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Abstract: 
Biomarker identification by differentially expressed genes (DEGs) using RNA-sequencing technology is an important task to 
characterize the transcriptomics data. This is possible with the advancement of next-generation sequencing technology (NGS). There 
are a number of statistical techniques to identify DEGs from high-dimensional RNA-seq count data with different groups or conditions 
such as edgeR, SAMSeq, voom-limma, etc. However, these methods produce high false positives and low accuracy in presence of 
outliers. We describe a robust t-statistic method to overcome these drawbacks using both simulated and real RNA-seq datasets. The 
model performance with 61.2%, 35.2%, 21.6%, 6.9%, 74.5%, 78.4%, 93.1%, 35.2% sensitivity, specificity, MER, FDR, AUC, ACC, PPV, 
and NPV, respectively at 20% outliers is reported. We identified 409 DE genes with p-values<0.05 using robust t-test in HIV viremic vs 
avirmeic state real dataset. There are 28 up-regulated genes and 381 down-regulated genes estimated by log2 fold change (FC) 
approach at threshold value 1.5. The up-regulated genes form three clusters and it is found that 11 genes are highly associated in HIV-
1/AIDS. Protein-protein interaction (PPI) of up-regulated genes using STRING database found 21 genes with strong association among 
themselves. Thus, the identification of potential biomarkers from RNA-seq dataset using a robust t-statistical model is demonstrated.  
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Background: 
Transcriptomics is an evolving and continually growing field of 
Bioinformatics for biomarker discovery [1]. RNA-sequencing 
(RNA-seq) technology is an important branch of transcriptomics 
for identification of novel genes. This technique helps to identify 
the differentially expressed genes or transcripts (DEGs) 
associated to trait of interest from the voluminous transcriptomic 
data. Previously microarray technology had been used by the 
biological and biomedical researchers for discovering the 
candidate genes and differentially expressed markers between 
two or more groups of interest. In recent years, huge amount of 
transcriptomic data can be generated using high-throughput 
next-generation sequencing (NGS) technology of cDNA (RNA-
seq), which ultimately yield RNA-seq count data for subsequent 
analysis [6]. Additionally, this approach includes the 
identification of disease biomarkers that may be important in the 
diagnosis of the different types and subtypes of diseases, with 
several implications in terms of prognosis and therapy [2]. This 

sequence-based technology has created significant scope of 
studying the transcriptome by enabling a wide range of novel 
applications, including detection of alternative splicing isoforms 
[3-4], detecting novel genes, gene promoters, isoforms, and allele-
specific expression [5]. RNA-seq uses NGS technology to 
sequence cDNA that has been derived from an RNA sample, and 
hence generates millions of short reads [6]. These reads are then 
usually mapped to a reference genome and the number of reads 
mapping within a genomic feature of interest (such as a gene or 
an exon) is used as a measure of the abundance of the feature in 
the analyzed sample [6]. One important objective for RNA-seq is 
to identify DEGs under different conditions. Researchers 
typically target for differential expression analysis called “count 
matrix”, where each row represents the gene (or exons or 
genomic loci), each column represents the sample, and each cell 
indicates the number of reads mapped to the gene in the sample 
[7]. A basic research problem in many RNA-seq analyses is the 
discovery of DEGs between different sample groups (e.g. healthy 
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and disease). RNA-seq analysis has some benefits over 
microarrays for DE analysis including wide dynamic range and a 
lower background level, and the chance to detect and quantify 
the expression of previously unknown transcripts [8-10]. To deal 
with the increasing popularity of RNA-seq technology, several 
statistical tools have been developed so far by the researchers and 
these are being continuously updated for robust data analysis. 
Most of the computational methods such as edgeR [11] are based 
on negative binomial models. SAMseq [12] is a non-parametric 
method. Gene-level read counts transformation-based method is 
voom-limma [14]. Still it is important to keep in mind that even 
these methods are based on an assumption that most genes are 
equally expressed in the samples, and that the differentially 
expressed genes are divided more or less equally between up- 
and down-regulation [2]. For detection of DE genes edgeR, 
SAMSeq and voom-limma are the popular methods. However 
these methods are sensitive to outliers. In this study we propose a 
new method robust t-statistic using minimum β-divergence 
method [15].  
 
Methodology:  
RNA-seq count data often produce noisy data called outliers 
during data generating steps. Presence of such outliers in the 
particular dataset will surely provide misleading results in the 
downstream analysis. There is however a number of statistical 
tools for identification of over-expressed and under-expressed 
genes, but they are sensitive to outliers in some cases. In this 
investigation we considered edgeR, SAMSeq and voom-limma 

the proposed procedures for performance analysis with the help 
of synthetic and real dataset (Figure 8). 
 
Robust t-statistic for Biomarker Detection (Proposed): 
The two sample-sample t-test statistic depends on the mean (µ) 
and variance (ϭ2) of the samples. The classical mean and variance 
are very much sensitive to outliers may mislead detection of 
DEGs. So, we used robust mean and variance with the minimum 
β-divergence method [15] instead of classical estimators. For 
robust t-statistic the classical estimators are replaced by the β-
estimators. The proposed method tolerate outliers using the β-
weight function, it is also used as a weight for mean and variance 
estimators [15]. It is an iterative method for estimating mean and 
variance estimators for calculating t-statistic values. The 
performance of the proposed method depends on the tuning 
parameter β, the optimum value for β=0.2 was selected using 
cross validation method [15].  

 
Data Transformation: 
To transform the RNA-Seq expression data we used the z- score 
transformation for making the data belong normalized data 
family. In this study Z normalized score values were used for the 
normalization with the mean (g) and the standard deviation SD 
(gi) of the ith genes. The normalized data is used to detect the DE 
genes using robust t-statistic. The fold change (FC) log2 approach 
used for selection of up-regulated and down-regulated genes 
with 1.5 threshold value [16]. The steps for identifying up and 
down regulated genes from gene expression data (GED) are 
shown (Figure 1).

 

 
Figure 1: Block diagram for proposed method 
 
Performance Evaluation: 
We need statistical indices/measures to estimate the performance 
of different DE gene identification methods for binary 
classification tests such as healthy and disease. Outcomes are 
always divided into four categories for binary classification such 
as (i) healthy samples are correctly predicted as healthy termed 
as true positive (TP), (ii) healthy sample are incorrectly predicted 
as disease termed as false negative (FN), (iii) disease samples are 

correctly predicted as disease termed as true negative (TN) and 
(iv) disease samples are incorrectly predicted as healthy which is 
called false positive (FP) in Table 1. We then calculate the 
following performance indices/measures using the following 
confusion matrix as follows: True Positive Rate (TPR) or 
Sensitivity = nTP/(nTP+nFN), True Negative Rate (TNR) or 
Specificity = nTN/(nTN+nFP), False Positive Rate (FPR) = 
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nFP/(nFP+nTN), False Negative Rate (FNR) = nFN/(nFN+nTP) 
and False Discovery Rate (FDR)= nFP/(nTP+nFP). 

 
Results and Discussions:  
All methods were run on the same dataset and evaluated the 
statistical performance indices/measures such as ROC, AUC, 
pAUC, MER and FDR. The performance measure AUC was 
computed for each of the statistical methods using open source R 
package ROC. All R packages are freely available in the 
comprehensive R archive network (https://www.cran.r-
project.org) and bioconductor (https://www.bioconductor.org). 
 
Synthetic Study: 
The synthetic counts data were generated for each gene from a 
Negative Binomial distribution. It controls the settings and the 
true differential expression status of each gene. We generated 
gene expression profiles of G=1000 genes of k=2 groups (healthy 
and disease) each with n1=n2=3 samples. Among the expressions 
of 1000 genes, we divided these expressions into two groups 
(expressions of important genes or DE genes, 100 and expressions 
of the unimportant genes or EE genes, 900). In order to determine 
the performance of the robust t-test in comparison of the three 
well-known DE genes identification methods (edgeR, SAMSeq, 
voom+limma) of RNA-Seq data, we investigated the performance 
of all fours methods in presence of outliers using the simulated 
dataset (G=1000) where 10% of the genes are DE genes. A method 
is said to be comparatively good performer if it yields larger 
values of TPR, TNR, AUC and small value of FDR. To 
demonstrate the effect in presence of outliers for performance 
evaluation of these DE genes identification methods, we 
randomly introduce 5%, 10%, 15% and 20% genes are corrupted 
by outliers.  (Figure 2a-2d) shows the boxplot of AUC values of 
the four methods estimated from the simulated data at different 
outlier levels. It showed that the AUC of our proposed method is 
high. It is observed from the Table 2 that the AUC values of 
proposed method are 0.75, 0.71, 0.74 and 0.75 for 5%, 10%, 15% 
and 20% respectively. The proposed method provided the low 
FDR and high ROC with outliers (Figure 3 and 4). Identification 
of DEGs is vital issues for personalised medicine and drug 
discovery. From Table 2 the proposed method shows low MER 
(misclassification error rate) than the edgeR, SAMSeq and voom-
limma methods.  
 
Real RNA-Seq Data Analysis: 
The RNA-Seq data GSE5220 was collected from the GEO 
database 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE522
0) [17]. It contains 16 HIV infected patients (8 patients are pre and 
8 are post HAART cessation) and 22283 genes. It is observed that 
the gene expression changes in monocytes as a result of rebound 
of HIV viral load. From the HIV viremic vs avirmeic state real 
dataset we identified 409 DE genes at 5% level of significance 
with p-values<0.05 using robust t-test. There are 28 up- regulated 
genes and 381 down regulated genes by log2 fold change (FC) 
approach with threshold value 1.5 from the RNA-Seq count data 
[16]. The molecular networks of the selected up-regulated genes 
are visualized using open source bioinformatics software 
platform Cytoscape (version 3.6.0) [18], the gene-disease network 
shows the interaction among genes and HIV disease. Figure 5a 
showed that there are 11 up-regulated genes (MDFIC, CDK14, 
SRP72, HGF, CHRDL1, MLX, AKR7A3, THAP11, DUSP3, ELL2, 
and FGFR1), which are highly correlated that are more 
interaction is existed with the HIV than the other genes. Figure 
5b showed the hierarchical clustering of 28 up-regulated genes, 
which formed 3 different gene major functional groups. The 
group-I (DUSP3, INSR, PRPF31, SKAP2, MDFIC, CCL2, 
SIOOA14, ZNF35, THAP11, CHRDL1) genes are significant for 
the biological process in the cell, group-II genes (GCM1, FGFR1, 
GLT8D2, CDK14, G PS1, MLX, ELL2, STAP2, RNF39, PGPEP1, 
HGF) are insulin receptor complex, COP9 signalosome and 
insulin receptor complex and group-III genes (AKR74A3, PEBPI, 
TPP1, SNRK, CAPN11, SRP72, C18orf25) are proteosome 
component (PCI) domain composition. From the Figure 5c the 
381 down-regulated genes are detected by the proposed method. 
There are 10 genes (IGK, PRKAB2, SIGLEC1, APBB2, PRKCA, 
SPTBN1, PART1, ZNF764, TBC1D5, and RNASEH2B), which are 
highly correlated with the HIV disease and possess strong 
interaction with HIV disease. The protein-protein interaction of 
up-regulated genes analysis using STRING (version 10.5) 
database [19] produced three functional clustering groups 
(Figure 6a-6b) using k-means clustering algorithm. There are 21 
genes showed the strong association among them (Figure 6a) and 
20 genes are structured proteins. The MDFIC gene is the 
unstructured protein and it helps to make strong bond among 
other genes. The PPI network among 381 down-regulated genes 
is strong which forms three functional groups using k-means 
clustering algorithm (Figure 6c-6d). There are 45 unstructured 
genes whose protein structures are not available. The functional 
annotation of up-regulated and down-regulated genes is shown 
in the Figure 7a and Figure 7b respectively. The details of their 
cellular component functional annotations are shown in Table 3.  

 
 
Table 1: Confusion matrix or error matrix 

Actual class Predicted class 
DE EE 

DE True Positive (TP) False Positive (FP) type I error 
EE  False Negative (FN) (type II error) True Negative (TN) 
DE: Differentially Expressed; EE: Equally Expressed; Area under the receiving operating characteristics (ROC) curve, AUC = 
(nTPR+nTNR)/2, Misclassification error rate (MER) = (nFP+nFN)/ (nTP+nTN+nFP+nFN). 
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Table 2: Performance Investigation for synthetic dataset 
Performance 
Evaluation 

edgeR SAMSeq Voom.limma t-test Proposed 

5% outliers 
Sensitivity 0.360 0.015 0.493 0.046 0.546 
Specificity 0.761 0.984 0.325  0.046 0.314 

MER 0.774 0.890 0.691 0.867 0.537 
FDR 0.269 0.821 0.256 0.216 0.085 
AUC 0.664 0.515 0.694 0.320 0.744 

pAUC 0.057 0.009 0.059 0.006 0.024 
ACC 0.226 0.11 0.309 0.133 0.463 
PPV 0.731 0.179 0.744 0.784 0.915 
NPV 0.761 0.984 0.325 0.046 0.314 

10% outliers  
Sensitivity 0.372 0.019  0.391  0.046  0.476 
Specificity 0.693  0.982 0.346 0.046 0.270 

MER 0.812 0.884 0.796 0.859 0.685 
FDR 0.280 0.314 0.276 0.176 0.066 
AUC 0.581 0.515 0.570 0.342 0.710 

pAUC 0.048 0.010 0.036 0.006 0.024 
ACC 0.188 0.116 0.204 0.141 0.315 
PPV 0.72 0.686 0.724 0.824 0.934 
NPV 0.693 0.982 0.346 0.046 0.27 

15% outliers  
Sensitivity 0.364  0.018  0.421  0.048  0.640  
Specificity 0.764 0.985 0.291 0.048 0.342 

MER 0.445 0.889 0.470 0.869 0.227 
FDR 0.014 0.732 0.0323 0.213 0.075 
AUC 0.634 0.516 0.642 0.337 0.748 

pAUC 0.055 0.010 0.047 0.007 0.029 
ACC 0.555 0.111 0.53 0.131 0.773 
PPV 0.986 0.268 0.9677 0.787 0.925 
NPV 0.764 0.985 0.291 0.048 0.342 

20% outliers  
Sensitivity 0.405 0.017 0.439 0.046  0.612 
Specificity 0.812 0.979 0.247 0.046 0.352 

MER 0.702 0.885 0.652 0.878 0.216 
FDR 0.058 0.217 0.055 0.366 0.069 
AUC 0.742 0.510 0.724 0.333 0.745 

pAUC 0.064 0.010 0.053 0.006 0.022 
ACC 0.298 0.115 0.348 0.122 0.784 
PPV 0.942 0.783 0.945 0.634 0.931 
NPV 0.812 0.979 0.247 0.046 0.352 

 
Table 3: Functional annotation of down-regulated genes 

Cellular Component (GO) 
Pathway ID Pathway Description Count in gene set False discovery rate (FDR) 
GO:0044424 Intracellular part 135 8.95e-05 
GO:0005622 Intracellular 135 0.000353 
GO:0043226 Organelle 128 0.000572 
GO:0043227 Membrane-bounded organelle 122 0.00147 
GO:0043229 Intracellular organelle 119 0.0018 
GO:0043231 Intracellular membrane-bounded organelle 112 0.00282 
GO:0005737 Cytoplasm 107 0.00832 
GO:0014731 spectrin-associated cytoskeleton 3 0.00832 
GO:0008091 spectrin 3 0.00984 
GO:0043005 Neuron projection 19 0.0146 
GO:0005623 Cell 136 0.023 
GO:0043233 Organelle lumen 54 0.023 
GO:0044464 Cell part 135 0.0298 
GO:0097458 Neuron part 21 0.0307 
GO:0000974 Prp19 complex 2 0.0439 
GO:0032437 cuticular plate 2 0.0439 
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Figure 2: Performance investigation using the boxplot of AUC values of the four methods (edgeR, SAMSeq, voom-limma and 
proposed) for sample sizes (n1=n2=3). (a) In presence of 5% outliers (b) In presence of 10% outliers (c) In presence of 15% outliers (d) In 
presence of 20% outliers.	  
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Figure 3: Performance test using FDR plot of the four methods (edgeR, SAMSeq, voom-limma and proposed) for sample sizes 
(n1=n2=3). (a) In presence of 5% outliers (b) In presence of 10% outliers (c) In presence of 15% outliers (d) In presence of 20% outliers	  
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Figure 4: Performance analysis using the ROC of the four methods (edgeR, SAMSeq, voom-limma and proposed). (a) In presence of 5% 
outliers (b) In presence of 10% outliers (c) In presence of 15% outliers (d) In presence of 20% outliers.	  
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Figure 5: (A) Up-regulated gene-disease network (B) Hierarchical clustering of up-regulated genes (C) Gene-disease network of down-
regulated genes.	  
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Figure 6: (A) Up-regulated gene protein-protein interaction (PPI) network (B) K-mean clustering of up-regulated genes (C) Down-
regulated gene PPI networks and (D) K-means clustering of down-regulated genes of HIV disease.	  
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Figure 7: Functional annotation of (A) Up-regulated DE genes (B) Down-regulated genes of real RNA-Seq HIV disease dataset.	  
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Figure 8: Full work flow of the study paper	  
 
Conclusions:  
RNA-seq data analysis helps to identify DEGs to solve important 
biological problems. Statistical approaches such as edgeR, 
SAMSeq and voom-limma are widely used in DEGs 
identification. However, these methods are sensitive to outliers. 
Hence, we report a robust t-statistic using minimum β-divergence 
method to overcome this issue. Analysis of synthetic data 
showed that the robust t-statistic method produced better 
performance with high AUC, low MER and FDR. The real RNA-
seq count data analysis detected 409 DEG using this method. 
There are 28 up-regulated genes and 381 down-regulated genes 
estimated by log2 fold change (FC) approach at threshold value 
1.5. Thus, the identification of potential biomarkers from RNA-
seq dataset using a robust t-statistical model is demonstrated. 
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