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Recent studies have revealed pronounced effects of the spatial
distribution of EphA2 receptors on cellular response to receptor
activation. However, little is known about molecular mechanisms
underlying this spatial sensitivity, in part due to lack of experimental
systems. Here, we introduce a hybrid live-cell patterned supported
lipid bilayer experimental platform in which the sites of EphA2
activation and integrin adhesion are spatially controlled. Using a
series of live-cell imaging and single-molecule tracking experiments,
we map the transmission of signals from ephrinA1:EphA2 complexes.
Results show that ligand-dependent EphA2 activation induces
localized myosin-dependent contractions while simultaneously in-
creasing focal adhesion dynamics throughout the cell. Mechanisti-
cally, Src kinase is activated at sites of ephrinA1:EphA2 clustering
and subsequently diffuses on the membrane to focal adhesions,
where it up-regulates FAK and paxillin tyrosine phosphorylation.
EphrinA1:EphA2 signaling triggers multiple cellular responses with
differing spatial dependencies to enable a directed migratory re-
sponse to spatially resolved contact with ephrinA1 ligands.
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Eph receptors and ephrin ligands form juxtacrine signaling
complexes in the intercellular interface. Among all 16 Eph

receptors, EphA2 is notorious for its high expression levels in most
aggressive breast cancers (1, 2). There is, however, a long-standing
debate concerning the role of EphA2 in cancer progression. Many
published results may at first seem contradictory. For instance,
overexpression of nonmutated EphA2 is sufficient to induce tu-
morigenesis and metastasis in nontransformed mammary epithe-
lial cells (3), and has been shown to be associated with poor
patient prognosis (4–6). Consistent with this, EphA2-deficient
cells from knockout mice exhibit significantly reduced invasion
and migration potential (7). On the other hand, activation of
EphA2 by ephrinA1 ligand has been shown to attenuate Ras ac-
tivation (8), suppress the Akt–mTORC1 pathway (9), and inhibit
cell migration (10–12). As a possible resolution to this apparent
contradiction, recent studies have suggested a ligand-independent
mechanism that activates EphA2 promigratory signaling (13–16).
Modulating the balance between ligand-dependent and ligand-
independent pathways can significantly alter the overall cellular
response. While this is a promising insight toward unraveling the
paradoxical roles of EphA2 in cancer, a clear understanding of the
role of ligand-dependent EphA2 signaling remains unresolved.
In addition to biochemical elements of EphA2 signaling, recent

work using patterned supported lipid bilayers (SLBs) has revealed
that the cellular response to EphA2 activation is modulated by the
spatial distribution of its ephrinA1 ligand (17–19). EphA2 and
ephrinA1 natively interact across the junctions between apposed
cells. This juxtacrine signaling interface can be reconstituted be-
tween EphA2-expressing live cells and SLBs functionalized with
ephrinA1, which diffuses freely on the membrane surface. The

fluid display of ephrinA1 is important because it enables assembly
of ephrinA1:EphA2 complexes into signaling clusters, as would
naturally occur between two living cells. When physical barriers,
fabricated onto the underlying substrate (20, 21), are applied to
restrict the movement and assembly of ephrinA1:EphA2 com-
plexes on SLBs, changes to the cellular response to EphA2 sig-
naling are observed, including altered cytoskeleton morphology,
blocked recruitment of the protease ADAM10, and hindered
transendocytosis of ephrinA1 (17–19). We hypothesize that some
of the apparent contradiction in the literature reports on the bi-
ology of EphA2 signaling may result from unseen spatial and
mechanical aspects of signal modulation in this system.
In the present work, we focus on the effect of EphA2 signaling

on integrin-mediated adhesions in a spatially defined manner. Cell
migration is a coordinated process involving both the formation
and dissociation of focal adhesions (FAs), sites of integrin-
mediated cell attachment with the extracellular matrix (22).
EphA2 receptor signaling has long been known to exhibit modu-
latory control over integrin functions. However, the nature of this
regulation remains unclear. For example, a group of studies have
reported that ephrin activation of EphA2 and other Eph receptors
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leads to dephosphorylation of focal adhesion kinase (FAK) and
exerts a negative influence on integrin-mediated adhesions (10–12,
23–25). In other studies, activated EphA2 and other Eph receptors
have been reported to enhance phosphorylation of FAK and
promote cell spreading (26–29). Although there are many possi-
ble reasons for these seemingly contradictory results, a widely
neglected factor is the spatial control of ephrinA1:EphA2 inter-
actions. While most studies have used soluble or surface-coated
ephrinA1 ligands to trigger the cell in a global way, the naturally
formed ephrinA1:EphA2 interactions at physiological cell–cell
junctions are spatially separated from cell–matrix adhesions (30).
Thus, we speculate that spatial arrangement may be an important
factor influencing EphA2–integrin signaling cross talk.
In this study, we developed a micropatterned hybrid substrate

with ephrinA1 ligands presented on fluid SLB corrals embedded
within regions of immobilized Arg–Gly–Asp (RGD) peptides.
The regions of immobilized RGD function both as integrin li-
gands (31) and lipid bilayer diffusion barriers (20, 21, 32, 33).
This configuration permits fluid rearrangement, clustering, and
activation of EphA2 receptors on the membrane regions. Si-
multaneously, mechanically mediated FA formation occurs on
rigid regions of the substrate, enabling cell spreading. The sites
of ephrinA1:EphA2 interactions and integrin adhesions are thus
spatially separated to better mimic in vivo organization.
With this spatially resolved experimental setup, we find that

activation of EphA2 by ephrinA1 promotes cell motility by in-
ducing local contractions and increasing global FA dynamics.
These results were obtained through an extensive series of live-
cell imaging and single-molecule tracking experiments in which
we directly image the spatial localization, dynamics, and trans-
port of signaling molecules in response to ephrinA1 activation of
EphA2 in live cells. Specifically, we observed Src kinase activa-

tion at sites of EphA2 triggering. After release from EphA2
clusters, Src diffuses on the membrane and becomes localized to
FAs, where it up-regulates FAK and paxillin tyrosine phosphor-
ylation. We suggest that this diffusive transport of Src through
the membrane is the mechanism by which EphA2 modulates FA
dynamics over long distances. Locally, ephrinA1:EphA2 trigger-
ing activates myosin-mediated contraction. Overall, we found
that the EphA2 signaling system triggers multiple cellular pro-
cesses with differing spatial dependencies—some more localized
than others. The net effect is that the overall cellular behavior is
sensitive to the spatial location of ephrinA1 ligands. Polarized
activation of EphA2 receptors results in a migratory phenotype.

Results
Development of a Hybrid Substrate of Fluid EphrinA1 and Immobilized
RGD. To investigate the signaling cross talk between EphA2 and
integrin in a spatially resolved manner, we reconstituted EphA2
and integrin interactions with membrane-bound ephrinA1 and
substrate-bound RGD. This is accomplished by developing a hy-
brid substrate containing SLB corrals micropatterned on a glass
surface that is otherwise coated with biotinylated poly-L-(lysine)-
grafted-polyethylene(glycol) polymer (PLL-PEG-biotin), at 1-μm
spatial resolution (Fig. 1A). Alexa 680-labeled ephrinA1 was
linked to the SLB through Ni2+-NTA chelation (34). The density
of ephrinA1 on the SLB is controllable over a range of 1–103

molecules per square micrometer. Delight405-labeled NeutrAvidin
and biotinylated RGD were linked to the PLL-PEG-biotin–coated
area successively. Fluorescence recovery after photobleaching ex-
periments confirmed that ephrinA1 was fluid on the SLBs (SI
Appendix, Fig. S1 A and B). As a first test here, circular-shaped
SLB corrals with 2-μm diameter were embedded within regions of
immobilized RGD, with almost no cross binding (Fig. 1B).
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Fig. 1. Spatially controlled activation of EphA2 and integrin on a micropatterned hybrid substrate of fluid ephrinA1 and immobilized RGD. (A) Schematic
illustration of the in vivo spatial organization of EphA2 and integrin and the in vitro reconstitution system. (B) Hybrid substrate images (Left) and intensity line
profile (Right). (C) Time-course images of a cell spreading on the hybrid substrate. Yellow lines mark cell outlines, and RICM stands for “reflection interference
contrast microscopy” images. (D) Fluorescent images of pY588-EphA2 of cells fixed after spreading for 30 min. RGD-only refers to the hybrid substrate of RGD
and SLB, and RGD+EphrinA1 refers to the same substrate but with ephrinA1 on SLB. Pearson’s correlation coefficient between pY588 EphA2 and ephrinA1 is
0.91 ± 0.05 (mean ± SEM). n = 5 cells. (E) Fluorescent images of different cellular proteins colocalized with ephrinA1 clusters. pY700-Cbl image is of a fixed cell
that was immunostained after 60 min of spreading. Grb2-tdEOS and Arp3-mcherry are live-cell images after 60 min of spreading. Pearson’s correlation co-
efficients between pY700-Cbl, Grb2, and Arp3, and ephrinA1 signals are 0.52 ± 0.04, 0.87 ± 0.06, and 0.55 ± 0.05 (mean ± SEM) respectively. n = 5 cells.
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Formation of EphrinA1:EphA2 Signaling Clusters in Spreading Cells.
The MDA-MB-231 breast cancer cell line was used in this study
since it expresses a high level of the EphA2 receptor and is highly
metastatic (1, 18). However, corroborative studies were also per-
formed in an invasive prostate cancer cell line PC3 and a non-
metastatic human breast epithelial cell line MCF10A. Cells were
serum starved overnight to reduce other receptor signaling, detached
from the culture plate with a nonenzymatic dissociation buffer, and
then seeded on the hybrid substrates for further experiments.
As a first test, a minimal amount of ephrinA1 ligands, at a

density of <5 molecules per square micrometer, was function-
alized on the SLB corrals. The integrin ligand RGD facilitated
isotropic cell spreading. Whenever the cell membrane touched a
new SLB corral, almost all of the ephrinA1 molecules within this
corral were rapidly concentrated into a single cluster (Fig. 1C
and Movie S1). As a negative control, membrane-bound GFP
did not induce any clustering (SI Appendix, Fig. S1C), confirming
this specific to ephrinA1 ligands. Cells failed to spread when
RGD was not presented on the polymer, although ephrinA1 was
still clustered (SI Appendix, Fig. S1D).
In subsequent experiments, ephrinA1 density was increased to

a physiological level of about 150–200 molecules per square
micrometer on SLBs (17). The clustering of ephrinA1 ligands
was paralleled by clustering and activation of EphA2 receptors
within the cell, as shown by colocalization of anti-EphA2 and
anti-phosphotyrosine antibodies in immunofluorescence images

(SI Appendix, Fig. S1 E and F). On RGD-only control where
ephrinA1 is not present on SLBs, no enrichment of EphA2 re-
ceptors was observed and phosphotyrosine only located in FAs
and focal complexes at the periphery of the cell. EphA2 is known
to undergo phosphorylation at tyrosine 588 upon ligand binding
(35). Using a previously validated pY588-EphA2–specific anti-
body, we found a robust activation of EphA2 receptors in cells
following 1 h of contact with RGD+EphrinA1 substrate both by
immunofluorescence (Fig. 1D) and Western blot (SI Appendix,
Fig. S1G). We further validated the activation of EphA2 signaling
by observing the recruitment of known downstream effectors to
the ephrinA1:EphA2 clusters, including the endocytosis marker
phosphor-Cbl (36), the signaling adaptor Grb2 (37), and the actin
nucleator Arp3 (38) (Fig. 1E). All of these results confirmed that
the presentation of ephrinA1 on fluid SLB is a potent method to
activate highly specific EphA2 signaling. The dynamical aspects of
ephrinA1 interaction with EphA2, as well as the timescale of
downstream events, can be mapped quantitatively with this system.

EphrinA1 Changes Cell-Spreading Behavior by Inducing Retractions
and Protrusions. The hybrid substrate spatially separates
ephrinA1:EphA2 interactions and integrin-mediated cell adhe-
sions, and thus can be used to parse out spatial effects of EphA2
signaling on cell spreading and movement. Cell spreading on a
flat and uniform adhesive surface is usually isotropic at first,
followed by cellular polarization over the next several hours (39,
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40). Similarly, serum-starved MDA-MB-231 cells, plated on a
substrate with RGD surrounding pure SLB corrals, spread uni-
formly for about 40 min, after which their edges remained rel-
atively quiescent. In contrast, cells spreading on the hybrid
substrate with ephrinA1 on the SLB displayed very anisotropic
dynamics; while some regions of the cell underwent prominent
protrusions, other regions exhibited dramatic retractions (Fig. 2
A and B and Movie S2). Closer examination of the live-cell
movies revealed that each retraction correlated with a local
ephrinA1 clustering event. As shown in the example in Fig. 2 C
and D, immediately after a lamellipodial protrusion touched a
SLB corral, ephrinA1 formed a cluster at the contact point, and a
few minutes thereafter the cell protrusion strongly retracted to-
ward the cell body, often leaving behind retraction fibers that
remained connected to the ephrinA1 cluster.
Initial cell spreading can be further divided into two phases

depending on myosin activities: noncontractile spreading followed
by contractile spreading (40). As observed here, in the first 40 min,
cells rapidly increased their contact area without generating re-
tractions both in RGD-only and RGD+EphrinA1 substrates,
corresponding to noncontractile spreading phase (Fig. 2E and SI
Appendix, Fig. S2A). Dynamic retractions and protrusions only
began after cells passed the rapid spreading phase in the presence
of ephrinA1, suggesting that ephrinA1-induced retractions involve
myosin activities, which will be discussed in the next section. This
dynamic behavior persisted for as long as we imaged the cells
(∼3 h) and resulted in changes in cell shape, as measured by a
significant reduction in cell circularity after 90 min of spreading
(Fig. 2F). Interestingly, in contrast to previous studies, in which
triggering EphA2 signaling with soluble or surface-coated Fc-
ephrinA1 led to cell rounding and a reduction in cell spreading
(10, 11), we found the cell-spread area to be the same on the
hybrid substrate with or without ephrinA1 (Fig. 2G).
We repeated these experiments with PC3 and MCF10A cells.

Both cells also showed continuous retractions and protrusions
during spreading, although at different degrees, suggesting this
to be a general cell behavior in response to such stimulations (SI
Appendix, Fig. S2B and Movie S3).

EphrinA1 Induces Local Retraction Through Myosin II Activation.
Nonmuscle myosin II was implicated in the cellular retractions
by immunostaining cells with an antibody that recognizes the ac-
tive form of myosin light chain (pSer19-MLC). Active MLC was
largely located around the cell periphery both on control sub-
strates and in the presence of ephrinA1, but it was significantly
enhanced in regions that came into contact with ephrinA1 (Fig. 3
A and B). MLC-GFP live-cell imaging showed that cells experi-
enced multiple events of a local increase in MLC fluorescence
intensity followed by a local retraction during the overall spreading
process on RGD+EphrinA1 substrate (SI Appendix, Fig. S3A and
Movie S4). A typical retraction involved two phases: In the first
phase, MLC accumulated locally after contact with ephrinA1, but
the cell edge remained in place. After a certain threshold, the cell
underwent a quick retraction phase, possibly because of a sudden
loss of cell–matrix adhesions (SI Appendix, Fig. S3B). To clearly
establish the temporal relationship between EphA2 activation and
MLC accumulation, we seeded cells on a substrate with a large
area of RGD embedded with small ephrinA1 SLB corrals (Fig.
3C). Movie S5 shows the events that occurred when a cell spread
on the RGD region first touched one patch of ephrinA1.
EphrinA1 clustering by a filopodial contact clearly preceded MLC
local accumulation (Fig. 3C and SI Appendix, Fig. S3C), suggesting
MLC is a downstream effector of EphA2 signaling.
The involvement of nonmuscle myosin II in ephrinA1-induced

cell retraction was further confirmed by pharmacological in-
hibition. After treatment with 10 μM of the myosin II inhibitor
blebbistatin, at a time point when the cell was transiently retract-
ing, it stopped retracting and spread out isotropically without

forming any new retractions, even after contact with new ephrinA1
SLB corrals (Fig. 3 D and E). Taken together, we conclude that
myosin II is locally activated following stimulation by ephrinA1.

EphA2 Activation Increases Focal Adhesion Dynamics Throughout the
Cell. In addition to the myosin-dependent retractions, EphA2
signaling enhanced protrusive activities, which we reasoned
might be the result of altered integrin adhesion dynamics. Pre-
vious studies addressing the impact of EphA2 signaling on
integrin function have yielded contradictory results (as discussed
in the Introduction). The system we developed here is more
physiological in the sense that EphA2 and integrin ligands are
spatially separated, and ephrinA1 is presented on a fluid mem-
brane (Fig. 4A). Taking advantage of this setup, we map the
functional effects of EphA2 signaling on integrin-mediated FAs.
First, we immunostained cells with a paxillin antibody to ob-

serve FA morphology. In cells spreading on RGD-only substrate
for 90 min, FAs were found both in the periphery of the cell as
well as some distance toward the center, connected with long and
clear actin stress fibers (Fig. 4B). In contrast, FAs were closer to
the cell edge in the presence of ephrinA1 (Fig. 4C), and the stress
fibers were less continuous. The total number of FAs per cell
decreased in the presence of ephrinA1 (Fig. 4D), but not FA size
(SI Appendix, Fig. S4A) or FA aspect ratio (SI Appendix, Fig. S4B).
It is important to note that a minimal size thresholding was used in
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image analysis to extract FAs from image background, and thus
small nascent adhesions were excluded in this quantification.
To understand the origin of the differences we observed in static

images, cells were transfected with paxillin-GFP to visualize FAs
by total internal reflection fluorescence (TIRF) microscopy. Be-
cause of high signal-to-noise ratio in TIRF live-cell imaging, all
paxillin-GFP recruitment events were counted for analysis, in-
cluding small nascent adhesions. Movies were recorded starting
50 min after seeding, by which time most cells developed mature
FAs. Results revealed a striking difference in paxillin-GFP dy-
namics, wherein adhesions all over the cell were significantly more
dynamic in the presence of ephrinA1 compared with the RGD-
only control (Movie S6). As shown in lifetime color-coded FA
trajectories, all FAs have a much shorter lifetime on the substrate
with ephrinA1 compared with control (Fig. 4E and SI Appendix,

Fig. S4C). The distribution of every FA lifetime was then fitted
with a second-order exponential decay function to get the char-
acteristic lifetime per cell (Fig. 4F), which was compared among a
group of cells (Fig. 4G). The average characteristic lifetime of FAs
on RGD+EphrinA1 substrate (3.4 ± 0.7 min) is significantly
shorter than the lifetime of FAs on RGD-only substrate (4.9 ±
1.2 min). However, a lot more small and fast turning-over adhe-
sions formed on the RGD+EphrinA1 substrate (SI Appendix, Fig.
S4D), resulting in a significantly higher FA formation rate (22.9 ±
9.9/min) compared with control (6.5 ± 2.2/min) (Fig. 4H and SI
Appendix, Fig. S4 E and F). This suggests that EphA2 signaling not
only leads to FA disassembly but also promotes their formation.
Taken together, our results show that EphA2 signaling increases
FA dynamics throughout the cell. On RGD-only substrate, new
adhesions form in the periphery of cells and move centripetally
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over a long time, whereas in RGD+EphrinA1 substrate, those
adhesions disassemble before they can move to the center, which
explains the localization difference quantified from immunos-
taining images (Fig. 4C).
Outward integrin trafficking from cytosol to plasma mem-

brane has been reported in immune cells after ligand stimula-
tion to enhance cell–cell or cell–substrate adhesions (41–44),
but integrin trafficking is not affected by EphA2 signaling in
MDA-MB-231 cells as monitored by probes for β1 integrin (SI
Appendix, Fig. S5).

Src Kinase Is Recruited and Activated in EphrinA1:EphA2 Clusters. Src
kinase is implicated as a signaling molecule connecting EphA2
with integrin, because it is a known downstream target of Eph
receptors (28, 45) and is also a known regulator of FA dynamics
(46–48) (Fig. 5A). Immunostaining with an antibody specific for
the active state of Src (pY419-Src) (46) showed that Src was
colocalized both in ephrinA1:EphA2 clusters and paxillin (Fig.
5B). On the control substrate, however, pY419-Src was mostly
colocalized with paxillin only. Quantification of pY419-Src/
EphA2 ratio in a range of circular patterns with SLB diameters
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from 1 to 4 μm showed that pY419-Src molecule number is
linearly correlated with EphA2 receptors across two orders of
magnitude, confirming activation of Src by ephrinA1:EphA2
clustering (SI Appendix, Fig. S6 A and B). Importantly, pY419-
Src intensity increased by about 15% in cell area excluding SLB
regions in RGD+EphrinA1 group compared with RGD-only
control (SI Appendix, Fig. S6C). Recruitment of Src-GFP to
ephrinA1:EphA2 clusters was also visualized in live-cell imaging.
An example from such a movie shows enrichment of Src-GFP
when the cell made contact with an ephrinA1 SLB corral, but not
in the case of Marina Blue-labeled SLB (SI Appendix, Fig. S6D).

Src Translocates from EphrinA1:EphA2 Clusters to FAs by Membrane
Diffusion. Src is only activated on plasma membrane and its ac-
tivity is known to increase FA turnover to promote cancer mi-
gration (47), so we hypothesize that Src links EphA2 activation
to integrin adhesions by membrane diffusion. Experimentally, we
took advantage of the hybrid substrate and single-molecule imaging
to directly observe translocation of Src from ephrinA1:EphA2
clusters to FAs.
First, photoswitchable mEOS3.2-tagged full-length Src was

used to reveal Src membrane diffusion. Src-mEOS3.2 red fluo-
rescence was lighted up upon UV (405-nm) exposure in a region
of ephrinA1 cluster and simultaneously in a nonspecific region,
and then gradually diffused away (Fig. 5C). Src activation is de-
pendent on binding of its SH2 domain to phosphorylated tyrosine
residues on other proteins to release its closed autoinhibitory
conformation (46). The slower decay rate of photoactivated Src
from the ephrinA1 cluster region compared with the nonspecific
region (Fig. 5D) suggests that Src dynamically binds EphA2 re-
ceptors and potentially becomes activated there, consistent with
immunostaining results.
By controlling UV exposure time, we achieved single-molecule

resolution to validate whether the same Src molecule recruited
by EphA2 receptors can diffuse into FAs. In this experiment,
cells were cotransfected with Src-mEOS3.2 and paxillin-GFP.
mEOS3.2 and GFP have an overlap in green fluorescence
spectrum; but because paxillin and Src colocalize in FAs, green
fluorescence could still be used to highlight FA structures. Fol-
lowing a pulsed UV exposure, single-molecule movies of pho-
toactivated Src-mEOS3.2 were recorded by TIRF microscopy
(Fig. 5E). We confirmed Src-mEOS3.2 to be single molecules by
observation of single-step photobleach and single-species distri-
bution (SI Appendix, Fig. S7 A and B). Fig. 5F shows an example
of a Src molecule that was recruited to the plasma membrane in
an ephrinA1:EphA2 cluster region, dwelled there for 150 ms and
then diffused into a nearby FA, and stayed there for nearly 2 s
before dissociated or photobleached. More examples are shown
in Movie S7. Importantly, the localized dwell events reflect
specific interactions between Src-EphA2 and Src-FAs. This is a
direct observation of recruitment, membrane diffusion, and
translocation of single molecules from one receptor to another.
Detailed analysis of Src single-molecule trajectories showed that

Src freely diffuses on the plasma membrane and can bind both
EphA2 clusters and FAs. When a Src molecule initially appears in
an ephrinA1:EphA2 cluster region or FAs region, it may dwell
some time, and then dissociate in the same region or diffuse out
(Fig. 5G). Importantly, a subset of Src molecules that diffused out
of ephrinA1:EphA2 clusters subsequently reached FAs through
Brownian motion and bound there. We detected multiple ephrinA1
clusters to FAs translocation events throughout the cell (Fig. 5 G
and H and SI Appendix, Fig. S7C). Note that the detected tra-
jectory length is limited by fluorophore photobleach time, which is
typically less than a few seconds in this experimental condition.
The diffusion coefficient of Src-mEOS on the plasma membrane
was measured to be 0.41 ± 0.015 μm2/s (SI Appendix, Fig. S7 D
and E), suggesting that Src molecules can diffuse throughout the
cell in the timescale of a few minutes.

EphA2-Induced Increase in FA Dynamics Is Dependent on Src and FAK,
and Correlates with Paxillin Phosphorylation. Next, the functional
role of Src in EphA2-induced increase in FA dynamics was tested
by drug inhibition and mutant expression (Fig. 6A). We applied
10 μM of the Src kinase inhibitor PP2 during cell spreading on the
RGD+EphrinA1 hybrid substrate. Paxillin-GFP–transfected cells
were imaged continuously before and after treatment with PP2.
Before addition of the inhibitor, FA dynamics were very fast as
shown earlier. However, after Src inhibition, adhesions were sta-
bilized and resembled those of control cells (Fig. 6B, SI Appendix,
Fig. S8A, and Movie S8). FA formation rate dropped immediately
from 15.3 adhesions per minute predrug to 3.4 adhesions per
minute after addition of PP2 (Fig. 6C and SI Appendix, Fig. S8B).
In comparison, FA lifetime did not change after PP2 treatment in
RGD control substrate, and FA formation rate only reduced
slightly (SI Appendix, Fig. S8 A and B), suggesting that activated
Src is responsible for both fast assembly and disassembly of FAs
downstream of EphA2 activation.
These results were further validated by interfering with Src

activity in a nonpharmacological manner. The standalone SH2
domain of Src competed with endogenous Src to bind FAs and
EphA2 receptors (SI Appendix, Fig. S8C and Movie S9). Detailed
analysis showed that tdEOS-tagged Src-SH2 was recruited to
EphA2 immediately upon ephrinA1:EphA2 clustering (SI Ap-
pendix, Fig. S8D). However, since it lacks the Src kinase domain
we reasoned that at high expression level it should act as a
dominant-negative mutant and inhibit Src activity. Thus, we com-
pared FA dynamics in cells expressing the Src-SH2-tdEOS on
RGD+EphrinA1 or control substrates. In this experiment, FAs
were marked directly by Src-SH2-tdEOS because they colocalize on
RGD regions (SI Appendix, Fig. S8E). The characteristic lifetime
(5.8 ± 1.9 min) and formation rate (5.3 ± 1.9/min) of FAs on the
control substrate were similar to those measured using paxillin-GFP,
indicating that Src-SH2-tdEOS expression did not perturb adhesion
dynamics significantly under control conditions (Fig. 6 D and E).
Remarkably, characteristic adhesion lifetime (5.2 ± 3.3 min) on the
ephrinA1-containing substrates was almost the same as control (Fig.
6D), and formation rate (8.7 ± 7.7/min) only slightly increased in
cells expressing Src-SH2-tdEOS (Fig. 6E and SI Appendix, Fig. S8F).
Taken together, both drug treatment and Src-SH2 overexpression
experiments prove that Src activation by EphA2 receptors is re-
sponsible for the increase of FA dynamics.
FAK is an important downstream target of Src that is known to

regulate FA assembly and disassembly (49) (Fig. 6F). Western blot
analysis revealed a significant increase in phosphorylation of ty-
rosine 576 of FAK, a Src-dependent phosphorylation site, on
ephrinA1-containing substrate compared with control (Fig. 6G).
Moreover, pharmacological inhibition of FAK using 10 μM
PF573228 increased FA lifetime (Fig. 6H and SI Appendix, Fig.
S9A) and decreased FA formation rate (Fig. 6I and SI Appendix,
Fig. S9B) as measured in paxillin-GFP tracking on RGD+
EphrinA1 substrate (Movie S10). The effect of FAK inhibition on
FA stability (Fig. 6H and SI Appendix, Fig. S9A) is not as strong as
Src inhibition, suggesting that FAK is not the only downstream
target of Src to cause FA disassembly. Immunostaining images
and live-cell imaging showed that FAK was only located in FAs (SI
Appendix, Fig. S9 C and D), indicating that FAK is not directly
phosphorylated by EphA2, but possibly downstream of Src. FAK-
dependent tyrosine phosphorylation of paxillin is also known to
enhance both FA assembly and turnover (50). Western blot result
revealed a 50% increase in phosphorylation of tyrosine 118 of
paxillin on the ephrinA1 substrate compared with control (Fig.
6G). Taken together, these results suggest an EphA2–Src–FAK–
paxillin pathway to regulate FA dynamics.

Polarized Presentation of EphrinA1 Induces Directed Cell Migration.
The isotropic distribution of ephrinA1 SLB corrals on our hy-
brid substrate was such that cells encountered ephrinA1 in
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every direction they protruded, and therefore despite their vigor-
ous protrusions and contractions they did not effectively migrate
in any direction. We reasoned that spatially restricted presentation
of ephrinA1 will allow a polarized response to induce cell mi-
gration. As shown in Fig. 7A and Movie S11, we engineered a
substrate on which cells adhering to RGD encounter ephrinA1
SLB corrals on only one side. Cells initially spread toward both
sides isotropically on the RGD surface, but shortly after making
contact with the SLB, they clustered ephrinA1 and retracted lo-
cally. Importantly, cell protrusion on the other side accelerated
shortly after the formation of clusters (Fig. 7B), leading to a mi-
gration response triggered by this geometrical signal.

Discussion
Since the discovery of Eph receptors and their ligands almost
30 y ago (51, 52), their biological functions have been extensively
studied, both in healthy development and diseases. However, the
spatiomechanical aspects of regulation, which have recently
emerged as important factors in many other ligand:receptor
signaling systems (32, 53, 54), have been largely neglected in
ephrin:Eph interaction studies. Ever since it was found that
ephrin ligands require clustering for activity (55), Fc-IgG fused
ephrin preclustered by antibodies has been used as a standard
method to study Eph-related functions. However, the soluble
ligands fail to recapitulate several aspects of the natural way by

which Eph receptors interact with ephrin. First, soluble ligands are
not presented on a membrane surface. This changes the me-
chanics of Eph receptor movement and clustering, which has
previously been shown to modulate downstream activities in-
cluding ADAM10 recruitment and receptor endocytosis (17, 19).
Second, soluble ligands tend to activate cell surface receptors from
every direction, which is not the case in a tissue context, where
cell–cell and cell–matrix interactions are always spatially sepa-
rated. For example, a proteomic study revealed systematic dif-
ferences in protein phosphorylation levels in EphB2-expressing
cells following stimulation either by soluble ephrinB1 ligand or by
mixing ephrinB1-expressing cells (56), providing further evidence
that the geometrical parameters are important in regulating Eph
receptor functions. To better reconstitute EphA2 signaling, here
we developed a hybrid substrate that preserves both the mem-
brane context of ephrinA1 and spatial control. Our results showed
that local activation of EphA2 receptors triggered a local increase
in contractility, and a global increase in FA dynamics, a phenotype
that is consistent with migratory behavior. As our results suggest,
this cellular response is dependent on EphA2-mediated activation
of Src, and possibly through the Src–FAK–paxillin signaling axis as
shown in the proposed model (Fig. 7C).
EphA2-induced local retraction is possibly mediated through

activation of a RhoGEF–RhoA pathway. It is evident that in
neural development, a class of RhoGEF family named Ephexin
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overexpressing cells. (F) Src forms a complex with FAK and paxillin in FAs. FAK activity can be perturbed by drug inhibition. (G) Western blot of pY576-FAK,
total FAK, pY118-paxillin, and total paxillin from cells lysed after 1 h of spreading on indicated substrates. Quantifications of pY576-total/total FAK and
pY118-paxllin/total paxillin ratios were normalized with RGD-only control. n = 3. (H) Lifetime color-coded trajectories of paxillin-GFP in a cell on RGD+
EphrinA1 substrate before and after FAK inhibition. Ten micromolar PF573228 was added after 55 min of the movie. Left image is assembled from paxillin-
GFP trajectories from the first 55 min. Right image is assembled from trajectories during 56–120 min. (I) Quantification of FA formation rate in the same cell
shown in F, plotted with average values before and after PF573228 treatment.
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is directly activated by Eph receptors to regulate growth cone
collapse and synapse formation (57, 58). However, the expres-
sion level of Ephexin in cancers is very low. Which specific
RhoGEF is downstream of EphA2 receptor in such a case is still
an open question.
Our results demonstrate that EphA2 signaling not only in-

creases FA disassembly but also promotes their formation. A
significant increase of small, rapidly turning-over integrin adhe-
sions was found in the hybrid substrate with ephrinA1. This in-
crease in FA dynamics suggests that EphA2 signaling does not
inhibit cell spreading, but rather it stimulates cell movement by
continuously forming new adhesions and disassembling old ones.
We also demonstrate that EphA2 signaling system is intrinsically
sensitive to the spatial organization of activating ligand with po-
larized ligand presentation leading to directional cell migration.
The differences between these observations and previous reports
(10, 25, 28) may stem from the different experimental configu-
rations. In the system described here, integrin:RGD interactions
are spatially separated from ephrinA1:EphA2; they do not
physically compete with each other. In contrast, ephrinA1 ligand
displayed on solid surfaces intrinsically competes with integrin
adhesions. Soluble ephrinA1 stimulation also differs dramatically,
with EphA2 being uniformly ligated throughout the cell. We
suggest that the clear spatial separation of integrin adhesions and
ephrinA1:EphA2 clusters may more closely model the physio-
logical situation in a tissue. In addition, compared with our pre-
vious experimental setup using only SLBs (19), introduction of
integrin adhesion molecules effectively flattened cell membrane
interface and enabled more confident identification of specific
associations of cellular components with EphA2 clusters, in-
cluding Src, Cbl, Grb2, and Arp3.
The EphA2 signaling-mediated increase in FA dynamics is

dependent on Src. Inhibition of Src activity either by drug or

overexpression of dominant-negative mutants did not alter FA
dynamics significantly on RGD control substrate, but it dramati-
cally reduced FA dynamics in the presence of ephrinA1. Our re-
sults suggest that Src forms an integrin/Src/FAK/paxillin complex
in FAs, and Src-mediated phosphorylation of FAK and paxillin
regulates adhesion turnover, consistent with previous studies (48,
59, 60). Importantly, we find that EphA2 receptors recruit and
activate Src from the cytosol, which then diffuses away through the
plasma membrane. The same Src molecule that comes from
EphA2 clusters freely diffuses on the membrane and can directly
bind FAs, linking EphA2 signaling and integrin signaling remotely.
Potentially, the increased population of active Src generated by
EphA2 receptor activation shifts FA assembly and disassembly
balance to a more dynamic side. The monitoring of Src single-
molecule translocation was enabled by the spatially resolved sig-
naling interactions on the hybrid substrates.
Endocytosis of EphA2 could potentially limit Src diffusion

along the plasma membrane in a real cell–cell contact. However,
the endocytosis of membrane:membrane complexes is generally
much slower than soluble ligand:receptor complexes; therefore,
we do not expect that endocytosis of EphA2 plays a major role in
Src dynamics reported here. One remaining question concerns
how long can a Src molecule maintain its active state when dif-
fusing out of EphA2 receptors. Src inactivation is regulated by two
kinetic reactions: dephosphorylation of active loop Y419 by pro-
tein tyrosine phosphate PTP-BAS (61), and phosphorylation of
autoinhibitory loop Y530 by protein tyrosine kinase Csk (62).
Whether EphA2 signaling will interfere with these two regulators
is also not known. Further study on the timescale of Src in-
activation will help to understand more precisely about the spa-
tiotemporal regulation of EphA2 signaling and integrin functions.
Recent studies suggest that EphA2 signaling involves a balance

between ligand-dependent and ligand-independent activity (13–16).
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Fig. 7. Spatially controlled activation of EphA2 drives a local increase in contractility and a global increase in FA dynamics. (A) Time-course images of a cell
spreading and migrating on a hybrid substrate. Cell is confined within a stripe of RGD (blue) separated by PEG (gray). EphrinA1 (red) presented SLB is only on
one side of the stripe. (B, Left) Kymographs constructed from A. The three ephrinA1 clustering kymographs are constructed from yellow lines, and cell leading
edge (blue dash line) is constructed from white lines in A. All kymographs are aligned in parallel with reference to time. The three yellow arrows point to the
leading edge position at the time of each cluster initiation. (Right) Quantification of cell leading edge protrusion speed before and after ephrinA1 contact.
n = 9. (C) Illustration of the proposed model.
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While ligand-independent signaling through serine phosphoryla-
tion is believed to promote tumor progression (13), our results here
suggest that ligand-dependent signaling through tyrosine phos-
phorylation also promotes cell motility in a spatially controlled
manner. Overall, we suggest that spatial distribution of ephrinA1
ligand is an integral aspect of the EphA2 signaling system.

Materials and Methods
Patterned substrate of fluid ephrinA1 and immobilized RGD, and cell culture
and plasmids are described in SI Appendix, Materials and Methods.

Immunostaining and Western blotting follow standard protocols de-
scribed in SI Appendix, Materials and Methods.

Cell imaging and image analysis are described in SI Appendix, Materials
and Methods.
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