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Abstract

Characterizing the stability of the gut microbiome is important to exploit it as a therapeutic target 

and diagnostic biomarker. We metagenomically and metatranscriptomically sequenced the faecal 

microbiomes of 308 participants in the Health Professionals Follow-Up Study. Participants 

provided four stool samples—one pair collected 24–72 h apart and a second pair ~6 months later. 

Within-person taxonomic and functional variation was consistently lower than between-person 

variation over time. In contrast, metatranscriptomic profiles were comparably variable within and 
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between subjects due to higher within-subject longitudinal variation. Metagenomic instability 

accounted for ~74% of corresponding metatranscriptomic instability. The rest was probably 

attributable to sources such as regulation. Among the pathways that were differentially regulated, 

most were consistently over- or under-transcribed at each time point. Together, these results 

suggest that a single measurement of the faecal microbiome can provide long-term information 

regarding organismal composition and functional potential, but repeated or short-term measures 

may be necessary for dynamic features identified by metatranscriptomics.

Understanding the temporal dynamics of the healthy adult gut microbiome is integral in 

leveraging these microbial communities to promote human health. Large-scale changes in 

microbial composition have been associated with host health overall1–3, but inferring 

causality and developing personalized therapies will require large-scale prospective cohort 

studies. Furthermore, to exploit the faecal microbiome as a predictive biomarker or 

eventually as a diagnostic tool in clinical settings, it is critical to be able to discriminate 

between normal versus pathological variation over time4.

Previous efforts have provided excellent characterization of the ecological stability of the 

adult faecal microbiome4–13. All measures of stability in microbial communities must be in 

the context of relative differences since, despite daily variability in species’ relative 

abundances, microbial communities in the gut microbiome have been observed to be 

generally consistent over time, even on the scale of years or decades4,5,14,15. This relative 

stability appears to be due to individually persistent strains within individual hosts5,16. 

Moreover, specific inter-individual differences in community structures appear to be 

preserved over the long-term17, allowing an individual’s faecal microbiome to be uniquely 

distinguished from that of others to serve as a faecal microbial fingerprint13. Nonetheless, 

despite the relative stability of the community profile over the long-term, recent studies have 

shown that host lifestyle or exposures such as a sudden change in diet, the initiation of 

antibiotics or the acquisition of pathogenic species can lead to profound disruptions in the 

microbiome9,18,19. When such pressures are lifted, the host’s faecal microbiome generally 

recovers to a composition comparable to its original state9.

An understanding of microbiome stability as it affects taxonomic and functional features is 

vital for applying it diagnostically or prognostically in long-term public health studies. 

Different molecular features, including strain membership, species abundances, functional 

profiles or metatranscription, may all prove to be informative regarding host health 

conditions and they are likely to differ dramatically in their relative stability within and 

between subjects over time20. The Human Microbiome Project (HMP), for example, found 

that in the absence of perturbations from disease or overt xenobiotics, metagenomic 

functional profiles were more comparable between individuals, while strains were stable 

within subjects17. Even fewer studies have focused on the metatranscriptome, an indicator of 

different aspects of microbial functional activity21,22. Finally, the dynamics of response in 

any of these features to known dietary and xenobiotic perturbations are themselves not yet 

fully known23,24. Thus, the magnitude of changes in microbial composition, functional 

potential and gene expression that occur over various time intervals and their utility for 

molecular epidemiology are unclear.
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To address these knowledge gaps, we deeply characterized the faecal microbiome among 

308 individuals enroled in the Men’s Lifestyle Validation Study (MLVS), nested within the 

ongoing population-based Health Professionals Follow-up Study (HPFS)—a prospective 

cohort of 51,529 men followed since 1986. This cohort provided an unparalleled opportunity 

to apply insights from community ecology and epidemiology to characterize the stability of 

the faecal microbiome structure and function over time. Specifically, we hypothesized that 

inter-individual differences in faecal microbiome communities and metagenomes would 

persist over short- (24–72 h) and intermediate-term (6 months) intervals, but that 

metatranscriptomes would demonstrate greater variability over time. The work described 

here characterizing faecal microbial stability is accompanied by further research on 

molecular function in the faecal metagenome and metatranscriptome population25. These 

studies will provide a foundation for leveraging the faecal microbiome as a biomarker for 

population-based cohort studies and provide insight into how metagenomics and 

metatranscriptomics relate to each other over time.

Results

The faecal metagenome is more stable than the metatranscriptome

We first quantified the longitudinal stability of metagenomic taxonomic profiles, functional 

profiles and metatranscriptomes in MLVS subjects. Our approach is detailed in Fig. 1. 

Participants provided up to four stool samples—a set of stool samples collected 24–72 h 

apart followed by collection of a second set approximately 6 months later. DNA was 

extracted from 929 samples collected from all 308 men. RNA was extracted and reverse-

transcribed to complementary DNA from 378 samples from participants who provided a 

stool at both sampling time points and who did not report the use of antibiotics within the 

past year. All samples were then sequenced using the Illumina HiSeq platform (see 

Methods). Raw sequence data were filtered to remove low-quality and human host reads and 

features with low overall relative abundance. Metagenomic and metatranscriptomic reads 

were profiled for functional and taxonomic composition using HUMAnN2 (ref. 26) and 

MetaPhlAn2 (ref. 27), respectively.

We compared the within-person stability of the faecal metatranscriptome (functional 

elements from RNA) with the stability of taxonomic composition (species from DNA) and 

the metagenome (functional elements from DNA) over short (24–72 h) and intermediate (6 

month) time intervals. This was assessed by calculating two β-diversity metrics—the Jaccard 

index (for membership) and Bray–Curtis (BC) dissimilarity (for abundance)—between an 

individual’s samples collected over the study period. In accordance with our earlier pilot 

study21, the metagenomic functional potential (DNA) was more stable than the 

metatranscriptome (RNA), which was in turn more stable than taxonomic profile abundances 

(species) (Fig. 2a).

In addition, we tested whether the stability of microbiome features was consistent over 

short- and intermediate-term intervals. Species, DNA and RNA features that remained stable 

within a subject over a 24–72 h period tended to be similarly stable over 6 months 

(Spearman’s r =0.99, two-tailed P <2.2×10−16), suggesting the presence of a subset of 

features that can be consistently measured over time.
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Between-person exceeds within-person metagenomic variation

As in previous studies of the faecal microbiome17, individuals’ microbial community 

structure and metagenomic functional potential were more self-similar (red boxes) over time 

than between subjects (blue boxes) (Fig. 2b). This remained consistent over short- (24–72 h) 

and intermediate-term (6 month) periods (within-person variation versus between-person 

variation for all four Mann–Whitney U tests: P <2.2×10−16). In contrast, we found that 

within- and between-subject variation over short- and intermediate-term periods was 

comparable for metatranscriptomes (short term Mann–Whitney U test: P = 0.25; 

intermediate term Mann–Whitney U test: P =0.50).

To additionally quantify the proportion of variation that can be attributed to between-subject 

variation for the purposes of prospective population-based cohort studies, we estimated 

intra-class correlation coefficients (ICCs). The majority of species and genes (86.8 and 

92.8%, respectively) retained ICCs greater than 0.40 over the longest sampling interval in 

our study. In contrast, only a small fraction of transcripts (0.79%) had an ICC greater than 

0.40 (Supplementary Table 1).

Taken together, these data suggest that specific inter-individual differences in faecal 

microbiome organismal composition and functional potential appear to be preserved over 

intervals up to at least six months and thus may be more reliably associated with long-term 

health outcomes using a limited number of measurements. In contrast, the more dynamic 

features of the metatranscriptome may be more informative regarding short-term events.

Feature abundance and prevalence are associated with stability

Feature consistency over short- and intermediate-term periods led us to consider if there may 

be properties inherent to features that contribute to stability across all hosts. Across a range 

of body sites, overall taxonomic stability of the human microbiome is correlated with feature 

abundance and prevalence13. We extended these results by exploring the correlations 

between these two ecological properties and the stability of individual organisms in the 

faecal microbiome, as well as the stability of the genomic and transcriptomic levels of 

individual enzymes. As in previous analyses where dissimilarity metrics have been used for 

individual features5, using the complement of within-person BC dissimilarity score (1 – BC) 

over the longest interval in our study (time point 1 versus time point 4; ~6 months), we 

similarly found that baseline feature prevalence and abundance were also strongly and 

positively correlated with not only organismal composition, but also genomic and 

transcriptional stability (Fig. 3). Many species that were highly abundant and prevalent in 

this population were highly stable, including the well-characterized Bacteroides uniformis 
(dark green circle) and Faecalibacterium prausnitzii (orange circle)28. In contrast, species 

that were of low prevalence and abundance were less stable, including those that were 

probably carried from the oral cavity including Lactococcus lactis (black circle) and 

Streptococcus thermophilus (dark purple circle)21,29. Similarly, enzymes such as RNA 

polymerase (red circle) (EC (Enzyme Commission) 2.7.7.6), which are essential for 

prokaryotic function, were universally prevalent, highly abundant and stably expressed at the 

genomic and transcriptional level.
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Notably, however, there were select features for which the stability levels did not correspond 

with their prevalence or abundance. For example, Sutterella wadsworthensis (blue circle), 

was in the bottom quintile for prevalence and the bottom half for abundance, but it was in 

the top quintile for stability. This may be due to the role of this species’ lone production of 

the adenosine 3′-phosphate-5′-phosphosulfate-independent sulfuryl transferase (EC 

2.8.2.22)—an important microbial enzyme involved in the detoxification of phenolic 

compounds30,31. Similarly, Bacteroides plebius (light purple circle), found to occupy a 

unique role in starch utilization, was found in the bottom quintile for prevalence but in the 

top quintile for stability32. Additionally, as observed in the HMP, there were genes that were 

universally prevalent at the DNA level but of relatively low genomic abundance17. Many of 

these enzymes had some of the most variable gene expression. For example, the pair of 

enzymes thiaminase I and II (EC 2.5.1.2 and EC 3.5.99.2), which are involved in the 

microbial degradation of thiamin, possessed DNA sequences detected in 100% of 

participants, but were within the bottom 5% of stable transcripts33. Similarly, the enzyme 

ErmC (EC 2.1.1.184), which encodes one of the macrolide resistance genes was universally 

prevalent at the genomic level but was unstable at the RNA level and of intermediate 

stability at the genomic level34.

Host factors that may influence faecal microbiome stability

In addition to examining determinants of stability for specific features, we assessed whether 

there were lifestyle factors or behaviours at the time of stool collection that could explain 

global instability of the faecal microbiome for each individual. There have been inconsistent 

data on the effects of antibiotics and bowel preparation on the faecal microbiome 

composition and limited data on temporal change in the metagenome19,24,35–38. In addition, 

ecological theory suggests that species-rich communities may have a greater compensatory 

capacity for disturbances in the ecosystem39,40.

In an exploratory analysis, we examined the association of putative host or environmental 

factors that may influence the stability of microbial community structure or pathways over a 

longer period. To do this, we calculated BC dissimilarity values for each individual over the 

longest sampling interval (around six months) using species, genes and transcripts as our 

response variables. As shown in Table 1, there were few factors that consistently explained 

instability. However, common predictive factors across feature types included mean Shannon 

index values (α-diversity) and exposure to a bowel laxative preparation within the two 

months before collection. Antibiotic use during the six-month period between sample 

collection seemed to affect genomic instability to a slightly greater extent than species 

instability. However, the overall low correspondence between antibiotic usage and 

dissimilarity suggests that faecal ecological variability may either be attributed to additional 

exogenous factors not measured here or to endogenous and perhaps stochastic host–

microbial interactions.

Relating metagenomic and metatranscriptomic stability over time

Next, we considered the degree to which transcriptomic stability is related to metagenomic 

stability, since the central dogma suggests that DNA copy number changes are likely to 

influence transcript levels. Recent evidence from a pilot study involving a subset of these 
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participants (n = 8) found that many gene and transcript relative abundances were well 

correlated and that a substantial fraction (41%) of microbial transcripts were basally 

regulated21. Again using the complement of the within-person BC dissimilarity score over 

six months as our metric of stability, we found that genomic instability appears to explain a 

large proportion of transcriptomic instability (Spearman’s r = 0.86; r2 = 0.74 = 74%; P 
<2.2×10−16). To further investigate whether this trend is driven by a small number of highly 

expressed genes, we divided our dataset into genes that were prevalently expressed (defined 

as transcripts detected in >90% of samples; n = 1,049) and genes that were variably detected 

(n =754). When comparing r2 values for these two groups, we did not observe an 

appreciable difference (0.56 versus 0.48). However, we found that among only the 

transcripts in the bottom 10% of prevalence (n = 176), a similar strength in association was 

not seen (r2 =0.01), suggesting that measured expression of these genes is influenced by 

other factors.

In addition, we investigated whether dominant expression of stable versus unstable genes 

varied according to species. For each transcript, a dominant contributing species was 

identified based on the maximal average contributing organism for each transcript from 

HUMAnN2 (see Methods). We then ranked species according to the total number of genes 

that they dominantly expressed (Fig. 4). As shown, Bacteroides species are dominant 

contributors to the greatest number of genes expressed, as well as dominant contributors to 

the expression of the most stable transcripts. In contrast, Streptococcus species are dominant 

contributors to the expression of some of the most unstable transcripts. Interestingly, these 

are not typically viable gut residents21, suggesting that some species play more variable 

roles because they are rare, transitory, more prone to influence by environmental factors or 

possibly under-sampled.

Stability of gene expression over time

The previous section highlighted that much of the transcriptional variability over time for 

each feature was associated with changes in the metagenome. Thus, next we queried what 

proportion of the remainder of transcriptional variation could be explained by differences in 

the transcriptional expression of features over time. In an approach similar to that performed 

in the pilot study21, we identified significantly differentially transcribed pathways, defined 

as having a mean log RNA/DNA abundance ratio >2 for all four time points and then 

explored where they overlapped. Of the 218 pathways that were significantly differentially 

expressed, 79% were consistently over- or under-expressed across three or four time points 

(Fig. 5a).

To better understand which pathways were most stably expressed, for each time point, we 

computed the mean RNA/DNA ratio (see 'RNA/DNA normalization' in the Methods of the 

accompanying manuscript by48 for each pathway across the 85 participants who gave 4 

samples for transcriptomic analysis. We then calculated the coefficient of variation for these 

means and ranked the pathways by their coefficient of variation (Fig. 5b). The top eight 

resulting most stable pathways in terms of transcriptional regulation appear to be involved in 

cellular housekeeping, such as carbon metabolism (stably over-expressed) and amino acid 

synthesis (stably under-expressed).
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Discussion

Here, we quantify faecal microbiome stability for prospective population-based cohort 

studies, with a particular focus on the relationship between metatranscriptomic features and 

the metagenome (both organismal composition and functional potential). See also ref. 48 for 

a discussion of the molecular and functional activity. As expected from single organisms and 

human studies, metatranscriptomic variation exceeded that of the metagenome. In addition, 

unlike the metagenome, metatranscriptomic variation within individuals over time was 

higher, to the point that it was comparable to variation between individuals. Taken in 

combination with our accompanying report describing a relatively stable 'core' 

metatranscriptome48, these findings, combined with previous reports21,23,24, suggest a 

model in which gut microbial community function mirrors that of differentiated human cell 

types: a subset of transcripts are prevalently active in the gut from varied microbes and 

conditions, while the remainder respond dynamically to intrinsic or external factors, such as 

diet.

In addition, we found the striking result that approximately 74% of the instability in the 

faecal metatranscriptome can be explained by instability in the faecal metagenome. These 

findings are similar to those from our pilot study, which showed that at a single time point, 

more than half of the variation in microbial community gene expression can be explained by 

metagenomic composition. This is best illustrated by our finding that some of the most 

highly stable (as well as highly abundant and prevalent) species, such as B. uniformis, were 

responsible for the dominant expression of a large number of stable genes. In contrast, 

Streptococcus salivarius—an unstable species that is probably transiting from the oral 

microbiome21—dominantly expresses many of the most variable genes. Similar findings 

were found in relation to the regulation of gene expression. Of the genes we identified as 

significantly differentially transcribed, nearly 80% were consistently over- or under-

expressed. Many of these stably expressed pathways appeared to be essential for cellular 

function or involved in glycolysis, the synthesis of amino acids or the production of short-

chain fatty acids. Taken together, it appears that much of the metatranscriptomic variation in 

stools over time might reflect changes in gene family copy number, driven by factors such as 

the proliferation of microbes, introduction of new species or host-induced shifts in 

community structures. In contrast, in the face of relative metagenomic stability, substantial 

deviations from a common genomic profile may be associated with shifts in disease 

state41,42.

Of course, we observed exceptions to these patterns, which may additionally explain some 

of the instability in the function of the faecal microbiome. Some species, such as S. 
wadsworthensis and Methanobrevibacter smithii, despite their stable presence, appear to be 

dominant contributors to the expression of unstable genes. Especially in the case of 

functionally unique taxa such as the archaea, this suggests specialized roles associated with 

targeted, highly variable activity over time. In addition, we found gene families with levels 

of RNA stability that were discordant with DNA stability, as well as several pathways that 

were differentially transcribed (up or down) only at a single time point. Given the large 

relative time scales of even our shortest gap (1–3 days) compared with transcriptional 

regulation (minutes), these changes are difficult to interpret without further data, but they 
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may indicate pathways particularly susceptible to modulation by xenobiotics, diet or other 

targeted perturbations23,24. These outlying genes with high metagenomic stability but 

variable metatranscriptomic levels, or the stable microbes leading to the expression of 

unstable genes, are likely to play a critical role in our understanding of the impact of host 

behaviour on the faecal microbiome48.

Finally, for the purposes of prospective, longitudinally followed cohort studies, our study is 

consistent with previous work and indicates that many long-term features of the faecal 

microbiome are well-represented in a single self-collected stool sample4,5,17,21. These 

include strain composition, general taxonomic abundances and core metagenomic functional 

profiles. Furthermore, our results suggest that, as expected, metatranscriptomes vary over 

time and are appropriate markers for short-term exposures, and not necessarily long-term 

exposure–disease relationships. They do, however, remain somewhat personalized, and 

subsets of microbial transcripts are individually more stable. It remains to be determined 

which of these microbiome features, if any, represent the best biomarkers for diagnosis or 

prognosis of health conditions in diverse human populations.

Moving forward, the large-scale, population-based collection of stools is critical to exploring 

the factors that promote a stable core functional microbiome, yet yield unique species and 

metagenomic profiles. Prospective cohort studies characterizing the microbiome in relation 

to lifestyle data, such as dietary and medication information, have already begun to explore 

inter-individual variation and will be essential in mechanistically understanding the 

interactions between the faecal microbiome and the host in the context of health and 

disease17,43–45. Continuing to improve our understanding of the stability of the faecal 

microbiome function is critical not only in determining the ecological dynamics of the 

human microbiome25, but also for the promotion of human health.

Methods

Study population

The HPFS is an ongoing prospective cohort study that began in 1986 among 51,529 US 

male podiatrists, dentists, osteopathic physicians, veterinarians, pharmacists and 

optometrists aged 40 to 75 years at enrolment. In this study, participants returned 

questionnaires every 2–4 years with greater than 90% follow-up to provide information 

about lifestyle and dietary factors, medication use, and diagnoses of colorectal cancer and 

other diseases. The MLVS was established among 700 men aged 52–81 years (median 69 

years) nested within HPFS who had completed the 2010 food frequency questionnaire and 

previously provided a blood sample. Men with coronary artery disease, stroke or transient 

ischaemic attack, cancer (except squamous or basal cell skin cancer) or major neurological 

disease (amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, epilepsy or multiple 

sclerosis) were excluded. The 308 individuals sampled in this study were recruited into the 

MLVS starting in July 2012 and ending in July 2013. Participant recruitment and protocols 

were approved by the Harvard T. H. Chan School of Public Health Institutional Review 

Board #HSPH 22067-102. All participants provided informed consent for the study.
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Sample size rationale

A tiered study design with metagenomic sequencing and a smaller batch of 

metatranscriptomic sequencing was used to determine both the composition and metabolic 

potential of the faecal microbiota. From the HMP findings of ~300 taxa per sample, our 

sample was estimated to yield relative abundances with standard deviation quartiles of 

(0.016, 0.027, 0.058) among rare taxa (present in < 50% of samples) and (0.081, 0.10, 0.15) 

among common taxa (arcsine square root-transformed relative abundance units).

Sample collection

Participants provided up to four stool samples—a set of samples from two consecutive 

bowel movements 24–72 h apart followed by collection of a second set of two such samples 

approximately 6 months later. Our collection protocol had previously been validated (see 

Supplementary Discussion)21. Briefly, participants deposited each bowel movement into a 

plastic commode collection bowl and then, using a specially designed spoon attached to a 

collection tube cap, faeces were scooped into a tube containing RNAlater. At each stool 

collection, participants documented the date and time of defecation as well as the Bristol 

score46. In addition, concurrent with each set of samples, participants completed a brief 

questionnaire collecting information regarding their recent use of antibiotics, gastric-acid-

reducing medications, laxatives and probiotics, as well as other relevant exposures. At each 

time point, participants stored the specimen in the RNAlater fixative at ambient temperature 

until the specimen collected from the second bowel movement was produced. Each set of 

stool specimens was then placed in a special mailing kit and returned at ambient temperature 

by overnight mail. Upon receipt, the collection tubes were immediately placed into −80 °C 

freezers.

Sample handling and nucleic acid extraction

DNA and RNA extraction, processing and sequencing were as published21. Briefly, 100 mg 

stool aliquots were centrifuged at maximum speed to remove the excess of RNAlater. To the 

pellet, 110 μl of Tris-EDTA buffer with Proteinase K (Qiagen) and lysozyme (Sigma–

Aldrich) (15 mg ml−1) were added with incubation on a laboratory shaker for 10 min. The 

mechanical lysis was performed by the addition of a 1.2 ml RLT buffer with 2-

mercaptoethanol (Qiagen) and 1 ml of 0.1 mm glass beads (BioSpec Products), followed by 

bead beating for 3 min. The debris were removed by centrifugation and the supernatant was 

used in Qiagen AllPrep spin columns according to the manufacturer’s protocol (Qiagen). 

The only exception was in the preparation of the RNA: 60 μl DNase solution was added to 

buffer RW1 and incubated at room temperature for 15 min, followed by another wash with 

RW1 buffer. A NanoDrop 1000 (Thermo Fisher Scientific) was used to determine the DNA 

and RNA concentrations, quality and purity. SUPErase In was added to the aliquot before 

freezing. RNA was extracted and reverse-transcribed to complementary DNA only from 

stool samples spanning 6 months from participants who did not report the use of antibiotics 

within the past year (Fig. 1). RNA sequencing (RNA-Seq) libraries were depleted for 

ribosomal RNA using Ribo-Zero (Epicentre) as previously described21.
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DNA was extracted from all 929 samples. RNA was extracted from 378 samples derived 

from a subset of 96 individuals who provided all four stool samples spanning the 6-month 

study interval and who did not report the use of antibiotics within the past year.

Library prep, sequencing and taxonomic/functional profiling

We used the Nextera XT DNA Library Preparation Kit for whole-genome sequencing. For 

RNA-Seq, we used RNAtag-Seq—a method to create an RNA-Seq library containing large 

numbers of RNA samples that are bar-coded and pooled before library construction47. This 

approach does not require poly(A) capture/enrichment or random priming.

Using Illumina HiSeq paired-end (2 × 101 nucleotides) shotgun sequencing, 929 

metagenomes and 378 metatranscriptomes were obtained. Six RNA samples were not 

sequenced due to platform constraints. After sequencing and before biocomputing quality 

control, the sequencing depth (mean ±s.d.) for DNA was 3.8 ± 1.6 giganucleotides (Gnt). 

After quality control, it was 1.8 ± 0.7 Gnt. For RNA, the mean sequencing depth was 2.8 

± 2.4 Gnt before quality control and 1.2 ± 1.0 Gnt after. The quality control step included 

the removal of human sequences, quality trimming and depletion of duplicate reads using 

HMP protocols (HMP) with KneadData (http://huttenhower.sph.harvard.edu/kneaddata).

We then performed taxonomic profiling with MetaPhlAn2 (ref. 27) and functional profiling 

of genes and transcripts using HUMAnN2 (ref. 26). Outlier identification was performed and 

eight samples were removed because their ordination scores in either dimension (NMDS1 or 

NMDS2) were outside the range of the median ± 3 interquartile ranges. Notably, four of 

these samples were provided by a participant who reported a history of colectomy 

(Supplementary Fig. 1). Six RNA samples were removed because they did not have 

matching DNA-sequenced samples. We subsequently filtered all taxonomic features with a 

relative abundance less than 10−4 (0.01%) in greater than 10% of all samples. Similarly, for 

DNA and RNA, we filtered all gene families with a relative abundance less than 10−5 

(0.001%) in greater than 10% of all samples.

Statistical analysis

Variability in the relative abundance values for community composition, metagenomes and 

metatranscriptomes within and between samples was determined by calculating the BC 

dissimilarity metric for each individual over time17. Short-term intervals, as previously 

described, were defined as consecutive bowel movements (24–72 h apart), whereas the 

intermediate interval was six months—the longest sampling interval in the study. Similarly, 

the Jaccard index was calculated within samples across time, where comparisons were 

drawn between the first sample and the remaining three5. With these metrics, higher values 

signify more variable features, whereas lower values indicate more stable features.

To estimate the reliability or reproducibility in measuring relative abundance values of 

features over time, we calculated ICCs. Relative abundance values were first arcsine square 

root-transformed to variance-stabilize data and better approximate normality and then, using 

linear mixed-effects models with restricted maximum likelihood estimation, we divided the 

between-person variance by the sum of the within- and between-person variances48. In a 

previous study, in simulations on proportion data, this approach performed similarly to 
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generalized linear mixed model-based estimates of ICCs using multiplicative models fitted 

by penalized quasi-likelihood estimation and from additive models fitted by Markov chain 

Monte Carlo sampling48.

We explored whether several putative factors (bowel preparation use, antibiotic use, acid-

lowering medication, and so on) were associated with within-person community, 

metagenome and metatranscriptome stability across the longest interval in our study using 

linear models. The Shannon index was calculated to be the mean of the within-sample 

diversity at time point 1 and time point 4. Acid-lowering medication use was determined by 

the use of proton-pump inhibitors or H2 receptor antagonists more than once a week for two 

months. Bowel preparation was determined as any use of bowel preparation in the two 

months before stool collection. Antibiotic use was defined as the oral or intravenous 

administration of antibiotics in the 12 months before stool collection. Those who never used 

antibiotics were set as the reference level. 'Any antibiotics' users were defined as participants 

using antibiotics at any point during the 12 months before the second stool collection and 

'new antibiotics' users were defined as non-users of antibiotics before collection time point 1 

who had initiated the use of antibiotics after the first collection and before the second. The 

Bristol category change was determined by categorization of participant-reported Bristol 

stool scores into hard (1–2), normal (3–4) and soft or liquid (5–7) categories and then 

calculating the difference between the categories over time46.

We examined associations between the baseline mean relative abundance and prevalence of 

each feature versus feature stability, and how metagenomic variability correlated with 

metatranscriptomic variability for each feature over time. As part of this, we investigated 

whether dominant expression of stable genes versus the expression of unstable genes varied 

according to species. For each transcript, a dominant contributing species was identified 

based on the maximal average contribution to each transcript. We then ranked the species 

according to the total number of genes that they dominantly expressed and (for presentation 

purposes) selected those contributing to 30 or more and overlaid them on a scatterplot in 

colour (grouped by genus). Examples of this process are presented in Figs. 3 and 4.

To test the stability of gene expression over time, we identified 740 pathways found in the 

340 samples for which we had DNA and RNA data across all four time points. In total, 218 

differentially transcribed pathways were defined as having a mean log10(RNA/DNA) 

significantly different from zero at each later time point using a linear model. We subjected 

these nominal P values to false discovery rate correction following the Benjamini–Hochberg 

method with α = 0.05. We then explored the consistency of the differential regulation of 

each pathway by exploring the overlap at each time point.

Life Sciences Reporting Summary

Further information on experimental design is available in the Life Sciences Reporting 

Summary.

Data availability

Sequence data have been deposited in the Sequence Read Archive under BioProject ID: 

PRJNA354235. Data from the Health Professionals Follow-up Study, including metadata not 
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included in the current manuscript but collected as a part of the MLVS, can be obtained 

through written application. As per standard controlled access procedure, applications to use 

HPFS resources will be reviewed by our External Collaborators Committee for scientific 

aims, evaluation of the fit of the data for the proposed methodology and verification that the 

proposed use meets the guidelines of the Ethics and Governance Framework and the consent 

that was provided by the participants. Investigators wishing to use HFPS or MLVS cohort 

data are asked to submit a brief (two pages) description of the proposed project ('letter of 

intent') to E.B.R. (HPFS Director; erimm@hsph.harvard.edu).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Experimental design
308 participants from the MLVS, nested within the HPFS cohort, were recruited to assess 

the stability of microbiome communities, metagenomes and metatranscriptomes. 

Participants provided up to four stool samples using a previously validated self-sampling 

method21. One set of stool samples was collected 24–72 h apart followed by a second set 

approximately 6 months later. Metagenomic and metatranscriptomic reads were generated to 

provide taxonomic, functional metagenomic and transcriptional features for stability 

assessment.
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Fig. 2. Inter-individual differences in organismal composition and functional potential appear to 
be preserved, unlike the more variable metatranscriptomes
a, 1 – Jaccard Index (fraction of shared features) between all possible pairwise combinations 

of the first faecal sample with the other three samples collected from each individual (n = 

308). 95% confidence intervals are shown in grey. b, Bray–Curtis β-diversity scores within 

and between subjects for short- (24–72 h; n = 308 individuals) and intermediate-term 

intervals (6 months; n = 160 individuals). Here, species represents taxonomic profile 

abundances, DNA represents metagenomic functional profiles, and RNA represents 

metatranscriptomes. Boxplot whiskers include observations within 1.5 interquartile range of 

the upper and lower quartiles.
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Fig. 3. Stability of individual species, genes and transcripts over 6 months is correlated with 
average baseline relative abundance and prevalence
Each point represents an individual feature—species (n = 139), genes (n = 1,952) or 

transcripts (n = 1,803). Coloured circles highlight species and gene families discussed in the 

main text, according to the figure legend.
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Fig. 4. Relating metagenomic and metatranscriptomic stability over time
Genomic instability appears to explain a large proportion of transcriptomic instability over 

intermediate-term (6 month) periods (r2= 0.74); the metatranscriptome should typically be 

no more stable than the metagenome. In addition, we investigated whether dominant 

expression of stable genes versus expression of unstable genes varied according to species. 

For each transcript (n = 1,803), a dominant contributing species was identified based on the 

maximal average contribution to each transcript. We then ranked the species according to the 

total number of genes that they dominantly expressed and (for presentation purposes) 

selected those contributing to 30 or more and overlaid them on the scatterplot in colour 

(grouped by genus). Each point represents an individual feature.
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Fig. 5. Exploring the stability of gene expression
a, For a large proportion of transcriptional pathways over- or under-expressed over time in 

the stool, this differential expression may be consistent. The Venn diagram shows 

consistency of differentially transcribed pathways (mean RNA/DNA ratios >2 across at least 

one time point; n = 218) across 4 stool samples. b, A subset (n = 8) of stably transcribed 

pathways is highlighted, according to those with the lowest coefficient of variance of mean 

RNA/DNA expression ratios across the four time points. Many of the stable pathways 

appear to be involved in cellular housekeeping, such as carbon metabolism (over-expressed; 

above dashed red line; >1) and amino acid synthesis (under-expressed; below dashed red 

line; <1). Error bars indicate 95% confidence intervals.
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