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The function of midcingulate cortex (MCC) remains elusive despite
decades of investigation and debate. Complicating matters, indi-
vidual MCC neurons respond to highly diverse task-related events,
and MCC activation is reported in most human neuroimaging
studies employing a wide variety of task manipulations. Here we
investigate this issue by applying a model-based cognitive neuro-
science approach involving neural network simulations, functional
magnetic resonance imaging, and representational similarity analy-
sis. We demonstrate that human MCC encodes distributed, dynam-
ically evolving representations of extended, goal-directed action
sequences. These representations are uniquely sensitive to the
stage and identity of each sequence, indicating that MCC sustains
contextual information necessary for discriminating between task
states. These results suggest that standard univariate approaches
for analyzing MCC function overlook the major portion of task-
related information encoded by this brain area and point to
promising new avenues for investigation.

midcingulate cortex | recurrent neural network | representational similarity
analysis | fMRI | sequence execution

Anterior midcingulate cortex (MCC) (1) contributes to cognitive
control and decision making, but its specific function is hotly

debated (2–4). Attempts to build a general theory about it have been
stymied by the fact that MCC neurons respond to a wide spectrum of
task-related events (5–7) and because the region is activated in most
functional neuroimaging studies (8). However, recent investigations
have yielded two key insights into its function. First, application of
multivariate statistical techniques (9) to the ensemble activity of
MCC neurons in nonhuman animals (5, 10–14), and to the functional
magnetic resonance imaging (fMRI) blood-oxygen-level dependent
(BOLD) response in humans (15–18), has revealed distributed
representations in MCC that are invisible to measures that pool
across the activity of single neurons. As with distributed patterns
observed elsewhere in cortex (19, 20), these representations suggest
that the idiosyncratic sensitivities of MCC neurons to actions, stimuli,
rewards, and other task-related events reflect their collective purpose
(5; see ref. 21 for review). Second, recent evidence indicates that
MCC evaluates and sustains the execution of extended, sequential
behaviors (11, 22–26). MCC therefore appears to guide the agent
through a task space by encoding goal-directed action sequences as
dynamically evolving representations that are distributed across
neural ensembles (13, 14).
Despite these advances, a formal framework that relates MCC

function to a distributed encoding scheme remains to be estab-
lished. As a step in this direction, we recently proposed that re-
current neural networks (RNNs) can be used to predict the
signature features of MCC representations during sequence exe-
cution (Fig. 1A) (21). RNN connectivity enables maintaining
memories of past events to disambiguate otherwise identical states
(27). When trained to predict action sequences, the activation
patterns across a layer of so-called context units in RNNs can
provide insight into the structure of the internal representations
underlying the sequences (28). These patterns are broadly com-
patible with the ensemble activity of MCC neurons as nonhuman
animals carry out goal-directed action sequences (21). On this

view, rather than encoding univariate signals such as conflicts or
prediction errors (2–4), MCC represents the execution of ex-
tended tasks using a distributed, multivariate code that discrimi-
nates between the different steps of each task sequence.
However, testing this hypothesis in humans faces a key chal-

lenge, as intracranial studies of MCC neurons using multielec-
trode arrays are not readily amenable to human experiments.
Moreover, although fMRI provides a noninvasive alternative, its
spatial and temporal resolution is not comparable with the reso-
lution of multielectrode recordings. Here we address this chal-
lenge with a combined model-based cognitive neuroscience (29)
and multivariate statistical approach that characterizes the simi-
larities between representations across representational systems
(30). In particular, the approach identifies second-order isomor-
phisms (31) between model and neural data, thereby obviating the
need to establish a precise (first-order) correspondence between
neural firing, BOLD, and model neurons. In line with the pre-
dictions of our existing computational MCC model, the results
reveal that human MCC encodes the execution of goal-directed
action sequences as distributed representations that evolve dy-
namically as the task progresses.

Results
MCC and RNNs Encode Task Sequences Similarly. We adapted an
“activities of daily living” (ADL) task to an fMRI design. Although
ADL tasks like brushing one’s teeth can be carried out by healthy
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individuals relatively automatically, they consist of extended
sequences subject to action slips that signal a need for supervisory
control (32). Here we utilized a task that entails executing four
different context-dependent action sequences, two that simulate
coffee making and two that simulate tea making, according to six
rules given to participants at the start of the experiment (Fig. 2) (SI
Appendix). For example, subjects were told that cream and water
can only be added to coffee, and sugar and water can only be added
to tea. Thus, for states 2 and 4 (Fig. 2), the subjects were required
to choose either cream or water when making coffee, or sugar and
water when making tea (SI Appendix). In contrast to previous MCC
studies in humans (2–4), this task requires subjects to remember
their choice behavior—e.g., whether they have previously added
water or sugar to their tea—to execute the sequences.
We used the RNN architecture, which we previously applied to

account for distributed neuronal activity in nonhuman animals (21),
to simulate how MCC encodes the sequences in the coffee–tea-
making task (Fig. 1A). We expected that the context units of the
model trained on this task would incorporate the overall task
structure, revealing sensitivity to the contextual information needed
to execute the action sequences correctly (21). In particular, we
predicted that the context layer of the model and the MCC of
human participants performing the task would represent the task
states similarly. Further, because we expected that other brain re-
gions might also exhibit activity partially similar to the model’s, we
predicted that the correspondence with the model representations
would be stronger for MCC than for other brain areas.
The model was trained to predict each state of the task based on

the previous state as input (Figs. 1A and 3) (21) (SI Appendix). For
example, following the first step of a coffee-making sequence, the
model was trained to predict whether the next step would entail
adding water, cream, or sugar. The training set consisted of four
six-step action sequences (Fig. 2), for a total of 24 states. During a
subsequent testing phase, the activation values of the 15 context
units were read out for each of the 24 states. We then created

a representational dissimilarity matrix (RDM) for the model
representations by calculating the Spearman’s rank correlation
between the context unit activations for each pairwise combination
of the 24 states, which yielded a 24 × 24 matrix (Figs. 1B and 3).
This RDM enabled us to assess our key prediction that the MCC
and the model would encode the task similarly, as a distributed
representation tracking the progression of each sequence (30).
Eighteen participants performed the coffee–tea-making task in

a 3T MRI scanner (Fig. 3) (SI Appendix). Errors occurred on
11.3% (SD = 5.0%) of trials (additional behavioral statistics ap-
pear in SI Appendix). A general linear model (GLM) to the MRI
data (SI Appendix) yielded a separate activation pattern across the
entire brain for each of the 24 task states, separately for each of
the 18 participants. We then applied representational similarity
analysis (RSA) (30) using a searchlight approach (33) by com-
puting the similarity between the model RDM and same-size
RDMs derived from each 27-voxel vector associated with the
3 × 3 × 3 voxel cube surrounding each voxel in the volume (SI
Appendix). As we aimed to test the strong hypothesis that the
model RDM corresponds to MCC representations better than to
the representations of other brain regions (as opposed to the weak
hypothesis that the model RDM simply correlates with MCC
representations), the correlations were z transformed within sub-
jects. Larger values therefore indicate brain areas that are more
correlated than other brain areas with the model RDM. At the
group level, these values were t tested against 0 across subjects,
separately for each voxel; t values exceeding a threshold were then
grouped into clusters. Protection against type-I errors was ensured
with permutation testing (34, 35) (SI Appendix).
The largest cluster identified by the searchlight (348 voxels)

was in medial–frontal cortex (MFC). As predicted, the cluster was
centered on MCC (348 voxels), with a center of mass and peak
voxel in the right paracingulate gyrus in Brodmann area (BA) 32
(Fig. 4A and SI Appendix, Fig. S1 and Table S1). This cluster
extended rostrally through anterior MCC (including BA 9 and 32)

A B C

Fig. 1. Computational model. (A) The recurrent neural network is composed of 7 input units, 15 hidden units, and 8 output units with fully connected feed-
forward projections. A fourth context layer with 15 units receives an exact copy of the hidden unit activation values on each sequence step and returns those
values to the hidden layer on the subsequent step. The model is trained to predict each action in a sequence, given the previous action as input. For example,
the model predicts a “stir” action (spoon unit) given an “add water” action (teapot unit) as input. Arrows indicate connections; squares represent individual
units. Midcingulate cortex representations are derived from the activation values of the context layer units (“task representation”) (SI Appendix). (B) Rep-
resentational dissimilarity matrix derived from the context unit activation values. The 24 states along each axis correspond to the six actions associated with
each of the four task sequences given in Fig. 2. Blue vs. yellow squares indicate greater vs. lesser similarity between representations, respectively. (C) Mul-
tidimensional scaling of the context unit activation values (28, 41) across the 24 states for a representative simulation, revealing dimensions that are sensitive
to sequence progression (“start” vs. “end”) and action type (“non-utensil” vs. “utensil”).
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and caudally through posterior MCC and the presupplementary
motor area (including BA 8 and BA 6) (36, 37). This cluster was
much larger than the next biggest cluster, which comprised
106 voxels and was located in right frontal operculum cortex (SI
Appendix, Table S1). Only the MFC cluster survived the permu-
tation test correction. These findings indicate that MCC and the
model represent the coffee–tea task sequences similarly, and that
this correspondence is stronger for MCC than for other brain
areas. To confirm that the model RDM also corresponded to
MCC at the cluster level, we computed an RDM for the 24-action
state space derived from the entire 348-voxel MFC cluster (Fig.
4B). As expected, the model RDM (Fig. 1B) was also positively
correlated across subjects with this MFC-cluster RDM [mean ρ =
0.30, SD = 0.15, t(17) = 8.86, P < 0.001].

MCC Representations Are Distributed. One might wonder whether
the RSA results reflect truly distributed representations of BOLD
signal across the MFC cluster, or univariate signals reflecting
the average activity of the cluster (38, 39). For example, whereas the
model predicts similar activation patterns during state 1 across
the four different sequences (indicated in blue in Fig. 1B), and
different activation patterns between state 1 and state 6 for each
pair of sequences (indicated in yellow in Fig. 1B), a univariate
hypothesis might predict greater overall MCC activation during

state 6 compared with state 1. However, because correlations are
insensitive to condition means, and because the searchlight
RDMs were based on across-voxel correlations of the fMRI
BOLD signal, the univariate hypothesis predicts 0 correlation
between all pairs of conditions along the off-diagonal elements
of the RDM. This is not what we observed (Fig. 4B).
For further validation, we assessed univariate MCC activity by

averaging the GLM beta values across voxels within the MFC
cluster separately for each condition, which yielded a single (i.e.,
scalar) value for each of the 24 conditions. We then computed the
MFC-cluster RDM based on the Euclidean distances between
each pairwise combination of these 24 condition means, reflecting
absolute distances between univariate (scalar) rather than multi-
variate representations. Thus, this RDM described the degree to
which each pair of conditions differentially activates the MFC.
When the multivariate MFC-cluster RDM was regressed onto this
univariate MFC-cluster RDM for each subject separately, the
MFC-cluster RDM derived from the residuals—hereafter the
“residual MFC-cluster RDM”—remained positively correlated
with the model-RDM across subjects when tested against 0 [mean
ρ = 0.28, SD = 0.14, t(17) = 8.73, P < 0.001]. This confirms that
the model predictions are sensitive to information uniquely
encoded by distributed representations in MCC, above and be-
yond the information encoded as univariate signals in MCC.

MCC Representations Do Not Depend on Time-On-Task and Related
Theoretical Constructs. Theoretical accounts of MCC related to
response conflict, cognitive effort, and time on task predict a
positive association between MCC activity and response time
(RT) (2–4, 40). To investigate whether the distributed repre-
sentations in MCC are also sensitive to RT, we computed an
RDM for each subject based on the absolute value of the dif-
ference between each pairwise combination of the average RTs
for the 24 states (Fig. 5, response times), and then repeated the
searchlight analysis. Fig. 4C indicates that the overlap between the
MFC cluster and a midline cluster identified by this analysis is mainly
confined to posterior medial cortex near the presupplementary

Fig. 2. The coffee–tea making task. Each trial consisted of a sequence of six
decisions followed by feedback (indicated by digits on Left). Each decision
comprised three images of different items corresponding to three possible
actions (state 1: coffee, pepper, tea; state 2: cream, sugar, water; state 3:
fork, spoon, knife; state 4: sugar, water, cream; state 5: spoon, knife, fork;
state 6: prepared coffee, prepared tea, orange juice). For each decision,
subjects selected one of the three actions by pressing a spatially corre-
sponding button. Each decision always entailed selecting between the same
three actions, but the positions of the images within each state varied across
and within trials. For example, state 1 always entailed a choice between
coffee, tea, and pepper, but the locations of these three items varied from
trial to trial. Application of the task rules resulted in execution of four dif-
ferent task sequences. Arrows indicate allowable actions; the arrows diverge
from states in which the action must be remembered to complete the se-
quence correctly (e.g., state 1 to state 2), and converge onto states when
that information is no longer needed (e.g., state 4 to state 5). State 7 in-
dicated correct (happy face) or incorrect (sad face) performance.

Fig. 3. Data collection and analysis pipeline. We applied representational
similarity analysis (RSA) using a searchlight approach that computed the
similarity between the representations predicted by a computational model
and the representations encoded across local volumes of BOLD signal activa-
tion. See the text for details (MCC and RNNs Encode Task Sequences Similarly).
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motor area [center of mass of the RT cluster, i.e., the union of the
yellow and blue clusters in MFC in Fig. 4C: 3, 22, 47, Montreal
Neurological Institute (MNI) space] (36, 37). By contrast, the ante-
rior MCC correlates with the model predictions irrespective of RT.
As a check, when the MFC-cluster RDM was regressed onto the
individual subject RT RDMs, the MFC-cluster RDM derived from
the residuals remained positively correlated with the model RDM
across subjects when tested against 0 [M = 0.062, SD = 0.087, t(17) =
3.14, P < 0.005]. This indicates that the observed association between
model and MCC representations is not accounted for by RT dif-
ferences across conditions.

MCC Representations Confirm Specific Predictions of the RNN Model.
We next asked whether the MCC representations reflect specific
features of the model. Toward this end, multidimensional scaling
(MDS) (41) of the context unit activations across the 24 states
was conducted, revealing that the representations were charac-
terized by three salient features (Fig. 1C) (SI Appendix). Each of
these features was statistically robust across 100 runs of the
model (SI Appendix). First, one dimension of the MDS (y axis of
Fig. 1C) is sensitive to the progression of each sequence from
start to end (state 1 to state 6). To look for similar representa-
tions in the MFC cluster, we created an RDM indicative of se-
quence position only (coding nearby states in each sequence as
similar and faraway states as dissimilar; Fig. 5, sequence position);
the correlation between this sequence position RDM and the
MFC-cluster RDM for each subject was positive across subjects
[mean ρ = 0.15, SD = 0.16, t(17) = 4.76, P < 0.001]. Moreover,
when this sequence position RDM was correlated with the re-
sidual MFC-cluster RDM (which controlled for the average
cluster activity, see above), the correlation remained positive
across subjects [mean ρ = 0.14, SD = 0.15, t(17) = 3.98, P < 0.001].
This result indicates that MCC encodes sequence position as a
distributed, across-voxel representation that evolves in time as the
sequence progresses, comparable to how the model context layer
encodes the sequence.
The second dimension of the MDS (x axis of Fig. 1C) revealed

that the model strongly discriminates between the “utensil” states
(states 3 and 5, which always required the same response, namely,
selecting a spoon to “stir”), and all of the other states (states 1, 2,

4, and 6, which required varying responses), irrespective of the
sequence. To look for this dimension in the MFC cluster, we
created an RDM that distinguished between the utensil states and
all other states (Fig. 5, utensil state). The mean of the (Spearman)
within-subject correlation between the sequence identity RDM and
the MFC-cluster RDMwas significantly different from 0 [mean ρ =
0.31, SD = 0.18, t(17) = 7.5, P < 0.001]. Further, when this utensil
RDM was correlated with the residual MFC-cluster RDM, the
correlation remained positive across subjects [mean ρ = 0.30, SD =
0.20, t(17) = 6.59, P < 0.001]. These results indicate that, as pre-
dicted by the model, the MCC also strongly discriminates between
the stir actions and the other actions in the sequence.
A third notable feature of the MDS is that, except for state 1

(which is identical across the four sequences) and state 2 (which
discriminates between but not within the coffee and tea se-
quences), each state is represented differently by the network
across the four sequences (Fig. 1C). These noncollinear trajec-
tories reflect the task requirement to maintain memories of past
events to disambiguate the different sequences (28). To in-
vestigate this property in the MFC cluster, we created an RDM
that discriminates all of the actions within each sequence from all
of the actions in the other sequences (Fig. 5, sequence identity).
The (Spearman) correlation between this sequence identity
RDM with the MFC-cluster RDM was positive [mean ρ = 0.07,
SD = 0.09, t(17) = 3.40, P < 0.005], indicating that, as predicted
by the model, MCC differentiates between the different action
sequences. Further, when this sequence identity RDM was cor-
related with the residual MFC-cluster RDM, the correlation
remained positive across subjects [mean ρ = 0.07, SD = 0.08,
t(17) = 4.1, P < 0.001]. These results indicate that, as predicted
by the model, MCC encodes contextual information that dis-
criminates between the action sequences.
Finally, we performed a within-subject general linear model that

simultaneously regressed all three predictors (the sequence iden-
tity RDM, the sequence position RDM, and the utensil RDM)
onto the MFC-cluster RDM; each predictor remained statistically
significant [sequence identity, t(17) = 4.24; sequence position,
t(17) = 4.10; utensil, t(17) = 7.26; all P < 0.001]. The same was true
when we regressed these predictors onto the residual MCC-cluster
RDM [sequence identity, t(17) = 6.51, P < 0.001; sequence

A B C

Fig. 4. Representational similarity analysis (RSA) results. (A) Medial–frontal cortex (MFC) cluster identified by the searchlight RSA based on the recurrent neural
network model representational dissimilarity matrix (RDM). The color scale indicates the across-subject t test statistics of the within-subject normalized Spearman
correlation values between the model RDM and local searchlight RDMs. Only the cluster that survived the permutation analysis is shown. (B) RDM derived from the
MFC cluster. Labels are as given in Fig. 1B. Cof, coffee. (C) Overlap between the RSA results based on the model RDM and the individual subject RDMs derived from
the average response times (RTs) for each condition. Red, regions associated purely with themodel RDM; blue, regions associated purely with the individual subject RT
RDMs; yellow, regions of overlap. Coordinates are indicated in MNI space and the underlay is International Consortium for Brain Mapping MNI 152 sixth generation.
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position, t(17) = 3.33, P < 0.005; utensil, t(17) = 4.24, P < 0.001].
Thus, like the model, MCC differentially encodes sequence
identity and sequence position while also discriminating between
stir versus other actions. Note that the model RDM and the
MFC cluster RDM may also share other similarities that are not
readily apparent with MDS. Additional exploratory analyses are
reported in SI Appendix.

Discussion
We applied a computational model of MCC (21) to show the
existence of distributed representations in human MCC that track
the execution of action sequences. These patterns evolved in time,
displaying unique sensitivity to each step of each sequence while
discriminating between the different sequences. Moreover, the
representations were encoded more robustly in MCC than in
other brain areas, implicating MCC specifically in this process
(21). These results suggest that the ubiquitous MCC activity ob-
served across neuroimaging studies (8) reflects the pooled con-
tribution of fine-grained patterns of activation that support task
execution. Further, they suggest that the diverse array of neuronal
responses associated with task-related events (5–7) reflects the
contributions of individual MCC neurons to these global patterns.
As shown above, the correspondence with the model RDM

could not result from mean (univariate) activation differences
across conditions. This dissociation is true for any univariate
signal, including those predicted by prominent theories of MCC
function (2–4). Further, the model RDM correlated with the
MCC patterns at both local-searchlight and global-cluster levels.
Although overlap of the searchlight with the boundaries of

circumscribed areas of univariate, task-related activity could in-
duce spurious correlations with the model RDM, such correla-
tions are unlikely to occur at the cluster level. Conversely, the
mean activation of the entire cluster could average across local
differences in univariate activity. However, because such local
responses would be anticorrelated, they would be less likely to
correlate with the model RDM at the searchlight level.
Three observations suggest that this mechanism is hierarchi-

cally organized along the rostral–caudal extent of the frontal
midline. First, although the task representations were distributed
across a broad region of MFC, the presupplementary motor area
was relatively more sensitive to differences in RT (Fig. 4C). This
region modulates response speed (42) and contributes to se-
quence execution (43) and thus may be more concerned with the
physical implementation of the sequences. Second, as we pre-
dicted (21), the peak t value was located in the anterior region of
MCC (1) (SI Appendix, Fig. S1), which is consistent with an ex-
tensive literature implicating this area in monitoring and sus-
taining the execution of goal-directed action sequences (10, 11,
13–15, 22, 25, 44–48). Third, an exploratory analysis revealed
that the frontal pole robustly encoded sequence identity (SI
Appendix, Fig. S2 and Table S2). Rostral parts of the frontal
midline are said to be involved in the hierarchical control over
sequential behaviors (49, 50), as well as in representing hidden
states (51) and in facilitating switches between task strategies
(18, 24, 52), all of which feature in the coffee–tea task. Taken
together, these results suggest that hierarchical action sequences
are processed along a rostral–caudal cortical gradient (3, 24),
from rostral prefrontal cortex, which selects the sequences, to
anterior MCC, which monitors the progress of the sequences, to
posterior MCC, which implements the sequences. These midline
processes are likely supported by recurrent loops through the
basal ganglia (53–56), which are uniquely positioned to create,
monitor, and regulate the expression of hierarchically organized
action sequences (57), and by interactions with the hippocampus
(58), which may differentiate between ambiguous states for the
purpose of future episodic retrieval (59–61).
The distributed mechanism described here provides a way to

understand the role of MCC in sustaining extended behaviors.
First, because RNNs are trained to predict each event in a se-
quence, the networks yield a large prediction error whenever a
predicted event fails to match the actual event. We have shown
previously that these prediction errors behave like the univariate
conflict- and error-related signals commonly observed in MCC
(21), which suggests that the size of these signals reflects the
distance in task space between the predicted and obtained net-
work states. Second, points of near convergence between the
state–space trajectories of different action sequences can permit
action slips across the sequences (28). Increasing the separation
between the trajectories should therefore prevent against such
errors. In this regard, it is notable that tonic dopamine levels in
frontal cortex, which are associated with both the rate of reward
delivery and the deployment of cognitive effort, have been proposed
to regulate a gain parameter than can control the overall distances
between sequence representations (24, 62). Consistent with this,
amphetamine—a dopamine agonist—exhibits an inverted-U dose-
dependent effect on neural state–space separation between task
trajectories (12), and reward incentives improve the discriminability
of brain states associated with task performance (63). We suggest
that cognitive effort expenditure associated with dopaminergic
modulation of MCC (24, 62) promotes separation between different
task trajectories, thereby preventing against error commission when
persisting at extended behaviors.

Methods
The experimental protocol was approved by the Ethical Committee of Ghent
University Hospital and by the University of Victoria Human Research Ethics
Board. Participants signed an informed consent and the experiment was

Response Times Sequence Position

Utensil State Sequence Identity

Cof W1st Cof C1st

0
0.5

1
D

issim
ilarity

Fig. 5. Representational dissimilarity matrices (RDMs) associated with fol-
low-up analyses. Response times: RDM derived from the average response
times of individual participants, averaged across subjects; lower values cor-
respond to pairs of conditions with relatively similar average response times.
Sequence position: sequence position RDM coding temporally distant states
as dissimilar. Utensil state: utensil RDM discriminating utensil states from all
other states. Sequence identity: sequence identity RDM discriminating
within-sequence actions from across-sequence actions. The 24 states along
each axis correspond to the six actions associated with each of the four task
sequences [coffee (cof), water first; coffee, cream first; tea, water first; tea,
sugar first; see Fig. 1B]. Blue indicates high similarity; yellow indicates low
similarity. Units are arbitrary.
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conducted in accordance with the 1964 Declaration of Helsinki. Eighteen
volunteers participated in this experiment for pay. Structural and functional
images were acquired at Ghent University Hospital using a Siemens 3T
Magnetom Trio MRI scanner. We utilized an existing RNN model of MCC
function (21) to simulate MCC representations during execution of the cof-
fee–tea-making task. Model predictions were tested by applying RSA to the
fMRI data. Protection against type-I errors was ensured with permutation
testing. Please see SI Appendix for complete experimental details.
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