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Within the tumor microenvironment, cancer cells coexist with
noncancerous adjacent cells that constitute the tumor microenvi-
ronment and impact tumor growth through diverse mechanisms. In
particular, cancer-associated fibroblasts (CAFs) promote tumor pro-
gression in multiple ways. Earlier studies have revealed that in
normal fibroblasts (NFs), p53 plays a cell nonautonomous tumor-
suppressive role to restrict tumor growth. We now wished to
investigate the role of p53 in CAFs. Remarkably, we found that the
transcriptional program supported by p53 is altered substantially in
CAFs relative to NFs. In agreement, the p53-dependent secretome
is also altered in CAFs. This transcriptional rewiring renders p53 a
significant contributor to the distinct intrinsic features of CAFs, as
well as promotes tumor cell migration and invasion in culture.
Concordantly, the ability of CAFs to promote tumor growth in mice
is greatly compromised by depletion of their endogenous p53.
Furthermore, cocultivation of NFs with cancer cells renders their
p53-dependent transcriptome partially more similar to that of CAFs.
Our findings raise the intriguing possibility that tumor progression
may entail a nonmutational conversion (“education”) of stromal
p53, from tumor suppressive to tumor supportive.
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The p53 tumor suppressor acts as a major barrier against
cancer development. Wild-type (WT) p53 helps maintain

genome integrity and cellular homeostasis by regulating the ex-
pression of a plethora of genes involved in the regulation of cell
cycle, apoptosis, stem cell differentiation, senescence, DNA re-
pair, and metabolism (1–5). Cancer-associated mutations in the
TP53 gene, resulting in production of mutant p53 proteins, can
lead not only to loss of its tumor-suppressive functions but often
also to gain of tumor-promoting activities, associated with al-
tered p53-dependent transcriptional programs (6). Of note, al-
terations in the regulatory networks that impinge on p53 may
cause genetically WT p53 to adopt features that partly resemble
those of bona fide mutant p53 (4, 7, 8). This might convert
WTp53 from tumor suppressive to potentially tumor supportive.
So far, p53 research has focused primarily on its cell-autonomous
functions. However, p53 also possesses cell nonautonomous tumor-
suppressive functions (9, 10).
Fibroblasts are a major component of the tumor stroma and

play important roles in disease progression and metastasis (11,
12). Cancer-associated fibroblasts (CAFs) differ from their
normal counterparts in a variety of structural and functional
aspects, and emerge, at least in part, through continuous “edu-
cation” of the stroma by cancer cells (11, 12). Interestingly,
suppression of p53 activity in normal fibroblasts (NFs) promotes
acquisition of a “CAF phenotype” (13). Moreover, p53 over-
expression in NFs can reduce tumor growth and enhance apo-
ptosis of adjacent tumor cells (14). Mechanistically, inactivation
of p53 in NFs augments the expression of proteins such as SDF1/
CXCL12 (15, 16) and TSPAN12 (17), which might enhance

tumor invasion and malignancy. p53 also modulates macrophage
functions in a cell nonautonomous manner, thereby promoting
an antitumoral microenvironment (9). CAFs probably harbor
very few, if any, genetic modifications and instead are shaped
mainly by epigenetic alterations (18–20).
We set out to determine whether nonmutational alterations in

fibroblast p53 might contribute to the conversion of NFs into
CAFs. We found that CAF p53 indeed differs functionally from
NF p53. In particular, CAF p53 contributes to an altered tran-
scriptional program, modifying the CAF secretome and promoting
cell-autonomous and nonautonomous distinctive CAF features.
Moreover, p53 facilitates a “CAF-like” transcriptional response in
NFs cocultivated with cancer cells. We thus propose that altered
p53 functionality in cancer-associated stromal cells may actively
contribute to a tumor-supportive microenvironment.

Results
p53 Regulates Cell Autonomous CAF-Specific Properties. While the
cell-autonomous and nonautonomous tumor-suppressive func-
tions of p53 in NFs have been studied in detail (9, 15, 16), its
impact on the properties of CAFs is less well established. To
address this issue, we employed paired NF and CAF cultures
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derived from the resected lung of the same patient (patient 4731;
poorly differentiated adeno-squamous lung carcinoma). Analysis
of α-smooth muscle actin (ACTA2) protein and mRNA con-
firmed that, as expected, the CAFs expressed higher levels of
ACTA2 than the corresponding NFs (SI Appendix, Fig. S1 A and
B). Both culture types displayed comparable levels of vimentin
mRNA (SI Appendix, Fig. S1C). Next, these low-passage cultures
were immortalized with human telomerase reverse transcriptase
(hTERT) and stably transduced with GFP and subsequently with
either p53 shRNA or control LacZ shRNA (SI Appendix, Fig. S1
D and E).
In the tumor microenvironment, CAFs display an activated

fibroblast phenotype and can physically remodel the extracellular
matrix (ECM) (11). In culture, this is reflected by an increased
ability of CAFs to contract a collagen gel in which they are
embedded (21). As expected, the immortalized CAFs (CAFshLacZ)
displayed markedly greater contractile activity than the corre-
sponding NFs (NFshLacZ; Fig. 1 A and B). Remarkably, silencing
of p53 in the CAFs (CAFshp53) strongly compromised this activity
(Fig. 1 A and B), implicating p53 as a key contributor to a distinctive
CAF feature.
CAFs also display increased migration (11, 22). We therefore

compared the different immortalized fibroblast populations in a
trans-well migration assay, with EGF as a chemoattractant. As
expected, the CAFs migrated more avidly than their matched NFs
(Fig. 1 C and D; compare CAFshLacZ with NFshLacZ). p53 si-
lencing markedly attenuated this enhanced migration (compare
CAFshp53 with CAFshLacZ). Furthermore, partial depletion of
p53 diminished the collagen contraction activity and migratory
capacity of nonimmortalized CAFs derived from lung tumors of
additional patients (SI Appendix, Fig. S2); perhaps not surpris-
ingly, the scope of the effect and the degree of divergence between
CAFs and NFs varied among individual patients. Collectively,

these observations imply that p53 promotes inherent, cell-autonomous,
distinctive characteristics of CAFs.
RNA sequencing did not detect any TP53 coding-region mu-

tations in our CAFs. The cellular functions of p53 are largely
controlled by posttranslational modifications, including multiple
phosphorylation events (23). Interestingly, relative to NFs, the
CAFs displayed a selective reduction in phosphorylated forms of
p53 (Fig. 2 and SI Appendix, Fig. S3). In some instances, reduced
p53 phosphorylation has been linked to altered protein confor-
mation, detectable by specific monoclonal antibodies (7, 24). In
agreement, immunoprecipitation analysis with the PAb1620 and
PAb240 monoclonal antibodies, recognizing the WT conforma-
tion and a mutant conformation of p53, respectively, confirmed
that the PAb240-to-PAb1620 ratio was elevated, albeit mildly, in
CAF p53 relative to NF p53 (SI Appendix, Fig. S4), suggesting
that a small fraction of the CAF p53 had adopted a mutant-like
conformation. Together, these observations suggest that the
endogenous WT p53 undergoes chemical and structural alter-
ations during the conversion of NFs to CAFs, which may con-
tribute to the distinctive biological features of the CAFs.

p53 Regulates the Expression of CAF-Specific Genes. Earlier studies
have uncovered differential gene expression patterns between
CAFs and NFs in various tumor types (21, 25–27). We therefore
performed global transcriptome analysis (RNA-seq) of immor-
talized NFs and CAFs, with or without stable p53 knockdown. As
expected, the expression profile of CAFs differed substantially
from that of NFs, with 1,662 genes differentially expressed be-
tween the two cell types (Fig. 3A and Dataset S1). Comparison of
these differentially expressed genes with a published lung cancer
CAF-associated gene signature (21) revealed substantial overlap
(SI Appendix, Fig. S5A), authenticating the representative nature
of this NF–CAF pair.
Remarkably, hierarchical clustering of the overall gene ex-

pression patterns indicated that p53 silencing in the CAFs ren-
dered their transcriptome more similar to that of NFs (Fig. 3B),
further implying that the p53 of CAFs contributes to their
“CAFness.” In agreement, while p53 knockdown decreased the
expression of canonical p53 target genes in both NFs and CAFs
(see SI Appendix, Fig. S5B, and p21 panels in SI Appendix, Fig. S6
for primary NF and CAF cultures from additional patients),
p53 silencing in CAFs also reduced the expression of numerous
CAF-specific genes, defined by their transcripts being more
abundant in control CAFs (CAFs shLacZ; Fig. 3A) than in
matched control NFs (NFs shLacZ).
We next focused on the cluster of 300 genes expressed more

abundantly in CAFs than in NFs, whose expression in CAFs was

NFshLacZ NFshp53

NFshLacZ NFshp53

CAFshLacZ CAFshp53

A B

C
CAFshLacZ CAFshp53

D

NFshLacZ NFshp53 CAFshLacZ CAFshp53

G
el

 a
re

a 
(c

m
2)

NFshLacZ NFshp53 CAFshLacZCAFshp53

**

0

1

2

3
**

**

R
el

at
iv

e
m

i g
ra

ti o
n

ar
e a

Fig. 1. p53 controls the cell-autonomous functions in CAFs. (A) hTERT-
immortalized NFs and CAFs from patient 4731, stably expressing either
p53 shRNA or control LacZ shRNA, were subjected to a collagen gel contraction
assay in triplicate and imaged after 24 h. (B) Quantification of the collagen gel
area, analyzed as in A. Values represent averages ± SEMs from three in-
dependent experiments. (C) Cells as in A were grown in trans-well inserts. The
lower chamber was loaded with medium containing EGF (10 ng/mL). Sixteen
hours later, cells that had migrated across the membrane were stained with
crystal violet and photographed. (Scale bars, 500 μm.) (D) Average migration ±
SEM from three independent experiments performed as in C; quantification is
described in SI Appendix. **P < 0.01.
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Fig. 2. CAF p53 is hypophosphorylated. (A) Extracts from immortalized NFs
and CAFs (patient 4731) were subjected to either standard SDS/PAGE (Top)
or 30 μM Phos-tag SDS/PAGE (Bottom), followed by Western blot analysis
with the indicated antibodies. (B) The relative abundance of each band in
the Phos-tag gel, denoted by its position in the autoradiogram.
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p53 regulated (Fig. 3C and Dataset S1). A total of 267 of those
genes were positively regulated by CAF p53. Silencing of CAF
p53 rendered the expression of those genes more similar to NFs
[Fig. 3C, compare CAFs shp53 (columns 3–4) with NFs shLacZ
(columns 5–6)]. Notably, GeneAnalytics analysis of those genes
revealed significant enrichment for functional pathways related
to ECM degradation, matrix metalloproteinases (MMPs), and
collagen-related enzymes (Fig. 3C, Right). In particular, MMP1,
MMP3, and MMP10 mRNA were up-regulated in CAFs in a
partially p53-dependent manner, as further validated by qRT-PCR
(Fig. 3D). Importantly, p53-dependent expression of these genes
was also observed in primary lung CAFs from additional patients
(SI Appendix, Fig. S6). Of note, MMPs are frequently up-regulated
in cancer, promoting tumor cell migration, invasion, and me-
tastasis (28).

p53 Affects the CAF Secretome. Proteins secreted by CAFs can
modulate the properties of surrounding cancer cells (29). There-
fore, we collected conditioned medium (CM) from the various

fibroblasts and subjected it to liquid chromatography–MS–based
protein analysis. Notably, clustering of the secretome data re-
vealed that the secretion of numerous proteins was elevated in
CAFs relative to NFs in a p53-dependent manner (Fig. 4A). The
top 58 secreted proteins regulated specifically by p53 in CAFs
(Fig. 4A and Dataset S1) were enriched for pathways involved in
ECM degradation (Fig. 4B), consistent with the transcriptome
analysis. Fig. 4C illustrates the p53-dependent regulation of rep-
resentative secreted proteins (MMP1, MMP10, IGFBP5, and
POSTN). Overall, our data indicate that CAF p53 undergoes al-
terations that may expand its target gene repertoire to include
many CAFness genes, supporting tumor progression.

CAF p53 Promotes Cancer Cell Migration and Invasion. CAFs can
promote tumor cell migration and invasion (29, 30). To determine
whether CAF p53 can exert cell nonautonomous effects on adja-
cent cancer cells, we performed live cell imaging of gap closure,
with GFP-labeled immortalized fibroblasts seeded on one side of
the gap and mCherry-labeled Calu1 lung cancer cells on the other
side. As seen in Fig. 5 A and B and Movies S1–S4, the cancer cells
indeed migrated faster toward control CAFs (shLacZ) than to-
ward control NFs. Notably, knockdown of CAF p53 reduced
cancer cell migration, rendering it comparable to migration to-
ward NFs. Likewise, when mCherry-labeled H460 lung cancer cells
were cocultured with GFP-expressing NFs or CAFs, p53 silencing
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Fig. 3. CAF p53 regulates genes associated with ECM remodeling. (A) SPIN-
ordered expression matrix of genes differentially expressed between immor-
talized NFs and CAFs (patient 4731) (fold-change >1.5 and adjusted P
value <0.05; 1,662 genes). Colors indicate relative expression after standard-
izing each gene (Left bar). (B) Dendrogram showing hierarchical clustering of
data from transcriptome analysis of duplicate control and p53-depleted CAF
and NF samples (average linkage, Pearson correlation). (C) p53-dependent
genes in CAFs (fold-change >1.5 between shLacZ and shp53 in both replicates;
300 genes) were extracted from the set of genes more abundantly expressed
in CAFs compared with NFs. Expression levels in both CAFs and NFs were
visualized by SPIN-ordered expression matrix; colors indicate relative expres-
sion after standardizing each gene (Left bar). Pathway enrichment analysis
(GeneAnalytics) for genes expressed preferentially and activated by p53 in
CAFs is shown on the Right. (D) Quantification of MMP1, MMP3, and MMP10
mRNA from immortalized fibroblasts (patient 4731) by qRT-PCR. Values
(mean ± SEM) were derived from five independent experiments. ***P ≤
0.001 using one-way ANOVA and Tukey post hoc test. SPIN, sorting points into
neighborhood; TSR, thrombospondin type I repeat.
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Fig. 4. p53 regulates the CAF secretome. (A) Conditioned media of immor-
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from the LC-MS analysis. Bars represent normalized LFQ intensities. Values
(mean ± SEM) were derived from four independent experiments. *P ≤ 0.05,
**P < 0.01, ***P ≤ 0.001 using one-way ANOVA and Tukey post hoc test. LC-MS,
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attenuated the ability of CAFs to promote cancer cell migration (Fig.
5C). Hence, the p53 of CAFs contributes to their ability to promote
migration of adjacent cancer cells.

Our RNA-seq and secretome data indicated that, in addition
to MMPs, CAF p53 promotes the expression of numerous other
secreted factors (Fig. 4C, SI Appendix, Fig. S7A, and Dataset S1).
Such factors may mediate, at least in part, the p53-dependent
effects of the CAFs on the cancer cells. Indeed, CM from p53-
proficient control CAF cultures (CAFshLacZ) partly restored the
defective migration of Calu1 cancer cells toward p53-depleted
CAFs (Fig. 5 D and E and Movies S5–S7). Likewise, in a trans-
well assay, CM from CAFs, but not NFs, stimulated in a p53-
dependent manner the migration of Calu1 cells (Fig. 5 F and
H). Furthermore, CM from p53-depleted CAFs was less potent
than control CAF CM in promoting the invasion of lung cancer
cells through a Matrigel layer (Fig. 5 G and I). Thus, the cell
nonautonomous, promigratory, and proinvasive effects of CAFs
on adjacent cancer cells are facilitated by p53-dependent up-
regulation of genes encoding secreted factors.

Cancer Cells Modify the p53-Dependent Transcriptional Program in NFs.
Cancer cells can instruct resident and recruited NFs to gradually
acquire features of CAFs, in a process sometimes referred to as
“education” (31). To probe a potential involvement of p53 in this
process, mCherry-labeled H460 cells were cocultured for 3 d with
GFP-expressing control NFs or p53-silenced NFs. Fibroblasts
were then separated from cancer cells by FACS sorting (see SI
Appendix, Fig. S7B for validation of the purity of each sorted
subpopulation), and the purified fibroblasts were subjected to
RNA-seq analysis. Cocultivation with cancer cells augmented the
expression of 1,193 genes in control NFs, relative to the corre-
sponding monocultured NFs. Importantly, expression of >250 of
those genes was partially p53 dependent (Fig. 6A and Dataset S1).
Notably, a subset of such genes, whose basal expression in mon-
ocultured NFs is relatively low, are constitutively more highly
expressed in CAFs in a partially p53-dependent manner (Fig. 6A,
Right ). These genes are enriched for processes such as ECM
degradation and remodeling, integrin signaling, and cell adhesion
(Fig. 6B), reminiscent of the p53-dependent transcription program
in CAFs (Fig. 3C). Validation of representative genes by qRT-
PCR is shown in Fig. 6C. A similar trend was observed when
immortalized NFs were cocultured with another lung cancer cell
line, H1299 (Fig. 6D). Thus, p53 contributes to the transcriptional
reprogramming of NFs in the continued presence of adjacent
cancer cells.

CAF p53 Promotes Tumor Growth In Vivo. CAFs support tumor
growth and cancer progression (11, 21, 29). To investigate the
contribution of CAF p53 to these activities, H460 cells were
injected s.c. into SCID mice, either alone or in combination with
p53-proficient or p53-deficient immortalized NFs and CAFs.
Nine days later, tumors were excised and photographed (Fig. 7A);
relative tumor size was deduced by quantifying the area occupied
by each tumor image (Fig. 7B). In agreement with earlier results
(15, 21, 32), control (shLacZ) CAFs showed a trend to promote
tumor growth better than control NFs (Fig. 7), while depletion of
p53 in the NFs (shp53) showed a trend to render them more
tumor supportive. Importantly, depletion of p53 in CAFs greatly
reduced their ability to support tumor growth. Essentially similar
results were obtained in a second experiment, in which we de-
termined the weights of tumors harvested 12 d postinjection (SI
Appendix, Fig. S8). Hence, in agreement with our in vitro ob-
servations, CAF p53 also exerts a cancer-promoting effect in
vivo. Altogether, our findings reveal a surprising role for p53 in
CAFs, and suggest that, during tumor progression, p53 func-
tionality is altered not only in the cancer cells but also in their
adjacent stroma.

Discussion
In the tumor microenvironment, fibroblasts play major roles in
modulating tumor growth and metastasis (11, 32). Remarkably,
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Fig. 5. CAFs promote p53-dependent cancer cell migration and invasion.
(A) GFP-expressing immortalized fibroblasts from patient 4731 (yellow) and
mCherry-expressing Calu1 cells (magenta) were seeded in 12-well plates con-
taining ibidi culture inserts. The next day, inserts were removed and cells were
allowed to migrate. Shown are images snap-captured at 6 h. The thin yellow
line on the right indicates the position of the Calu1 front at time = 0. (Scale
bars, 100 μm.) (B) Average velocity of Calu1 migration toward the indicated
fibroblasts, relative to migration of tumor cells alone, based on 6-h measure-
ments. Values are means ± SEMs of three independent experiments, **P <
0.01. (C) mCherry-labeled H460 cells were seeded together with the indicated
immortalized fibroblasts and subjected to a trans-well migration assay toward
EGF. mCherry-positive cells that had migrated across the membrane were
photographed 16 h later. (Scale bars, 500 μm.) (D) Live cell migration analysis
as in A, except that cultures were supplemented with CM from the indicated
fibroblasts (listed below the panel) after removal of the insert. (Scale bars, 100 μm.)
(E) Average velocity of Calu1 cell migration toward the fibroblasts as assayed
in D, relative to the CAFshp53-CM samples. CL-CM, CAFshLacZ-CM; Cp-CM,
CAFshp53-CM. Values are means ± SEMs of three independent experiments,
*P < 0.05. (F) Calu1 cells were grown in trans-well inserts, and the lower
chamber was loaded with CM from the different indicated fibroblasts. Sixteen
hours later, migrated cells were stained with crystal violet and photographed.
(Scale bars, 500 μm.) (G) Calu1 cells were grown in Matrigel-coated trans-well
inserts, and the lower chamber was loaded with CM from the different in-
dicated fibroblasts. Twenty hours later, cells that had invaded across the mem-
brane were stained with crystal violet and photographed. (Scale bars, 500 μm.)
(H) Average migration ± SEMs from three independent experiments per-
formed as in F; quantification is described in SI Appendix. **P < 0.01 using
one-way ANOVA and Tukey post hoc test. (I) Average invasion ± SEMs from
three independent experiments performed as in G, quantified as in H. **P <
0.01 using one-way ANOVA and Tukey post hoc test. FC, fold-change.
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the impact of stromal fibroblasts on the adjacent cancer cells
changes in the course of tumor progression. Initially, resident
NFs tend to suppress tumor growth and maintain tissue ho-
meostasis. At that early stage, p53 plays a cell nonautonomous
tumor-suppressive role within the fibroblasts, partly by inhibiting
their ability to produce and secrete a variety of tumor-promoting
factors (15–17, 33). However, continued cross-talk with the
cancer cells converts their neighboring fibroblasts into CAFs (11).
CAFs originate from a variety of sources (34–36), although local
fibroblasts are often the major contributors to the CAF population
(37). Upon conversion into CAFs, these cells acquire an ability to
support the proliferation and survival of cancer cells and promote
their aggressive features, largely through production and secretion
of a variety of proteins and other molecules. This can also pro-
mote cancer cell resistance to chemotherapy (38, 39).
p53 is a very frequent target for mutational inactivation in

cancer (6). Mutations in the TP53 gene, when occurring within
cancer cells, do not only ablate p53’s tumor-suppressive functions
but may also lead to oncogenic gain-of-function (6). However,
while genomic alterations dominate the landscape of cancer
cells, the distinctive cancer-promoting features of CAFs are
primarily attributed to epigenetic modifications (40, 41) and
differential expression of miRNAs (42). Indeed, despite several

earlier reports of p53 mutations in the stromal compartment
(43), it is now commonly held that CAFs do not harbor p53
mutations (18, 20). However, p53 functionality is often com-
promised in CAFs (44, 45), and epithelial cells acquire an in-
creased ability to suppress the canonical activity of p53 as they
gradually become more transformed and cancerous (45). We
now show that not only is the canonical cell nonautonomous
tumor-suppressive activity of p53 quenched in CAFs, but CAF
p53 is actually rewired to become a significant contributor to the
CAFs’ tumor-supportive activities. This entails transcriptional
reprogramming, enabling p53 to support the elevated expression
of many CAFness genes. Moreover, advanced cancer cells can
modulate the transcriptional output of adjacent NFs, partly
skewing it toward the program supported by p53 in CAFs. It
remains to be determined whether, unlike in CAFs, this requires
continuous exposure to cancer cells.
ECM remodeling in the tumor microenvironment is a CAF

hallmark (11, 46). MMPs are often overexpressed in both cancer
cells and CAFs (47, 48). For example, MMP1 is frequently
overexpressed in lung cancer, and is an indicator of poor prog-
nosis (49–51). As shown here, the augmented expression of
several MMP genes in lung cancer-derived CAFs is partially p53
dependent, suggesting that the extent of CAF p53 education
might affect tumor severity and patient prognosis.
Of note, several CAF p53-dependent genes encode secreted

proteins. In addition to MMPs, these also comprise ligands for
cancer-relevant surface receptors (e.g., WNT2 and WNT16) (SI
Appendix, Fig. S7). Interestingly, another Wnt family member—
Wnt7a—drives CAF conversion in breast cancer (52). Such se-
creted molecules may affect not only cancer cell proliferation,
survival, and motility but also response to anticancer agents. For
example WNT16, secreted by surrounding CAFs, can contribute
to resistance of prostate cancer cells to cytotoxic drugs (53).
Hence, the rewired CAF p53 may also render their associated
tumors more resistant to chemotherapy.
“Re-education” of tumor-associated stromal cells within the

tumor microenvironment has been proposed as a potential
therapeutic strategy (30, 34, 54). It is tempting to speculate that
agents capable of restoring the normal functionality of CAF
p53 may offer an exciting approach toward such a goal.
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the right matrix in A. (C) Expression of MMP1, MMP3, and MMP10 mRNA in
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H460 cells and FACS-sorted before RNA extraction. The monoculture data
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means ± SEMs from four independent experiments. (D) Expression of MMP1,
MMP10, POSTN, and SULF1 mRNA in immortalized NFs (patient 4731), grown
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Materials and Methods
Cell Culture. All cells were maintained at 37 °C in a 5% (vol:vol) CO2 hu-
midified incubator and regularly tested for mycoplasma (for further details,
SI Appendix, Methods).

Establishment of NF and CAF Cultures. Lung tissue was obtained from patients
with newly diagnosed lung cancer from the Klinik Schillerhöhe, immediately
after resection. The investigation was approved by the local ethics com-
mittee (project numbers 396/2005V and 159/2011BO2) and informed consent
was obtained from the patients. Most of the work in the present study
employed cells from patient 4731, a 62-y-old woman smoker with a poorly
differentiated (G3) adeno-squamous carcinoma, TNM status = pT2apN0M0,
with no residual tumor (R0), no lymph node invasion (L0), and no venous
infiltration (V0). Some experiments also incorporated cells from patients
8163 and 9585, both with lung adenocarcinoma. CAFs and NFs from the
noncancerous margins were isolated and cultured as described previously
(14, 19). Altogether, three NF–CAF pairs were employed in the present study
(patients 4731, 8163, and 9585). NFs and CAFs from patient 4731 were im-
mortalized as described in SI Appendix, Methods.

Methods for viral infection, collagen gel contraction assay, conditioned
media, live cell imaging, trans-well migration and invasion assays, Western
blot analysis, immunoprecipitation, RNA isolation, qRT-PCR, FACS analysis,
MS, RNA sequencing, in vivo tumor growth, and statistical analysis are de-
scribed in SI Appendix, Methods.
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