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An algorithm to efficiently simulate multi-component fluids is proposed and illustrated. The focus
is on biological membranes that are heterogeneous and challenging to investigate quantitatively.
To achieve rapid equilibration of spatially inhomogeneous fluids, we mix conventional molecular
dynamics simulations with alchemical trajectories. The alchemical trajectory switches the positions
of randomly selected pairs of molecules and plays the role of an efficient Monte Carlo move. It assists
in accomplishing rapid spatial de-correlations. Examples of phase separation and mixing are given
in two-dimensional binary Lennard-Jones fluid and a DOPC-POPC membrane. The performance of
the algorithm is analyzed, and tools to maximize its efficiency are provided. It is concluded that
the algorithm is vastly superior to conventional molecular dynamics for the equilibrium study of
biological membranes. Published by AIP Publishing. https://doi.org/10.1063/1.5027078

I. INTRODUCTION

Computer simulations of condensed phases are powerful
tools to investigate the thermodynamic properties of a wide
range of molecular systems. Nevertheless, challenges remain.
One of the challenges is the simulation of multi-component
dense fluids (MCDFs). Their broad spectra of spatial and
temporal scales prevent the effective use of Molecular Dynam-
ics (MD) or Monte Carlo (MC) simulations in numerous
cases.

Following experimental conditions, we frequently sim-
ulate systems that are translationally invariant on average
(TIOA). If the system is of a single component, the simu-
lated model is likely to be TIOA prior to production runs
and relatively short trajectories are required to sample from
the correct distribution. However, if the system is a dilute
solution, averaging over the positions of the solute molecules
can be expensive. The average length scale separating the
solute molecules may be large, and the distribution of dis-
tances may be wide and poorly sampled in a single snap-
shot in time. In practice, it is exceptionally hard to converge
MD simulations with only a few solutes in a simulation box.
Molecular Dynamics (MD) simulations are therefore restricted
to aqueous solutions with a high concentration of solutes.
Low concentrations of solute molecules can have a profound
impact on structures and dynamics. For example, minute
concentrations of magnesium ions are necessary for RNA
folding.1

Another significant simulation challenge in multi-
component systems is assembly and separation of phases.
Let the initial condition of a simulation be a uniform, well-
mixed fluid. Let the equilibrium state be separate phases in
which each component aggregates to form a pure phase. To
model this process, substantial large-scale rearrangements are

required which are more expensive to compute than the cal-
culations of thermodynamics of a single component (and a
single phase) fluid for which the computational challenges are
different.

Concrete examples of MCDF with significant computa-
tional complexity are biological membranes. The dynamics of
molecular components of the membrane have received consid-
erable experimental attention using sophisticated experimental
methods such as fluorescence correlation spectroscopy2 or
NMR.3 Typically, one, two, or three component mixtures have
been used to understand the dynamics and structures of mem-
branes, though biological membranes can have thousands of
components.4 This difference may impact important observ-
ables. For example, molecular diffusion in model membranes
is up to 50 times faster than the diffusion of the same molecules
in membranes of living cells.5

Local assemblies of specific lipids, proteins, and choles-
terol molecules in biological membranes led to the “raft”
hypothesis, which is more than 20 years old.6,7 According to
the raft hypothesis, rafts capture membrane proteins and hence
serve biological functions. The concept is intuitive, appealing,
and perhaps not surprising given the heterogeneity of biologi-
cal membranes. Nevertheless, the notion of rafts in biological
membranes remains debatable,4,8–10 likely due to the broad
range of observations reported as evidence for rafts. Rafts
have been reported to exist with length scales of nanome-
ters to micrometers11–13 and lifetimes of microseconds and
seconds.14,15

Computer simulations of heterogeneous membranes may
add useful information to the ongoing debate on biologi-
cal membranes. Indeed, a large body of recent investigations
has focused on model membranes with two or more compo-
nents.16–21 A study using a coarse-grained model of more than
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60 different types of lipids represents to our knowledge the
most diverse mixture studied with MD,22 and a recent simu-
lation using the Anton ASIC machine illustrated the capacity
of straightforward MD to sample the equilibrium of a small
two-component system from a phase separated state to a mixed
state.23

Nevertheless, significant challenges in simulation of het-
erogeneous membranes remain. Slow two-dimensional dif-
fusion of membrane constituents makes equilibration via
conventional MD prohibitively expensive. Moreover, local
aggregation and phase separation add to the complexity.
Indeed, computer simulations of model membranes usually
invoke only a few components to reduce complexity and
even with this simplification, sampling in these systems is
challenging. In vivo, one finds membranes with thousands
of different types of lipids. An efficient algorithm to sim-
ulate such heterogeneous biological membranes is highly
desired.

In computational approaches that use a local displacement
to generate a new move, the diffusion constant, D, is a critical
parameter to assess efficiency. Let ∆x be the displacement of a
particle after a time interval ∆t, and let 〈. . .〉 be an equilibrium
average over all indistinguishable particles and time origins.
The relationship 4D · ∆t '

〈
(∆x)2

〉
provides an estimate for

the equilibration time as a function of system size. This rela-
tionship should be considered an upper bound, as the effective
diffusion is expected to be slower for heterogeneous systems.
An increase in the length of the system by a factor of 10 will
require an increase of the equilibration time by a factor of 100
for the same diffusion constant. Recently, it was demonstrated
that the length scales required to stabilize phase separation in
heterogeneous membranes may be larger than what is typically
used in simulations.24

Enhanced sampling MD algorithms focused on increasing
membrane mixing by replica exchange.25,26 These simulation
methods achieved significant enhancement of the dynamics
of the lipids, upon increasing the observed diffusion constant
by up to a factor of 10. However, one should keep in mind
the poor scalability with membrane size and the need to keep
the simulation box large enough to detect assemblies of the
relevant sizes.24

An alternative approach to MD simulations of equilibrium
is the MC method.27 In MC, a trial move is generated at random
and the resulting structure is tested for acceptance or rejection
using (for example) the Metropolis criterion. An interesting
set of studies28,29 exploited the integration of MD and MC to
explore the phase diagram of lipid membrane mixtures. They
consider a move in which the identity of a single phospholipid
is modified. No large spatial displacement is required to obtain
significant rearrangements, which is a significant advantage of
MC compared to MD. The move alters the lipid composition in
the system and generates configurations from the grand canon-
ical ensemble. The choice of the type of the MC move remains,
however, challenging, and the changes of the groups are lim-
ited to similar lipids that differ by a few atoms at their tails.
In some cases the simulations with low acceptance probability
were successful.

A particular realization of a random move, which is useful
for equilibration of a multi-component system, is an exchange

between two randomly chosen particles or groups of parti-
cles. For example, let a particle of type A be at coordinate r1

and particle type B be at position r2. The move exchanges the
positions of the two particles. Hence particle type A after the
exchange move is now at r2, and particle type B is placed at
r1. This is a large spatial displacement of each of the par-
ticles that is not bound by the magnitude of the diffusion
constant, as is the case in MD, reducing the dependency of
the equilibration time on the system size. The same large dis-
placement cannot be generated quickly using dynamics that
follows time dependent physics with small steps. Large spatial
correlation (or de-correlation) can be achieved with a rela-
tively small number of MC moves. The exchange move also
retains the chemical composition of the system and therefore
generates configurations from the canonical ensemble. Such
exchange moves are the focus of the present paper and are
called throughout the manuscript “exchanges” or “exchange
moves.”

The caveat of MC moves employing the metropolis crite-
rion is the acceptance probability. If the energy of a proposed
structure, U(x1), is higher than the energy of the current struc-
ture, U(x0), the acceptance probability, Paccept , is exponen-
tially small with the energy difference ∆U = U(x1) − U(x0),
where Paccept(∆U > 0) = exp(−β∆U) and β = 1/kBT. If
∆U ≤ 0, the trial move is accepted with probability of one.
If the random move is chosen poorly, generating high ener-
gies for the trial steps, the moves are unlikely to be accepted
making the MC approach inefficient.

If the molecules of the different components vary appre-
ciably in size and interactions, the acceptance probabilities
of the proposed exchange moves in MC are small or in MD
the effective mixing is slow. This is perhaps the reason why
atomically detailed simulations of heterogeneous biological
membranes are rare and most simulations use only one or a
few components.

Recently a class of algorithms was discussed for more
rapid calculations of thermodynamic variables that are based
on a mixture of equilibrium and non-equilibrium dynamics.30

These non-equilibrium methods exploit the insight of Jarzyn-
ski into non-equilibrium systems.31 We consider an average
over an ensemble of non-equilibrium trajectories with initial
conditions sampled from equilibrium. Such an ensemble can
be presented by a single equilibrium trajectory chopped into
pieces. Each piece represents a trajectory sampled according to
an equilibrium distribution as outlined in Ref. 30. The single
trajectory formulation is more appropriate for the task dis-
cussed in this paper since it enables the generation of a Markov
chain and an MC move with a high acceptance probability. The
higher acceptance is obtained with greater computational cost
to generate proposed moves.

The algorithm of this manuscript aims to simulate equi-
librium in MCDF using a sequence of conventional MD tra-
jectories and trajectories modeling Alchemical Steps (AS) of
group exchanges. The alchemical steps are represented as non-
equilibrium work along a mixing parameter λ. We therefore
named this algorithm MDAS for Molecular Dynamics with
Alchemical Steps. We describe the algorithm that is a concrete
implementation of the general formulation of non-equilibrium
candidate Monte Carlo move30 for system mixing in Sec. II.
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Others have used an implementation of the same general for-
mulation for molecular docking and a conformational search
in a peptide.32,33

II. METHODS
A. The MDAS algorithm

Consider a MCDF system with N molecules. The different
components are molecules or molecular groups (for example,
an amino acid or a phospholipid molecule) with coordinate
vectors ri, respectively. The task is to simulate an equilib-
rium distribution of this system using molecular dynamics.
The mixing of the system components is slow to converge
with conventional MD, and we wish to accelerate the conver-
gence with MC-like moves. This combination of MD with MC
means that the simulation will only provide information on the
thermodynamics of the system. It has, however, the potential
to greatly reduce the time of relaxation to equilibrium of the
MCDF system as we illustrate in Secs. III A and III B.

We seed the MD trajectories (which we denote by D) with
MC-like exchange moves between randomly selected pairs of
molecules or molecular groups. The exchange moves (which
we denote by M) are performed at uniformly spaced intervals
in simulation time. The series of MD trajectories and MC-like
moves leads to a sequence of events DMDMDMD. . . The D
component is conducted with a fixed Hamiltonian and samples
configurations from one of the well-known ensembles (NVE,
NVT, or NPT).

Here the MC move is a non-equilibrium trajectory, M,
with a known statistical weight that proposes an exchange
move. The weight is used to accept or reject the trajectory
M in a similar spirit to the Metropolis algorithm that pro-
poses a change in a single step. If the M trajectory is accepted,
a trajectory D continues from the final configuration of the
M trajectory. Otherwise, the trajectory M is rejected and the
system returns to the point from which the M trajectory was
initiated. Another D segment is conducted, and this process is
repeated until termination of the simulation.

Configurations are collected from D trajectories for sam-
pling from the desired ensemble. Each of the M trajectories
is considered as an MC trial move to exchange the chemi-
cal identity of two randomly selected molecules or molecular
groups. The trial move returns at the end of the alchemical cal-
culations to a system with the same composition but different
coordinates.

We consider in more detail the exchange move, in
which group i of type k changes position with group j of
type l, l , k. The potential energy has the general form
U

(
r1, . . . , rk

i , . . . , rl
j , . . . , rN

)
and after the exchange it is

U
(
r1, . . . , rl

i , . . . , rk
j , . . . , rN

)
. The energy difference between

the states before and after the trial move can be positive and
high if the difference between groups k and l is large resulting
in low acceptance probabilities.

We wish to construct a more “gentle” exchange move
with a reasonably high acceptance probability. We therefore
define an intermediate state using a parameter λ such that when
λ = 0 the pair state is

{
rk

i , rl
i

}
, when λ = 1 it is

{
rl

i , rk
j

}
. The

intermediate state is written as a linear interpolation of the

potentials between the extreme cases

Uλ,linear = (1 − λ)U
(
r1, . . . , rk

i , . . . , rl
j , . . . , rN

)
+ λU

(
r1, . . . , rl

i , . . . , rk
j , . . . , rN

)
. (1)

However, a linear interpolation between λ = 0 and λ = 1
may not be optimal. We seek a continuous path from λ = 0
to λ = 1 such that the distribution of the energy difference
between morphed states ∆Uλ = Uλ+∆λ − Uλ will be as
narrow as possible. A non-linear definition of the interme-
diate state may be desirable. For example, when a particle
vanishes, the free energy contribution of the Lennard-Jones
potential term is singular and difficult to compute with linear
interpolation.34

As written by Jarzynski,31 the work, w, done on the system
is

w(λ = 0→ λ = 1) =

1∫
0

∂Uλ

∂λ

dλ
dt

dt, (2)

where the “time” t parameterizes the chosen λ path. The work
is computed in an M trajectory by modifying λ from zero to
one following a concrete time path (specifying dλ/dt). In the
present manuscript, the M trajectory exchanges the chemical
identities of two groups of particles at different positions. The
end result looks like that the two groups swap positions. For
computational convenience, we use a particular realization of
the time path of Eq. (2) and consider a discrete representation
of the integral (see also Fig. 2)

w(λ = 0→ λ = 1) =
L∑

i=1

ωλi (δi) + ωλi→λi+1 (µi). (3)

The index i follows a sequence of trajectory segments (δi, µi)
as we progress from λ = 0 to λ = 1, and L is the number of
segments. The µ trajectory is the only trajectory segment in
which the value of λ is modified. We denote by ω the partial
work conducted at a δ or a µ trajectory segments. Note the
important difference between δ and D trajectories. δ is a short
MD run conducted during an M trajectory. It relaxes the system
after each change in the parameter λ, and it follows equations
of motion of a Hamiltonian with a fixed λ, where λ ∈ [0, 1]. The
value of the D trajectory is conducted between M trajectories
and is a conventional MD run with λ equals either zero or
one.

During δi trajectories, the exchange parameter is fixed
and the work is therefore zero. The expression for the work in
Eq. (3) is reduced to

w(λ = 0→ λ = 1) =
∑

i

ωλi→λi+1 (µi)

�
∑

i

[
Uλi+1 (x(ti)) − Uλi (x(ti))

]
, (4)

where x(ti) is the configuration at the end of a δi trajec-
tory. Equations (3) and (4) represent a particular choice of
a λ(t) trajectory, which is convenient for the calculations of
work.

A useful relationship of Eq. (2) with an algorithm to com-
pute equilibrium averages is discussed below. Equation (4) has
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a connection to the algorithm of slow growth that computes
free energy differences.35 Slow growth determines the free
energy difference with an M trajectory, at the limit of infinite

time,∆F = lim
t→∞

t

∫
0

(∂U/∂λ)λ̇dt ′ (λ(0) = 0, λ(t) = 1). The free

energy difference is the work conducted at an extremely slow
rate.

At finite times, the work is a noisier function compared
to the free energy. However, it is better than using a sin-
gle MC move, which can be interpreted as an infinitely fast
conduction of the work. The practical advantage of the work
summation [Eq. (4)] compared to a direct and single MC move
is that the changes of λ in a single µ step are small (typ-
ically 0.001-0.005) introducing minimal perturbation to the
system. Moreover, the δ trajectories generate configurations
with a smaller number of steric clashes and more accessible
energies.

The Jarzynski equality31 provides a relationship between
distribution of works conducted by an ensemble of trajecto-
ries and the free energy difference between the end states,
exp(−β∆F) =

〈
exp(−βw)

〉
. The average is over an ensem-

ble of trajectories with initial conditions sampled from the
canonical ensemble. The weight of a single trajectory is there-
fore exp(−βw). We use the weight in an acceptance-rejection
criterion in a Metropolis-like algorithm of the complete λ
trajectories

Paccept = min
[
1, exp(−βw)

]
. (5)

The average of the Jarzynski equality can be conducted
using a single long DMD. . .DMD trajectory in which we
obtain a sequence of works, w-s, from the M trajecto-
ries. Following the ergodic hypothesis, the average from
the time series of a system in equilibrium that undergoes
sequential M transitions can replace phase space averages
of different trajectories with initial conditions sampled from
equilibrium.

The algorithm to efficiently mix a multi-component sys-
tem is summarized in Table I.

TABLE I. A sketch of the MDAS algorithm.

Algorithm step Action

0 Initiate the structure and the MDAS algorithm

1 If the maximum number of steps of the DMD. . .DMD
trajectory was achieved, then stop

2 Conduct a D trajectory (a conventional MD simulation)

3 Conduct an M trajectory (varying λ from 0 to 1 using a
sequence of (δi, µi) steps) starting from the last configu-
ration of step 2 to exchange the positions of two molecules
or two groups of atoms

4 Reject or accept the move of step 3 using the trajectory
weight w - min[1, exp(�βw)]
If the trajectory is accepted, then return to step 1
If the move is rejected, then change the current config-
uration to the last structure of the prior D trajectory and
return to step 1

The specific task addressed in this manuscript of spa-
tially equilibrating a multi-component system has a number
of special features that we discuss below.

Consider an exchange move of two groups of particles
using an infinitely long M trajectory interpolating between
λ = 0 and λ = 1. As noted earlier the use of a long trajectory is
equivalent to the algorithm of “slow growth” to compute free
energy differences.35 For a fluid in thermal equilibrium, the
final state (λ = 1) is thermodynamically equivalent to the first
state (λ = 0). The free energy difference is therefore zero and
so is the work at the long time limit. From a practical view-
point, we note that the longer the M trajectory, the closer the
work to zero. Trajectories that are short may yield high values
of work with low acceptance probability. A simple remedy is
to make the trajectories longer with the anticipation that their
work will be closer to zero. Of course, the longer trajectories
are more expensive to compute and a compromise between
trajectory lengths and acceptance probabilities must be
made.

Second, the total work conducted in an M trajectory is a
sum of partial works for a small ∆λ step. The steps use struc-
tures generated at the end points of δi trajectories. If we assume
that each δi trajectory is sufficiently long to de-correlate the
initial and final structures, then the partial works are statisti-
cally independent. We invoke a central limit theorem argument
and suggest that the distribution of w =

∑
i
ωλi→λi+1 (µi) can be

modeled by a normal distribution with a known mean, m and
variance σ2 that can be determined computationally. That is,
the probability density of w is

p(w) �
1

√
2πσ2

exp

[
−

(w − m)2

2σ2

]
. (6)

Of course in the limit of a long M trajectory, we expect
m = 0. However, for short trajectories, significant deviation
from the asymptotic behavior can be obtained. The statis-
tical model is useful since it helps us to predict the aver-
age acceptance probability and hence the efficiency of the
algorithm〈

Paccept

〉
=

〈
min

[
1, exp(−βw)

]〉
=

0∫
−∞

p(w)dw +

∞∫
0

p(w) exp(−βw)dw

=
1

√
2πσ2



0∫
−∞

exp

[
−

(w − m)2

2σ2

]
dw

+

∞∫
0

exp

[
−

(w − m)2

2σ2

]
exp(−βw)dw


, (7)

where the last expression may be written as a sum of error
functions (Fig. 1).

Third, Eq. (7) makes it possible to evaluate the viability of
many particle moves in which rather than an exchange of the
position of two groups of particles we consider the simultane-
ous exchanges of several pairs. The efficiency of simultaneous
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FIG. 1. F(m,σ2) = N′, where N′ is the number of trial moves that maximizes
N ·

〈
PN ,accept

〉
. m and σ2 are expressed in kBT and (kBT )2, respectively. In

this plot, N′ ranges from 1 to 12. For smaller values of m and larger values
of σ2, we can improve the sampling with multiple simultaneous trial moves.
The dark blue region is where a single trial move is the most efficient choice.

MC moves was discussed in the past.36 Using the same model
of a normal distribution, this time for an attempt of simultane-
ous N exchanges, we have a new mean Nm and a new variance
Nσ2 and obtain the acceptance probability

〈
PN ,accept

〉
=

1
√

2Nπσ2



0∫
−∞

exp

(
−

(w − Nm)2

2Nσ2

)
dw

+

∞∫
0

exp

(
−

(w − Nm)2

2Nσ2

)
exp(−βw)dw


. (8)

The performance of the attempted N simultaneous pair
exchanges versus a single pair exchange is not obvious. A sin-
gle Monte Carlo test may lead to N simultaneous exchanges.
However, the probability of acceptance of the N simultaneous
exchanges is typically lower than the probability of acceptance
of a single exchange move. The behavior of Eq. (8) will depend
on the mean, variance of the work distribution, and the number
of exchanges.

Figure 1 shows the numerical solution of F(m, σ2) = N ′

in (m, σ2) space, where N ′ is the number of simultane-
ous exchange moves that maximizes N

〈
PN ,accept

〉
. It can be

seen that for a significant region of space, trials of multiple
simultaneous moves lead to more acceptable exchanges. As
the number of simultaneous trial exchange moves grows, the
region of efficiency becomes smaller. For large m and small
σ2, single pair exchange attempts become a more efficient
choice.

Even if p(w) is not an exact Gaussian, one may model
the distribution using Eq. (7) and numerically solve for dif-
ferent trial moves to find the optimum value of N that
maximizes N

〈
PN ,accept

〉
. In Sec. III C, we illustrate the

application of multiple, simultaneous exchange moves on
a heterogeneous membrane system and show that propos-
ing 4 simultaneous moves improves the rate of approach
to equilibrium. Finally, we comment that the discussion

above is general and is applicable to exchange moves in
any TIOA system.

B. Molecular dynamics protocols

We conducted two types of simulations to verify and
assess the performance of the MDAS algorithm. In the
first simulation, we investigated binary mixtures of two-
dimensional Lennard-Jones fluids. Particles are initially placed
on a hexagonal grid in the 30 × 30 box with periodic boundary
conditions. The unit system is set for computational conve-
nience. The temperature of the system and the mass of the
particles are set to 1. The time step is 0.001 for both D
and M trajectories, and the simulations were conducted with
the Nose-Hoover thermostat.37 The simulations have been
conducted with LAMMPS.38

The second simulation is for the lipid bilayer binary
mixture. The system consists of 100 DOPC and 100 POPC
molecules at each leaflet (400 phospholipids in total). The
membrane is created for DOPC and POPC separately by
CHARMM-GUI39 and then merged into a single structure
using Virtual Molecular Dynamics (VMD).40 It is solvated
with TIP3P water molecules and the ionic concentration is
150 mM (NaCl). The simulations were conducted with the
NAMD program.41 Water molecules were kept rigid using the
SETTLE algorithm.42 All bonds with hydrogen atoms are kept
fixed with the SHAKE algorithm.43 Particle Meshed Ewald44

was used to sum electrostatic interactions with a grid space
of 1 Å. The cutoff for Lennard-Jones interactions was 12 Å.
The system is minimized first for 10 thousand steps with
the conjugate gradient algorithm, and then equilibrated in the
NPT ensemble using the Nose-Hoover Langevin piston pres-
sure control45,46 with a piston period and decay of 200 and
100 steps, respectively. The equilibration period was for 1 ns
with a pressure of 1 atm and a temperature of 300 K. The
production run was conducted in the NVT ensemble using
Langevin dynamics47 with a friction coefficient of 5 ps−1 and
temperature 300 K for additional 240 ns.

III. RESULTS AND DISCUSSIONS
A. Example 1: A two dimensional binary
Lennard-Jones system

A phase diagram of binary Lennard-Jones systems has
been studied extensively in the past.48–50 In particular, find-
ing byways to conventional MD and MC simulations enabled
numerous advancements. The Gibbs ensemble method and the
Gibbs-Duhem integration technique of Kofke were used to
examine the solid-liquid phase diagram as a function of diam-
eters σij and the well depths εij and serve as benchmarks for
future investigations of crystallization.50 The mixtures were
also investigated by umbrella sampling51 and more recently
by transition interface sampling52 and advanced Monte Carlo
techniques.53,54 Crystal growth and propagation have been
topics of more recent investigations of Lennard-Jones sys-
tems.55,56

The computational challenges of sampling equilibrium in
TIOA systems can be addressed by tools that avoid conven-
tional simulations and exploit enhanced sampling techniques.
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MDAS is quite close to conventional MD simulation com-
bined with MC and is applicable to dense fluids with particles
that differ appreciably in their parameters. Our goal in the fol-
lowing example is to illustrate MDAS on a well-investigated
system that still poses significant numerical challenges. MDAS
can be combined with the approaches referenced above (e.g.,
replica exchange). However, its simplicity is attractive and the
generalization of this approach to other more complex fluids
is straightforward which makes it useful as a standing-alone
methodology.

The first example is a phase separation of two types of
Lennard-Jones (LJ) particles initiated from a random mixture.
There are 411 particles of each type in the system. The pair
interaction potential is a 6-12 Lennard-Jones (LJ) energy term.
For particles of types k and l and particle indices i and j, we
have

ukl

(
rij

)
= 4εkl



σ12
kl

r12
ij

−
σ6

kl

r6
ij


, (9)

where rij

(
rij =

���ri − rj
���
)

is the distance between particle i and
particle j. The interaction between particles of the same type
is chosen to be stronger than dissimilar ones: ε11/kB = ε22/kB

= 8 > ε12 = 2.
Additionally, particles have different LJ radii σ11 = 1.2,

σ22 = 0.8, σ12 = 1.0. The interaction range is 2.5σ11. We use
the largest particle radius to determine this range.

We estimate the density of the system as the fraction of the
total area covered by the Lennard-Jones disks. The area cov-
ered by a single particle is estimated as πσ2

ii/4. We therefore
have ρ = 411 · π(0.82/4 + 1.22/4)/302 = 0.75.

Our choice is such that simply exchanging type 1 and
type 2 particles (yellow and red in Figs. 2 and 3, respectively)
in a Monte Carlo simulation of the fluid would result in a
large difference in the potential energies and most moves will
be rejected. Furthermore, the density of 0.75 is reasonably
high and, therefore, a conventional MD simulation that fol-
lows the local diffusion of the particle would be too slow to
exchange particles at large length scales. In MDAS, the parti-
cles change their identities gradually (Fig. 2) leading to a sig-
nificantly higher acceptance ratio than a single MC exchange
move.

1. The exchange

In Sec. II A we described the algorithm as an alternating
sequence of a D and M trajectories. During the M trajectory,
the exchange of the particles (the alchemical exchange) is
conducted as follows.

We randomly pick two particles, each of them of a differ-
ent type [called particles 1′ and 2′ in Fig. 2(a)]. Figure 2(b)
shows how ε and σ of the selected pair of particles change.
The gradual change is parameterized by λ that is modified in
small discrete steps from 0 to 1. For this example, the gradual
change is performed in 200 intervals with ∆λ = 0.005. The M
trajectory is conducted as follows: After 100 steps of conven-
tional MD simulation with a Hamiltonian with a fixed value
of λ (a δ trajectory), λ is modified to λ + ∆λ in a single step
(a µ trajectory) while keeping the coordinates fixed. The work

FIG. 2. (a) Schematic representation of the alchemical step, exchanging the
identities of particles 1 and 2: Particle type 1′ (or 2′) initially is a particle
type 1 (or 2) and is modified to particle type 2 (or 1). (b) The change in LJ
parameters for the type 1′ and 2′ particles. The εkl grows linearly for k , l and
decreases for k = l. (c) The evolution of the parameters during an M trajectory.
Note that the work is different from zero only along the purple lines where the
positions of the particles are fixed and the interaction parameters are modified.
The acceptance or rejection of the MDAS move is based on the value of the
work using a Metropolis criterion. The horizontal black lines correspond to δ
trajectories.

done on the system at the corresponding interval, ω(λ → λ
+ ∆λ), is Uλ+∆λ(x(t))−Uλ(x(t)), where t is the end time of the
δ trajectory (100 steps). Then an MD trajectory at the interme-
diate λ + ∆λ (a δ trajectory) allows the system to equilibrate
for 100 steps [Fig. 2(c)] and we repeat the small λ change.
After 20 000 steps, we calculate the total work done on the
system for the complete particle exchange [Eq. (4)]. With the
work value at hand, we use the Metropolis criterion to test
acceptance. If the exchange move is accepted, the two parti-
cles are switched and the system is simulated for another 1000
steps (a D trajectory) before performing the next alchemical
step (an M trajectory).
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FIG. 3. 2D simulation of LJ fluid, first example. The interactions between
similar particles (see Sec. III A) are chosen to be higher than dissimilar ones.
One consequence of this choice may be a phase separation. The disks cover
a fraction of 0.75 of the total area of the simulation square. (a) Left: Initial
configurations of a 2D system of two types of LJ particles. Right: Final con-
figuration of the system after 500 × 106 steps of conventional MD. Significant
aggregation does not occur at this time scale for this example. (b) Evolution
of the system during 800 accepted MDAS moves.

2. The simulation

At the beginning of the calculation, when the binary
mixture is distributed uniformly [Fig. 3(a)], the acceptance
probability of an exchange move or an M trajectory is about
0.1. For a comparison, if a conventional MC step replaces the
M trajectory, the acceptance probability is much lower. To
test direct MC combination with MD, we conducted MD for
1000 steps and then attempted a single step MC exchange.
We then repeated another 1000 MD steps before attempting
MC exchange again. We repeated the MD and MC com-
bination 100 000 times (the total number of MD steps is
100 × 106), and not a single proposed exchange was accepted
for the Lennard-Jones system.

As the simulation continues, the condition and the difficul-
ties change. Our current algorithm chooses the pair randomly.
Once aggregates are formed [Fig. 3(b)], it becomes exceed-
ingly hard to propose an exchange that is acceptable. Pairs that
can exchange are invariably at the interfaces of aggregates. An
interface particle has at least one neighbor of a different type.

An attempt to exchange particles embedded in the aggregate
cores results in an exceptionally low acceptance probability.
There are about 150 particles at the interface out of 411 parti-
cles of each type. The probability of finding an interface pair is
about (150/411)2 = 0.13, suggesting an acceptance probability
of 0.13 × 0.1 = 0.013. The overall acceptance probability for
this system in an M trajectory is estimated from the complete
trajectories to be 0.03. The last acceptance probability is an
intermediate value between 0.1 at the beginning of the calcu-
lations and 0.013 after aggregates were formed. Nevertheless,
the acceptance probability of 0.03 is still small and it raises a
question about the algorithm efficiency. Efficiency of MC sim-
ulations depends on the system and computed observables. For
Monte Carlo simulations of hard spheres, it was argued that an
acceptance probability between 0.2 and 0.5 is efficient.57 One
possible improvement for the future is to adjust the selection
of the random pairs in a way that preferably proposes moves
involving interfacial particles.

To gain further insight into the computational efficiency
of MDAS, we compared it to conventional MD. We estimated
the computational cost as the number of force evaluations dur-
ing the trajectory. The number of force evaluations for 800
accepted MDAS moves (we counted also the force evalua-
tions of the unaccepted moves) is similar to the number of
force calculations in 500 × 106 MD steps. Figure 3 com-
pares a conventional MD simulation with an MDAS simu-
lation. We start from a randomized system and we expect
that the system will separate into different phases based on
the designed potential. After MD simulation of 500 × 106

steps, the particles in the system barely change their posi-
tions and only some small clusters of red (type 2) particles
appear. However, after 800 accepted steps of MDAS, the
particles show phase separation and red islands of smaller
particles are formed inside the yellow matrix (particles of
type 1).

The pair correlation function in the plane of particles of
type 2 g22(r) is shown in Fig. 4. It is computed from con-
formations sampled during the D trajectories as follows. Let
the number of pairs of type 2 particles between r and r + ∆r
be N(r) then g(r) = N(r)

Nt

A
2πr∆r , where N t is the total num-

ber of particles, ∆r is a finite small change in the distance,
r is the distance between the particles, and A is the area of
the simulation square. When large clusters are formed, we
expect a more significant first peak and the enhancement of
long-range correlations as in Fig. 4. Significantly more relax-
ation to equilibrium is achieved with MDAS. However, it is
not clear yet if the calculations are fully converged, as the
peaks of the pair correlation functions are still changing their
heights.

As a second example, the interaction between particles of
types 1 and 2 (colored red and blue, respectively in Fig. 5) was
made to be stronger with each other than with particles of the
same type ε11/kB = ε22/kB = 1 < ε12/kB = 5.

The particles maintain the same size difference as in
the previous example, where σ11 = 1.2, σ22 = 0.8, and
σ12 = 1.0. The purpose of this second example is to demon-
strate the enhancement of the rate of mixing (rather than
de-mixing) of the two types in a condensed phase sys-
tem where the equilibrium state is a random mixture. The
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FIG. 4. The pair correlation function for the red particles (particles of type 2)
in the simulation of the two-component system with significant self-attraction.
The blue dashed line corresponds to the initial configuration, the solid green
line shows the results of a conventional MD run after 500 × 106 steps, and
dashed red and solid yellow lines are the MDAS results after 300 and 800
moves, respectively. Note the increase in the height of the first peak and in
the long-range order as we expect from phase separation. The continued shift
of the first peak height suggests that the simulation is not fully converged
and more relaxation to order phases is expected. The MDAS simulations
continuously approach equilibrium, while the straightforward MD simulations
are “stuck” near the initial configuration. The inset shows the time evolution
of the maximum of the pair correlation function versus the number of MDAS
steps.

simulation starts from a phase separated state. Figure 5(a)
shows the initial configuration where 354 red particles and 791
blue particles filled the upper and lower parts of the simulation
box, respectively. The fraction of the total area that is covered
by the LJ disks is 0.88, corresponding to high particle density.
Conventional MD is unable to model the mixed conformation
in 100 × 106 steps [Fig. 5(a)]. We use the same protocol dis-
cussed in the first example to gradually change the position of
two randomly selected particles. Figure 5(b) shows the evo-
lution of the system during the MDAS procedure. Comparing
the number of force evaluations, we note that 750 accepted
MDAS steps are equivalent to 100 × 106 steps of conventional
MD. After 750 MDAS steps, the fully mixed and converged
structure is observed.

To further illustrate the convergence of the MDAS sim-
ulations, we also show in Fig. 6 the progression of the pair
correlation function of type 2 particles to a stationary value as
the system is mixed. The average acceptance ratio of MDAS
moves in this example is approximately 0.2.

The pair correlation function of only the blue (type 2)
particles is shown in Fig. 6. The blue line is a pair correlation
function for the initial structure and illustrates significant order
in the system having multiple peaks. The two other correla-
tion functions are computed after 350 MDAS steps (red) and
after 750 MDAS steps (yellow). The last two are liquid-like,
showing significantly less order and are similar, suggesting
convergence of the equilibration process at about 350 accepted
MDAS steps.

To further explore the relaxation to equilibration, we also
consider the time dependence of the entropy of mixing. The

FIG. 5. (a) Left: Initial configuration of a 2D system of two types of LJ
particles. The red particles are type 1, and the blue particles are type 2. The
interaction between similar particles is smaller than dissimilar ones and leads
to a mixture (see the text for more details). Right: Final configuration of the
system after 100× 106 steps of conventional MD. The fully mixed state cannot
be captured at this time scale. (b) Evolution of the system during 750 accepted
MDAS moves.

starting configuration is the ordered system [Fig. 5(a)], and we
continue the simulation to equilibrium. To compute the mixing
entropy, we divide the simulation box to Nbox = 20 cells. Ten
cells along the y axis and two cells along the x axis are used.
Since the changes in the particle types are observed along the
y axis, more boxes were used along it. The number of red (type
1) particles in each cell was counted as a function of time. The
probability of a red particle to be in box i was estimated, and

the entropy was approximated as S = − 1
Nbox

Nbox∑
i=1

pi log(pi). The

mean-field single-particle expression follows the discussion in
Ref. 58. Similar approximate expressions were used in other
studies.59 The lines in Fig. 7 are the mixing entropies that
approach a maximum at pi = 0.5 ∀i. The red line in Fig. 7
is the mixing entropy from the conventional MD trajectory.
The dark blue line follows the mixing entropy of the MDAS
simulation as a function of time. The half-life for the mixing
entropy was about 10 × 106 force evaluations for the MDAS
simulation. After 200× 106 force evaluations, the conventional
MD simulation does not reach half of the asymptotic value.
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FIG. 6. The pair correlation function of only the blue (type 2) particles is
shown as a function of the number of MDAS steps for the system described
in Fig. 5. At the beginning, the system is ordered and the pair correlation
function (the blue dashed line) shows a series of long range peaks. After
about 350 accepted MDAS steps (the dashed red line), the system converges
to a typical liquid-like distribution with one dominant peak and a shallower
secondary distance peak. The distribution after 750 accepted MDAS steps
remains essentially unchanged (the yellow line).

We also show in Fig. 7 the maximum of the pair cor-
relation function as a function of time (yellow “X”) in the
MDAS simulation. This maximum shows slower relaxation
than the mixing entropy. This observation suggests that the
rate of approach to equilibrium depends on the order parame-
ter that we use to probe it. It is therefore important to carefully
choose an order parameter, or order parameters, relevant to the
equilibrium features we wish to examine. If we examine local

FIG. 7. The time dependent relaxation of the mixing entropy toward an
equilibrium value. The red line is the mixing entropy as a function of the
number of steps in a conventional MD trajectory. The small “bump” at around
120 × 106 steps is the result of melting of the first solid layer. The dark blue
line is the mixing entropy in MDAS trajectory. We also show in yellow “X”
the change in the maximum of the pair correlation function for the blue (type
2) particles (Fig. 6). Note the different scales on the right and on the left
sides. The light blue line that starts after 100 × 106 steps is a conventional
MD trajectory that is initiated from the last MDAS configuration to check that
the system is in equilibrium. The x axis is set in such a way that the same
computational effort (number of force evaluations, including moves that were
rejected) in conventional MD and MDAS trajectories is the same for each time
slice.

order in the system, the pair correlation function tells more
than the mixing entropy.

Note also that the mixing entropy for the MD simulation
seems to be stable after 120 × 106 steps. This observation
may lead to the incorrect conclusion that the MD trajectory
has equilibrated by that time. To further test that the sys-
tem indeed reached equilibrium in the MDAS simulation,
we used the final configuration of the MDAS run and con-
tinue it using conventional MD for another 100 × 106 steps.
No further changes in the mixing entropy were observed,
supporting our suggestion that equilibrium was indeed
attained.

B. Example 2: Lipid bilayer binary mixture

In nature, biological membranes are composed of many
different lipid molecules and this heterogeneity is believed
to be crucial for their function. Modeling a system con-
taining multiple types of lipids requires a large system to
include low-concentration components. Such a large system
needs a significantly longer simulation time to reach equilib-
rium, far beyond the capabilities of conventional MD sim-
ulation. MDAS may improve equilibration and sampling of
heterogeneous membranes. To illustrate this, we implemented
MDAS for a binary membrane composed of DOPC and POPC
phospholipids [Fig. 8(a)].

Initially each lipid type occupies half of the simulation
box. Because of a highly similar melting temperature of the two
phospholipids under considerations, they are known to be well
mixed. In Fig. 8(b), we show that in conventional MD simula-
tions of 240 ns the distribution of the phospholipid molecules
hardly changes from the initial configuration.

To implement MDAS, we need to gradually convert
a DOPC lipid to a POPC lipid and vice versa, as well
as calculate the required work for the proposed alchemical
exchange. A plausible alchemical path is to pick one lipid
of each type randomly and gradually make them disappear,
while at the same time a molecule of the other type grad-
ually appears at the same position. This is the dual topol-
ogy approach often used in alchemical evaluations of relative
free energy changes computed by the free energy perturba-
tion method.35,60–63 However, we found in practice that this
procedure has a low acceptance probability. The alchemical
calculations require exchange of more than 100 atoms, which
is costly and hard to complete without violation of hard-core
overlaps. A more efficient approach to accomplish this task
is to define a mixed topology62,64 that includes a single copy
of all the atoms that DOPC and POPC have in common plus
the parts that are different in these molecules (Fig. 9). This
mixed topology molecule has the ability to turn into either
DOPC or POPC with the adjustment of only a few atoms.
For example, according to Fig. 9(b), vanishing yellow parti-
cles and appearing green particles modify a DOPC to a POPC
molecule.

The algorithm is initiated by randomly picking a POPC
and a DOPC molecule. Unless stated otherwise, we exchange
molecules only in the upper leaflet of the membrane. The D
trajectory is 100 ps long to allow for local equilibration and
for sampling equilibrium configurations. The M trajectory (the
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FIG. 8. (a) Top view of the initial configuration of the
DOPC/POPC system. POPC and DOPC molecules are
shown in yellow and blue, respectively. (b) The sys-
tem after 240 ns at a constant temperature of 300 K for
comparison with MDAS results. After 240 ns, mixing
of different lipids only starts at the boundaries between
the lipid components. The images of the system were
generated with VMD.40

alchemical step) is 40 ps long. At every 40 steps, the parame-
ters of the non-bonded interactions are changed at a single step
and the partial work, ωi, is calculated. The partial charges are
changed linearly by∆λ = 0.001 every 40 steps between the ini-
tial and final desired values, but for Van der Waals parameters
a soft core potential is used to avoid the so-called end-point
catastrophes65
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where η = 5.0. Note that at λ = 1 the above expression
turns into 6-12 Lennard-Jones and the interaction vanishes at
λ = 0. After 40 000 steps with a time step of 1 fs, the selected
DOPC and POPC molecules are exchanged. The total work
performed on the system during this alchemical step can be
calculated as w = Σ 1000

i=1 ωi. Then we apply the Metropolis
criterion to reject or accept the M trajectory [Eq. (5)]. If the

proposed move is accepted, a D trajectory is initiated from the
last configuration of the M trajectory. If it is not, we return
to the last configuration of the previous D trajectory. At this
point, we may try a new M trajectory by selecting a different
exchange pair, or if several M attempts fail, initiate a new D
trajectory.

Figure 10 shows the average work, or the first moment
“m,” of the work distribution P(w), which we modeled in
Eqs. (6) and (7). The work is for a complete exchange of a
pair of lipids conducted in an M trajectory. The average work,
or the corresponding first moment m, is estimated from 100
M trajectories. At short length of M trajectories, the average
work is large and positive resulting in very low acceptance
ratios. This observation also illustrates why direct MC moves
(M trajectories of one step) are inefficient for these systems.
At longer times, the amount of work for making the exchange
reduces as argued in Sec. II. At the limit of infinitely long time,
the work to exchange a pair of molecules in a fluid system is

FIG. 9. (a) Schematic representation
of the difference between DOPC and
POPC molecules. Except for the 4
regions shown in green and yellow, the
molecules are identical. MDAS pro-
poses exchange of atom types of groups
1 and 3 with groups 2 and 4. Each time
that a POPC turns into DOPC, 10 atoms
vanish and 14 atoms appear and vice
versa. (b) An example of a mixed topol-
ogy molecule containing both the green
and yellow regions shown in (a). (c)
A schematic representation of MDAS
on the DOPC/POPC mixture. Two ran-
domly selected molecules turn to mixed
topology and change their identity. An
accepted MDAS move results in an
exchange in the position of the selected
molecules.
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FIG. 10. The average work in kcal/mol as a function of the length of the
M trajectories. The data for averaging the work are obtained from 100 M
trajectories at each length. This average corresponds to the first moment m of
the work distribution that we modeled in Eqs. (6) and (7). The average work
approaches zero when the trajectory length approaches infinite.

zero. To appreciate the width of the work, distribution error
bars are plotted in Fig. 10.

Figure 11 shows the evolution of the system after 500
accepted MDAS moves. The acceptance probability for this
system is 0.33, and running MDAS to achieve 500 accepted
moves is equivalent to ∼115 ns of conventional MD. Com-
paring to Fig. 8 of 240 ns of conventional MD, it is clear
that MDAS reaches equilibrium much faster than conventional
MD. In Fig. 12, the radial distribution function, g(r), of the dis-
tances between the choline nitrogen atoms of the head groups
of the DOPC molecules is plotted. The pair correlation func-
tion is computed for the upper leaflet with the same expression
we used for the LJ fluid. After 500 MDAS steps, the pair corre-
lation function reaches equilibrium, yet conventional MD does
not show any significant change from the initial distribution
after 240 ns of simulation.

We also examined the mixing entropy in the MD and
MDAS trajectories as a function of time (Fig. 13). The sim-
ulation box was divided into cells, and the probability of
a particular type of a phospholipid to be in each cell was
estimated. At the beginning, the DOPC lipids are separated
from the POPC lipids along the x axis (Fig. 11). Large re-
organization of the lipids is expected along the x axis during
equilibration, and therefore more boxes are used along it. We
use a finer grid of 10 cells along the x axis and only a grid
of 2 cells along the y axis. After 40 ns, the MDAS simulation
reached a plateau, while the MD simulation had not reached
equilibrium after 240 ns. We also show the maximum value of
the pair correlation function, max[g(r)], of the nitrogen atoms
of the choline groups as a function of time (yellow X).

C. Simultaneous and multiple exchange moves

In Sec. II A we suggested that the use of multiple simul-
taneous trial moves can further improve the MDAS algorithm.
Figure 1 illustrates domains of parameters for which such an
improvement is expected. The efficiency of the algorithm is

FIG. 11. Top view of the DOPC/POPC system during 500 MDAS steps.
POPC and DOPC molecules are shown in yellow and blue, respectively.

FIG. 12. The MDAS evolution of the two-dimensional radial distribution
function of DOPC head groups in the DOPC/POPC system. The dashed blue
line corresponds to the initial distribution, and the solid green line shows
the distance correlation function for conventional MD after 240 ns. The 350
MDAS moves and 500 MDAS moves are shown in dashed red and solid yel-
low, respectively. The g(r) for each step is averaged over configurations of
the D trajectories. Configurations from the M trajectories are, of course, not
included.
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FIG. 13. The entropy of mixing as a function of the simulation time for the
DOPC/POPC system. The simulation with 500 MDAS moves is shown in
blue. The unbiased MD is in red. The conventional MD hardly drifts toward
equilibrium after 240 ns. The time evolution of the maximum of the pair
correlation function of the DOPC head groups in the MDAS trajectory is
shown in yellow “X,” and it overlays well with the mixing entropy. The time
values are equivalent to the number of force evaluations, which for MDAS
include moves that were not accepted.

determined by the distribution of work, P(w). These distribu-
tions are shown for the DOPC/POPC system in Fig. 14 for one
exchange per move, for four exchanges per single M trajectory
in the upper leaflet, and for two exchanges per M trajectory
in both the upper and lower leaflets. The distribution for a
single exchange move has a mean value of 1.4 kcal/mol and
a variance of 25.8 (kcal/mol)2 and is approximately normal,
thus multiple and simultaneously proposed moves are likely to
benefit the acceptance and sampling of an MDAS simulation
of the same M and D trajectory lengths.

FIG. 14. The distributions of work obtained from 3 MDAS simulations for
the DOPC/POPC system. (a) The distribution for a single proposed exchange
move in the upper leaflet of the membrane. (b) The distributions of work
for 4 proposed simultaneous exchange moves on the upper leaflet (yellow)
and two exchange moves on each membrane leaflet (green). Note the similar-
ity of the two distributions in (b) suggests that the simultaneous exchange
moves are interacting weakly with each other. This is because the multi-
ple sampled lipids are picked from different environments in the two cases.
Note also that the size of the sample is insufficient to converge to a normal
distribution.

We performed two simulations of multiple exchange
moves. In the first, we apply 4 multiple exchanges per M trajec-
tory of DOPC and POPC molecules on the upper leaflet. In the
other simulation, we have 4 simultaneous exchanges per M tra-
jectory too, but two simultaneous exchanges per M trajectory
are proposed in each leaflet. Every time we choose 4 DOPC
and 4 POPC lipid pairs at random, change their identity simul-
taneously, and calculate the work to examine the proposed
move with the Metropolis criterion. If the move is rejected, we
return to the initial state of the system before the M trajectory.
If the move is accepted, we continue the simulation from the
final coordinates of the M trajectory. The distribution of work
obtained from these multiple moves is shown in Fig. 14. As
expected, the distribution is wider than the one obtained from a
single move and is skewed toward the positive values of work.
The estimated acceptance probability of this move, composed
of 4 exchanges, is 0.23. It is smaller than the acceptance prob-
ability of a single lipid exchange (∼0.33). However, since we
exchange four pairs it is a significant enhancement of the rate
of sampling.

To compare the three MDAS simulations, the maximum
of the radial distribution function, max[g(r)], between the
nitrogen atoms of the choline groups of DOPC is shown in
Fig. 15 versus the computational cost for each of the simu-
lations. The cost is estimated as the simulation time, which
is equivalent to the number of force evaluations. Only the
upper leaflet is considered. The thick lines are exponential
fit to lines computed directly from the simulations. It can
be seen that the simulations with multiple simultaneous pro-
posed moves reach equilibrium faster that a single proposed
move.

Figure 16 shows the equilibrated system for MDAS with
2 moves at each leaflet after 120 accepted moves. Count-
ing the number of force evaluation (including accepted and
rejected moves), we conclude that the MDAS simulation cost
with 120 accepted moves is equivalent to 33 ns conventional
MD.

FIG. 15. The evolution of the maximum of the pair correlation function,
max[g(r)], of nitrogen atoms of the choline groups of the DOPC molecules as
a function of the simulation time during the M and D trajectories. The solid
lines are exponential fits to each curve. The reported time includes the rejected
proposed moves.
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FIG. 16. The initial (left) and final (right) configurations
of the DOPC/POPC system obtained from 2 simultaneous
moves in each leaflet after 120 accepted MDAS moves,
equivalent in cost to a 33 ns MD simulation.

IV. CONCLUSIONS

Simulations of membrane systems are challenging due
to the large temporal and spatial scales that impact the sys-
tem dynamics. Biological membranes are even more complex
due to their heterogeneity. They consist of thousands of dif-
ferent types of phospholipids, which sometimes separate and
aggregate to form rafts.4,8–10,23 The heterogeneity and effec-
tive partitions between phases are not always known to begin
with and require long simulations with large spatial rear-
rangements to converge. Important biological inserts to mem-
branes, such as transmembrane proteins, add another layer of
complexity.

In the present manuscript, we exploit non-equilibrium
concepts proposed by Jarzynski31 and general algorithm devel-
opment of a candidate Monte Carlo move30,32 to propose an
algorithm for efficient simulation of equilibrium in heteroge-
neous fluids. We illustrate that the algorithm performs well
in heterogeneous systems and is therefore promising in fur-
ther studies of membrane systems in biology. The mixture
of equilibrium and non-equilibrium dynamics already showed
promise in a number of other molecular systems such as sim-
ulation of docking sites.32 The generality of the combination
of conventional MD and alchemical intermediates is likely to
impact other fields as well.

In the field of simulations of biological membranes, more
can be done to design moves for dissimilar molecules (e.g.,
cholesterol–phospholipid pairs and charged phospholipid–
ion pairs) to increase acceptance and the rate of approach
to equilibrium. The design of such moves to diverse mate-
rials is perhaps the greatest challenge to the proposed
methodology.
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