP-seq uniform peak data was obtained 

from ENCODE21 for the NTERA2 cell line, and data was included for four histone marks. 

For each of these marks, the overlap of the SNPs in the AVS and the binding sites was 

determined to produce a mapping tally. A null distribution was produced by randomly 

selecting SNPs with the same LD structure as the risk associated SNPs, and the null 

mapping tally calculated. This process was repeated 10,000 times, and approximate P-values 

were calculated as the proportion of permutations where null mapping tally was greater or 

equal to the AVS mapping tally. An enrichment score was calculated by normalizing the 

tallies to the median of the null distribution. Thus the enrichment score is the number of 

standard deviations of the AVS mapping tally from the mean of the null distribution tallies. 

Tissue specificity was assessed by comparison of enrichment levels in NTERA2, compared 

to 41 other cell lines from ENCODE21, with analysis performed using the same method as 

above (Supplementary Fig. 2).

Promoter Hi-C

In situ Hi-C libraries were prepared as described by Rao et al.61 with the following 

modifications: (i) 25 million cells were fixed and processed; (ii) HindIII enzyme (NEB, 

Ipswich, MA, USA) was used and digestion was performed overnight; (iii) ligation was 

performed overnight at 16C; (iv) 3 µl of 15 µM annealed PE adaptors were ligated 

incubating 3 µl of T4 DNA ligase (NEB, Ipswich, MA, USA) for 2h at RT; (vi) 6 cycles of 

PCR were performed to amplify the libraries before capture. A Sure Select (Agilent, Santa 

Clara, CA, USA) custom promoter kit was used to perform capture with the same design as 

described by Misfud et al.62. For each capture reaction, 750 µg of Hi-C libraries were used. 

Capture was performed following the manufacture protocol and employing a custom reagent 

kit (Agilent, Santa Clara, CA, USA). Final PCR amplification was performed using 5 cycles 

to minimise PCR duplicates. 2x100bp sequencing was performed using Illumina HiSeq2000 

or 2500 technology (Illumina, San Diego, CA, USA). The HiCUP pipeline63 was used to 

process raw sequencing reads, map di-tag positions against the reference human genome and 

remove duplicate reads. The protocol was performed for two independent NTERA2 

biological replicates, with cells obtained from the laboratory of Prof. Janet Shipley (The 

Institute of Cancer Research, London) and their identity independently confirmed through 

STR typing at an external laboratory (Public Health England, Porton Down, UK). Cells were 

tested and found to be negative for mycoplasma contamination. Both Hi-C libraries 

achieving the following quality control thresholds: >80% reads uniquely aligning, >80% 

valid pair rate, >85% unique di-tag rate and >80% of interactions being cis (Supplementary 

Table 4). Statistically significant interactions were called using the CHiCAGO pipeline64, 
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with both biological replicates processed in parallel to obtain a unique list of reproducible 

NTERA2 contacts. Stability of results across replicates was also verified by processing each 

sample individually and comparing the significance scores of called interactions; strong 

correlation was observed between the replicates (r = 0.8, P < 5.0 x 10-10, Supplementary Fig. 

7). Interactions with a -log(weighted P-value) > 5 were considered significant. To avoid 

short-range proximity bias interactions of <40kb were excluded. The distribution of 

interaction distances closely matched the prior published dataset of Misfud et al.62 

(Supplementary Fig. 8). A Hi-C track plotting read pair counts per HindIII fragment has 

been added to region plot figures to demonstrate the underlying signal strength of significant 

Hi-C contacts.

3C Validation

3C was used to validate selected chromatin interactions detected by CHi-C (3p24.3, 4q24, 

11q14.1, 15q22.31, 15q25.2, 16q12.1, and 16q23.1) (Supplementary Fig. 9, Supplementary 

Table 5). Three replicates of in situ 3C libraries were prepared using NTERA2 cells. Cell 

pellets were crosslinked, digested with HindIII, and ligated. Libraries were purified by 

phenol-chloroform extraction.

For each loci one or more bacterial artificial chromosomes (BACs; Source BioScience, 

Nottingham, UK) were used as an internal standard (Supplementary Table 6). Clones were 

streaked and grown before extracting DNA using a QIAGEN Plasmid Maxi Kit (QIAGEN, 

Hilden, Germany) which was purified by phenol-chloroform extraction. In loci covered by 

more than one clone, equimolar solutions of clones were prepared. Randomly ligated 3C 

libraries were generated for each BAC or equimolar solution of BACs.

Unidirectional primer pairs were designed to amplify ligation junctions of the bait and other 

interacting HindIII fragment (promoter-element, P-E) and around the bait and a flanking 

control HindIII fragment in between the promoter and distal element (promoter-control, P-

C) using Primer365 (Supplementary Tables 7 and 8). Regions were amplified using both P-E 

and P-C primer pairs in BAC and NTERA2 libraries using a QIAGEN Multiplex PCR Kit 

(QIAGEN, Hilden, Germany). 5 ng and 100 ng of BAC and NTERA2 library template DNA, 

respectively, were amplified using the following procedure: initial 15 minute denaturation at 

95°C followed by 38 cycles of 94°C for 0.5 minutes, annealing temperature specific to 

primer pair for 1.5 minutes seconds, 72°C extension for 1.5 minutes, followed by a final 10 

minute extension at 72°C extension. 5 µl of each PCR reaction was visualised on 2% agarose 

gels stained with ethidium bromide. ImageJ66 was used to quantify intensities of PCR 

products and normalise for differential primer efficiency by comparing to equimolar BAC 

PCR products.

P-E fragments were Sanger sequenced in NTERA2 libraries to confirm fragments visualised 

on agarose gels as expected (Supplementary Fig. 10).

Chromatin state annotation

We used ChromHMM67 to infer chromatin states by integrating information on histone 

modifications and DNaseI hypersensitivity data to identify combinatorial and spatial patterns 

of epigenetic marks. Aligned next generation sequencing reads from ChIP-Seq and DNAse-
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Seq experiments on the NTERA2 cells were downloaded from ENCODE21. Read-shift 

parameters for ChIP-Seq data were calculated using PHANTOMPEAKQUALTOOLS. 

Genome-wide signal tracks were binarized (including input controls for ChIP-Seq data) and 

a set of learned models were generated using ChromHMM software67. The parameters of 

the highest scoring model were retained and model states were iteratively reduced down 

from 30 to 5 states. A 27-state model found to be stable and was subsequently used for 

segmenting the genome at 200bp resolution (Supplementary Fig. 11).

Expression quantitative trait locus analysis

We investigated for evidence of association between the SNPs at each locus and tissue 

specific changes in gene expression using two publically available resources: (i) RNAseq 

and Affymetrix 6.0 SNP data for 150 TGCT patients from The Cancer Genome Atlas and 

(ii) normal testicular tissue data from GTEx from 157 samples22. Associations between 

normalized RNA counts per-gene and genotype were quantified using R package ‘Matrix 

eQTL’. Box plots of all eQTL associations are presented in Supplementary Fig. 3 and the 

tissue in which the association was observed (TGCT or normal testis), along with any other 

tissues resulting in a positive association, are denoted in Supplementary Table 2. To reduce 

multiple testing, association tests were only performed between SNP and gene pairs where 

either: (i) a direct promoter variant was observed (as per column six of Table 2) or (ii) a Hi-

C contact to a gene promoter was observed (as per column nine of Table 2), together with 

functionally active chromatin (as per column seven of Table 2). The SNP used for testing at 

each locus was selected based on the closest available proxy (highest R2) to the functional 

variant (i.e. the promoter or Hi-C contact variant), rather than using the sentinel SNP with 

the strongest TGCT association. Finally, as a comparison all possible gene/variant eQTL 

combinations were also tested at each locus (ignoring the functional Hi-C/promoter/CHiP-

seq data), to provide a reference overview of all possible eQTL associations at each locus 

(Supplementary Table 9).

Transcription factor binding motif analysis

The impact of variants on regulatory motifs was assessed for a set of transcription factors 

(TF) associated with germ cell development. A germ cell specific TF set was utilized, rather 

than all TF globally, to provide increased specificity. An OMIM68 search-term-driven 

method was used to define the germ cell development TF set, using the following search 

terms: “germ cell” AND “development” AND “transcription factor” (n=46). The TF list was 

then intersected with predicted TF binding motifs based on a library of position weight 

matrices computed by Kheradpour and Kellis (2014)69 70. The intersected dataset contained 

motif position data for 10 TFs: DMRT1, GATA, KLF4, LHX8, NANOG, POU5F1, PRDM1, 

SOX2, SOX9, and CTCF. To validate the specificity of these motifs for TGCT we conducted 

variant set enrichment analysis, using the same method as detailed above (based on Cowper-

Sal lari et al60), which confirmed enrichment for disruption of these 10 motifs in the 44 

TGCT risk loci compared to the null distribution (Supplementary Table 10).

Integration of functional data

For the integrated functional annotation of risk loci LD blocks were defined as all SNPs in 

R2 > 0.8 with the sentinel SNP. Risk loci were then annotated with six types of functional 
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data: (i) presence of a Hi-C contact linking to a gene promoter, (ii) presence of an expression 

quantitative trait locus, (iii) presence of a ChIP-seq peak, (iv) presence of a disrupted 

transcription factor binding motif, (v) presence of a variant within a gene promoter 

boundary, with boundaries defined using the Ensembl regulatory build71, (vi) presence of a 

non-synonymous coding change. Candidate causal genes were then assigned to TGCT risk 

loci using the target genes implicated in annotation tracks (i), (ii), (v) and (vi). Where the 

data supported multiple gene candidates, the gene with the highest number of individual 

functional data points was assigned to be the candidate. Where multiple genes have the same 

number of data points all genes are listed. Competing mechanisms for the same gene (e.g. 

both coding and promoter variants) were allowed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study design.
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Figure 2. 
Circos plot of integrated functional analysis for all 44 TGCT risk loci. Inner-most ring 

represents the presence of a Hi-C contact in the NTERA2 cell line, the next four rings 

(H3k9me3, H3k9ac, H3k4me1, H3k4me3) are narrow-peak histone ChIP-seq tracks for 

NTERA2, the sixth ring represents -log P values of TGCT risk association from the 

Oncoarray GWAS data with green line denoting genome-wide significance and the seventh 

ring (outer-most) is the functional classification of candidate causal genes (green= 

transctiptional regulation, blue= microtubule/chromosomal assembly, purple= KIT-MAPK), 
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the size of bar represents the strength of functional data. Candidate causal genes are also 

annotated around the outside of the plot.
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Figure 3. 
A-C – Regional plots of three new TGCT loci at A) 8p23.1, B) 15q25.2 and C) 15q22.31. 

Shown by triangles are the −log10 association P values of genotyped SNPs, based on 

Oncoarray data. Shown by circles are imputed SNPs at each locus. The intensity of red 

shading indicates the strength of LD with the sentinel SNP (labelled). Also shown are the 

SNP build 37 coordinates in mega-bases (Mb), recombination rates in centi-morgans (cM) 

per mega-base (Mb) (in light blue) and the genes in the region (in dark blue). Below the 

gene transcripts are Hi-C next generation sequencing read pair counts (intervals are 
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determined by HindIII cut points, with average 3Kb resolution), where gaps represent bait 

locations, which are plotted along with significant Hi-C interactions, where colour and depth 

of ribbons represent the score. Below the axis is a zoomed-in section displaying the 

surrounding genes for each SNP, with the sentinel SNP marked with a red triangle and any 

significant regulatory markers denoted with a blue circle. Finally the predicted chromHMM 

states are shown (coloured as per the legend) along with a zoomed-in arc depiction of the 

same Hi-C contact(s).
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Table 1

Summary of genotyping results for all genome-wide TGCT risk SNPs (n=44). New loci (n=19) discovered 

through this study are marked in bold.

SNP1 Chr. Pos. (b37) Alleles2 RAF3

Oncoarray Discovery Meta Replication Combined-Meta

OR4 
(95% CI)

Ptrend5 OR (95% 
CI)

Ptrend OR (95% 
CI)

Ptrend P meta6 (I2)7

rs4240895 1 9713386 C/T 0.39 1.13 
(1.07-1.19)

7.4x10-05 1.14 
(1.09-1.19)

1.6x10-07 1.24 
(1.16-1.32)

1.7X10-07 5.6X10-13 47

rs2072499 1 156169610 A/G 0.36 1.14 
(1.08-1.2)

2.1x10-05 1.18 
(1.13-1.23)

1.9x10-10 - - 1.9X10-10 45

rs3790672 1 165873392 T/C 0.29 1.17 
(1.10-1.23)

3.2x10-06 1.20 
(1.14-1.25)

4.5x10-11 - - 4.5X10-11 16

rs7581030 2 71572455 C/T 0.24 1.15 
(1.08-1.22)

5.4x10-05 1.17 
(1.12-1.23)

7.6x10-09 1.17 
(1.08-1.26)

6.2X10-04 1.9X10-11 0

rs10510452 3 16625048 A/G 0.70 1.15 
(1.09-1.21)

1.7x10-05 1.18 
(1.13-1.24)

6.7x10-10 - - 6.7X10-10 41

rs11705932 3 141818850 C/T 0.80 1.19 
(1.11-1.26)

6.8x10-06 1.18 
(1.11-1.24)

2.9x10-07 - - 2.9X10-07 39

rs1510272 3 156300724 C/T 0.75 1.19 
(1.13-1.26)

3.9x10-07 1.23 
(1.17-1.29)

1.4x10-12 - - 1.4X10-12 32

rs6821144 4 76520651 G/A 0.89 1.18 
(1.08-1.28)

7.9x10-04 1.22 
(1.14-1.30)

1.5x10-06 1.35 
(1.23-1.47)

9.8X10-07 1.8X10-11 15

rs17021463 4 95224812 T/G 0.43 1.14 
(1.08-1.2)

7.0x10-06 1.14 
(1.10-1.19)

3.6x10-08 - - 3.6X10-08 0

rs2720460 4 104054686 A/G 0.63 1.25 
(1.18-1.31)

1.7x10-12 1.27 
(1.21-1.32)

4.8x10-20 - - 4.8X10-20 9

rs4862848 4 188921440 A/G 0.35 1.17 
(1.10-1.25)

1.5x10-05 1.21 
(1.16-1.27)

4.5x10-12 1.10 
(1.02-1.18)

2.4X10-02 2.4X10-12 61

rs2736100 5 1286516 C/A 0.51 1.24 
(1.18-1.3)

5.8x10-13 1.28 
(1.23-1.33)

2.3x10-24 - - 2.3X10-24 33

rs3805663 5 134342720 C/A 0.58 1.09 
(1.03-1.15)

3.4x10-03 1.13 
(1.08-1.18)

4.1x10-07 - - 4.1X10-07 49

rs4624820 5 141681788 G/A 0.56 1.46 
(1.4-1.52)

4.0x10-36 1.47 
(1.43-1.52)

2.7x10-57 - - 2.7X10-57 0

rs210138 6 33542538 A/G 0.21 1.42 
(1.35-1.49)

8.5x10-22 1.48 
(1.42-1.54)

2.9x10-37 - - 2.9X10-37 70

rs11155671 6 149972132 G/A 0.66 1.15 
(1.09-1.21)

1.1x10-05 1.14 
(1.09-1.20)

3.4x10-07 1.14 
(1.05-1.22)

3.3X10-03 3.9X10-09 0

rs12699477 7 1968953 T/C 0.39 1.22 
(1.16-1.28)

1.9x10-10 1.2 
(1.15-1.25)

9.9x10-13 - - 9.9X10-13 0

rs17689040 7 40920313 C/G 0.43 1.16 
(1.10-1.22)

1.2x10-06 1.15 
(1.10-1.20)

3.4x10-08 1.17 
(1.09-1.25)

1.2X10-04 1.9X10-11 0

rs17153755 8 11611500 C/G 0.65 1.20 
(1.14-1.26)

1.0x10-08 1.16 
(1.11-1.21)

1.5x10-08 1.05 
(0.97-1.14)

2.8X10-01 4.5X10-08 69

rs7010162 8 70976505 C/T 0.62 1.13 
(1.07-1.19)

5.9x10-05 1.15 
(1.10-1.20)

3.4x10-08 - - 3.4X10-08 0

rs7040024 9 845516 A/C 0.77 1.48 
(1.41-1.55)

1.6x10-27 1.53 
(1.47-1.59)

1.4x10-45 - - 1.4X10-45 42

rs7107174 11 77996403 C/A 0.22 1.15 
(1.08-1.22)

1.1x10-04 1.15 
(1.09-1.20)

1.8x10-06 - - 1.8X10-06 0

rs648090 11 125071163 A/G 0.71 1.18 
(1.11-1.24)

6.2x10-07 1.15 
(1.10-1.20)

9.6x10-08 1.24 
(1.15-1.33)

2.4X10-06 2.9X10-12 24
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SNP1 Chr. Pos. (b37) Alleles2 RAF3

Oncoarray Discovery Meta Replication Combined-Meta

OR4 
(95% CI)

Ptrend5 OR (95% 
CI)

Ptrend OR (95% 
CI)

Ptrend P meta6 (I2)7

rs2900333 12 14653867 C/T 0.63 1.17 
(1.11-1.23)

3.2x10-07 1.2 
(1.15-1.25)

8.0x10-13 - - 8.0X10-13 16

rs4931000 12 32141495 A/G 0.22 1.17 
(1.09-1.24)

2.2x10-05 1.17 
(1.11-1.22)

8.0x10-08 1.23 
(1.13-1.32)

2.3X10-05 1.2X10-11 0

rs7315956 12 70563865 A/G 0.34 1.13 
(1.07-1.19)

1.5x10-04 1.14 
(1.09-1.19)

4.8x10-07 1.16 
(1.08-1.25)

2.9X10-04 6.5X10-10 0

rs3782181 12 88953561 C/A 0.81 2.07 
(1.99-2.14)

5.9x10-81 2.07 
(2.01-2.13)

1.4x10-129 - - 1.4X10-129 40

rs1009647 14 55880047 G/A 0.73 1.13 
(1.06-1.19)

3.5x10-04 1.15 
(1.10-1.21)

5.0x10-07 1.12 
(1.03-1.21)

1.7X10-02 3.0X10-08 0

rs11071896 15 66821250 A/G 0.26 1.17 
(1.10-1.23)

5.0x10-06 1.19 
(1.13-1.25)

9.6x10-10 1.18 
(1.09-1.27)

2.1X10-04 8.7X10-13 0

rs56046484 15 85605427 G/T 0.80 1.17 
(1.10-1.24)

3.1x10-05 1.18 
(1.11-1.24)

2.4x10-07 1.11 
(1.01-1.21)

3.8X10-02 4.2X10-08 0

rs4561483 16 11920037 A/G 0.35 1.11 
(1.05-1.18)

5.7x10-04 1.14 
(1.09-1.19)

2.6x10-07 - - 2.6X10-07 0

rs7404843 16 15530708 T/G 0.11 1.21 
(1.11-1.3)

6.8x10-05 1.27 
(1.20-1.35)

1.7x10-11 1.17 
(1.05-1.29)

9.8X10-03 1.2X10-12 44

rs8046148 16 50142944 A/G 0.79 1.10 
(1.03-1.17)

8.6x10-03 1.16 
(1.1-1.21)

5.2x10-07 - - 5.2X10-07 59

rs4888262 16 74670458 C/T 0.50 1.17 
(1.11-1.23)

2.0x10-07 1.18 
(1.13-1.23)

1.2x10-11 - - 1.2X10-11 0

rs55637647 16 88549264 C/G 0.38 1.15 
(1.09-1.22)

6.9x10-06 1.17 
(1.12-1.22)

2.8x10-09 - - 2.8X10-09 0

rs7501939 17 36101156 T/C 0.61 1.22 
(1.16-1.28)

4.4x10-11 1.26 
(1.21-1.3)

1.5x10-20 - - 1.5X10-20 53

rs9905704 17 56632543 G/T 0.68 1.27 
(1.20-1.33)

2.2x10-13 1.27 
(1.22-1.32)

3.1x10-20 - - 3.1X10-20 0

rs9966612 18 649311 A/G 0.32 1.15 
(1.08-1.23)

1.1x10-04 1.17 
(1.11-1.22)

2.4x10-08 1.13 
(1.05-1.22)

5.1X10-03 5.1X10-10 0

rs2195987 19 24149545 C/T 0.83 1.19 
(1.08-1.29)

1.1x10-03 1.22 
(1.15-1.29)

8.3x10-09 - - 8.3X10-09 0

rs2241024 19 28257393 G/A 0.80 1.24 
(1.17-1.31)

4.4x10-09 1.23 
(1.16-1.29)

1.3x10-10 1.32 
(1.22-1.42)

6.3X10-08 9.5X10-17 29

rs4599029 19 54284689 G/T 0.74 1.18 
(1.12-1.25)

7.7x10-07 1.16 
(1.11-1.22)

5.3x10-08 1.10 
(1.01-1.19)

3.8X10-02 9.9X10-09 22

rs12481572 20 50708054 A/T 0.20 1.21 
(1.13-1.28)

7.6x10-07 1.20 
(1.14-1.27)

1.1x10-08 1.23 
(1.13-1.33)

3.7X10-05 2.0X10-12 0

rs2839186 21 47690068 C/T 0.48 1.17 
(1.11-1.23)

1.5x10-07 1.18 
(1.14-1.23)

6.7x10-12 - - 6.7X10-12 0

rs739525 22 21332441 T/C 0.53 1.13 
(1.06-1.19)

1.8x10-04 1.14 
(1.09-1.19)

2.0x10-07 1.10 
(1.02-1.18)

2.2X10-02 1.9X10-08 0

1
dbSNP rs number

2
Alleles

3
Risk Allele Frequency

4
OR: per allele odds ratio

5
Ptrend: P-value for trend, via logistic regression
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6
Pmeta : P-value for fixed effects meta-analysis

7
I2 heterogeneity index (0-100)
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