Table 1. Confusion matrix or error matrix.
Predicted class | Actual class | |
DE | EE | |
DE | True Positive (TP) | False Positive (FP) type I error |
EE | False Negative (FN) (type II error) | True Negative (TN) |
DE: Differentially Expressed; EE: Equally Expressed; Area under the receiving operating characteristics (ROC) curve, AUC = (nTPR+nTNR)/2, Misclassification error rate (MER) = (nFP+nFN)/ (nTP+nTN+nFP+nFN). |