Table 2. Performance Investigation for synthetic dataset.
Performance Evaluation | edgeR | SAMSeq | Voom.limma | t-test | Proposed |
5% outliers | |||||
Sensitivity | 0.36 | 0.015 | 0.493 | 0.046 | 0.546 |
Specificity | 0.761 | 0.984 | 0.325 | 0.046 | 0.314 |
MER | 0.774 | 0.89 | 0.691 | 0.867 | 0.537 |
FDR | 0.269 | 0.821 | 0.256 | 0.216 | 0.085 |
AUC | 0.664 | 0.515 | 0.694 | 0.32 | 0.744 |
pAUC | 0.057 | 0.009 | 0.059 | 0.006 | 0.024 |
ACC | 0.226 | 0.11 | 0.309 | 0.133 | 0.463 |
PPV | 0.731 | 0.179 | 0.744 | 0.784 | 0.915 |
NPV | 0.761 | 0.984 | 0.325 | 0.046 | 0.314 |
10% outliers | |||||
Sensitivity | 0.372 | 0.019 | 0.391 | 0.046 | 0.476 |
Specificity | 0.693 | 0.982 | 0.346 | 0.046 | 0.27 |
MER | 0.812 | 0.884 | 0.796 | 0.859 | 0.685 |
FDR | 0.28 | 0.314 | 0.276 | 0.176 | 0.066 |
AUC | 0.581 | 0.515 | 0.57 | 0.342 | 0.71 |
pAUC | 0.048 | 0.01 | 0.036 | 0.006 | 0.024 |
ACC | 0.188 | 0.116 | 0.204 | 0.141 | 0.315 |
PPV | 0.72 | 0.686 | 0.724 | 0.824 | 0.934 |
NPV | 0.693 | 0.982 | 0.346 | 0.046 | 0.27 |
15% outliers | |||||
Sensitivity | 0.364 | 0.018 | 0.421 | 0.048 | 0.64 |
Specificity | 0.764 | 0.985 | 0.291 | 0.048 | 0.342 |
MER | 0.445 | 0.889 | 0.47 | 0.869 | 0.227 |
FDR | 0.014 | 0.732 | 0.0323 | 0.213 | 0.075 |
AUC | 0.634 | 0.516 | 0.642 | 0.337 | 0.748 |
pAUC | 0.055 | 0.01 | 0.047 | 0.007 | 0.029 |
ACC | 0.555 | 0.111 | 0.53 | 0.131 | 0.773 |
PPV | 0.986 | 0.268 | 0.9677 | 0.787 | 0.925 |
NPV | 0.764 | 0.985 | 0.291 | 0.048 | 0.342 |
20% outliers | |||||
Sensitivity | 0.405 | 0.017 | 0.439 | 0.046 | 0.612 |
Specificity | 0.812 | 0.979 | 0.247 | 0.046 | 0.352 |
MER | 0.702 | 0.885 | 0.652 | 0.878 | 0.216 |
FDR | 0.058 | 0.217 | 0.055 | 0.366 | 0.069 |
AUC | 0.742 | 0.51 | 0.724 | 0.333 | 0.745 |
pAUC | 0.064 | 0.01 | 0.053 | 0.006 | 0.022 |
ACC | 0.298 | 0.115 | 0.348 | 0.122 | 0.784 |
PPV | 0.942 | 0.783 | 0.945 | 0.634 | 0.931 |
NPV | 0.812 | 0.979 | 0.247 | 0.046 | 0.352 |