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Clinical trials with adaptive designs use data that accumulate during the course of the study to modify study elements in a prespec-
ified manner. The goal is to provide flexibility such that a trial can serve as a definitive test of its primary hypothesis, preferably in a 
shorter time period, involving fewer human subjects, and at lower cost. Elements that may be modified include the sample size, end 
points, eligible population, randomization ratio, and interventions. Accumulating data used to drive these modifications include 
the outcomes, subject enrollment (including factors associated with the outcomes), and information about the application of the 
interventions. This review discusses the types of adaptive designs for clinical trials, emphasizing their advantages and limitations in 
comparison with conventional designs, and opportunities for applying these designs to healthcare epidemiology research, including 
studies of interventions to prevent healthcare-associated infections, combat antimicrobial resistance, and improve antimicrobial 
stewardship.
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Clinical trials provide high-quality evidence necessary to 
improve healthcare. However, they can be complex, lengthy, and 
expensive, and the results are often inconclusive. Clinical trials 
with adaptive designs may help generate the evidence needed to 
improve healthcare more effectively and efficiently [1].

The goal of an adaptive design is to provide flexibility to en-
able a trial to serve as a definitive test of its primary hypothesis, 
preferably in a shorter time period, involving fewer human sub-
jects, and at lower cost. To accomplish this goal, an adaptive trial 
uses data that accumulates during the study to modify study ele-
ments in a prespecified manner [2–4]. The nature of the change 
is driven by the accumulating data, but the plan for the change is 
specified in advance and by design. Elements that may be mod-
ified include the sample size, end points, eligible populations, 
randomization ratio, and interventions. Accumulating data used 
to drive these modifications include the outcomes, subject en-
rollment (including factors associated with the outcomes), and 
information about the application of the interventions.

However, adaptive designs present challenges; they are not 
always efficient, carry threats to trial integrity, and can be com-
plex to implement. The planning process may be prolonged 
to specify how study elements will be modified in response to 
accumulating data. Design changes may infer interim results to 

investigators, clinicians and study subjects. This unmasking may 
introduce operational bias resulting in changes in the recruit-
ment or retention of subjects, adherence with the intervention, 
or the objectivity of outcome assessments that compromise the 
validity of the study [5]. Data monitoring committees (DMCs) 
can reduce operational bias by examining data (eg, treatment 
effects) that trial sponsors and investigators should not review 
during the trial. However, DMCs should not be responsible 
for redesigning the trial after reviewing unmasked data [6–8]. 
Design changes may be based on observed effects that are ulti-
mately determined to be irrelevant clinically. Statistical meth-
ods for adaptive designs are more complex and must account 
for inflation of the type I (α) error (false-positive interpretation 
of trial results) associated with interim analyses [9]. Modifying 
a study element during the course of the trial may raise ethical 
concerns and complicate informed consent [10]. Finally, it may 
be difficult to estimate the cost associated with adaptations for 
the trial in advance.

Interest in adaptive designs comes from the pharmaceuti-
cal industry, the Food and Drug Administration, the National 
Institutes of Health (NIH), and academia [2–4, 11–13]. Although 
trials related to drug and device development were the initial 
focus, adaptive designs are applicable to a broad swath of clin-
ical research including many types of clinical trials, comparative 
effectiveness research, large-scale pragmatic trials, and interven-
tions to improve quality of care. Guidelines for reporting studies 
using adaptive designs have been described (Table 1) [14]. An 
extension of the consolidated standards of reporting trials state-
ment for adaptive trials is under development.

The purposes of this review are to discuss (1) types of adaptive 
clinical trial designs, emphasizing advantages and limitations in 
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comparison to conventional designs; and (2) opportunities for 
applying adaptive designs to healthcare epidemiology research, 
including studies of interventions to prevent healthcare-associ-
ated infections, combat antimicrobial resistance, and improve 
antimicrobial stewardship.

TYPES OF ADAPTIVE DESIGNS FOR CLINICAL TRIALS

Exploratory phase I trials studies have used adaptive designs to 
adjust sample sizes and eliminate dosing regimens that are not 
tolerated or are ineffective for many years [15, 16]. Subsequent 
work has applied adaptive designs to confirmatory studies 
examining the efficacy and safety of interventions [4, 11–13]. 
Commonly used designs are outlined in Table 2 and discussed 
in the following subsections, with examples from the infectious 
diseases literature. A critical factor in this discussion is whether 
the adaptive design relies on analyses that use blinded versus 
unblinded outcome data, with the latter offering a much greater 
threat to trial integrity.

Group Sequential Designs

A group sequential trial analyzes accumulating data and uses 
prespecified criteria to determine whether the trial should be 
terminated early based on interim evidence of efficacy, harm 
or futility, while preserving statistical error rates through 
error-spending strategies and sample size adjustments. Group 

sequential designs allow DMCs to assess unblinded interim 
safety or efficacy results to decide whether to stop or continue 
a trial. We do not regard these adaptive designs here because 
neither involves modifying a study element and continuing 
the trial with the revised methods. Adaptive designs discussed 
in the sections that follow can be incorporated into a group 
sequential trial.

Predicted Intervals

Prediction and predicted intervals (PIs) augment interim 
analyses of group-sequential designs by considering the mag-
nitude and precision of the effect size estimate associated with 
trial continuation [17, 18]. The confidence interval if the trial 
were to continue is predicted conditional on the interim data 
and assumptions about data yet to be collected (eg, current 
trends, best/worst case scenarios). PIs convey information 
regarding the effect size, allowing assessment of both clinical 
and statistical significance. The gain in precision with contin-
ued enrollment can be assessed by comparing the width of the 
confidence interval based on interim data to the width of the 
PI. Examples of studies using PI include multicountry trials of 
treatments for human immunodeficiency virus (HIV) infec-
tion and tuberculosis [19, 20].

Sample Size Adjustment Designs

Sample size calculations are based on estimates of multiple 
parameters related to the study end point, which may be un-
known or estimated imprecisely during the planning stage 
[4]. Given this uncertainty, sample size assumptions can be 
reevaluated using interim data collected during the trial. For 
example, a cluster randomized trial examining the efficacy of 
ring vaccination using a novel Ebola vaccine included a plan 
to adjust the number of clusters based on unblinded analysis 
of transmission rates within clusters and vaccine treatment 
efficacy [21].

A sample size adjustment based on nuisance parameters (eg, 
control group response rate or the variance of a continuous 
outcome) is straightforward, provided the frequency of interim 
analysis is limited so as not to substantially inflate type I error. 

Table 1.  Guidelines for the Reporting of Adaptive Trialsa

Describe The adaptation
Whether the adaptation was planned or unplanned
The rationale for the adaptation
When the adaptation was made
The data on which adaptation is based and whether the data 

were unblinded
The planned process for the adaptation including who made 

the decision regarding adaptation
Deviations from the planned process
Consistency of results before vs after the adaptation

Discuss Potential biases induced by the adaptation
Adequacy of firewalls to protect against operational bias
The effects on error control and multiplicity context

aAdapted from Evans and Ting [14].

Table 2.  Study Design Issues Identified During Trial Planning and Types of Adaptive Designs to Potentially Address These Issues

Study Design Issue Identified in Trial Planning Adaptive Design to Potentially Address the Issuea

Imprecise estimate of control group response rate or variation in responses Sample size adjustment

Imprecise magnitude and/or precision of effect size Sample size adjustment
Predicted intervals

Uncertainty regarding subjects most likely to experience a benefit or a toxicity Population enrichment

Uncertainty regarding the optimal dose of a new drug to assess its efficacy Seamless phase II/III trial; multiarm, multistage trial

Multiple drugs, drug combinations, or treatment or testing strategies need to be evaluated in a 
consistent and efficient manner

Multiarm, multistage trial; platform trial

Uncommon or rare condition makes it difficult to recruit sufficient subjects Umbrella or basket trial

Uncertainty or evolution in optimal end point(s) to evaluate efficacy or safety Changing end points

aSee text for discussion of the advantages and limitations of specific designs.
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For example, if resizing based on a variance, researchers can 
estimate the number of patients needed to estimate the variance 
with an acceptable level of precision and then plan an interim 
analyses to adjust the sample size after gathering sufficient data. 
The preferred approach is to use pooled blinded data since pro-
cedures using blinded data generally have good operating char-
acteristics and the use of blinded data minimizes type I error 
inflation and avoids operational bias associated with reviewing 
unblinded results. The overall type I error can be controlled by 
changing the test statistic with any sample size change to one 
that partitions the data before and after the event, and then 
applying weights to each component such that type I  error is 
preserved [22].

Sample size adjustment based on the observed treatment 
effect is more complex because it involves review of unblinded 
results. This approach is subject to operational bias because 
knowledge of the new sample size may allow back-calculation 
of the observed treatment effect even by persons peripherally 
involved in the study. To protect against operational bias, the 
methods for recalculation can be put into a “closed” protocol 
available only to the DMC. This adjustment extracts a greater 
statistical price through inflation of the type I error. In addition, 
it is important to assess the clinical relevancy of the observed 
treatment effect. For example, if the treatment effect is much 
smaller than expected, it may be more appropriate to terminate 
the study rather than to increase the sample size substantially. 

A popular approach is to make adjustments based on condi-
tional power by dividing the observed conditional power into 
3 zones: favorable, promising; and unfavorable [23]. If results 
fall in the favorable or unfavorable zone, the sample size is un-
changed. If results fall within the promising zone, one adjusts 
the sample size to bring the conditional power to an acceptable 
level. Though this method can be used, it has been shown to 
be less efficient than a standard group sequential design pow-
ered for the target effect [24]. Methods for adaptive sample size 
calculations for trials with coprimary end points (eg, trials that 
may evaluate a clinical outcome and an antibiotic use outcome 
as coprimary) have also been developed [25–29].

Multiarm Multistage Designs

A multiarm multistage (MAMS) design is an efficient approach 
for investigating >1 new drug or treatment strategy [30]. These 
designs maintain strong control of statistical error rates through 
group-sequential design principles. Examples of MAMS designs 
include new medications for treatment of noninfectious diar-
rhea and diabetes in HIV-infected persons and new treatment 
strategies for tuberculosis [31–33].

One form that a multistage design can take is a seamless phase 
II/III study evaluating a new drug. This design specifies initial 
testing using multiple dosing regimens (including a group that 
will serve as an appropriate concurrent control throughout 
the study). The optimal dosing regimen for the new drug is 

determined by an interim analysis of the phase II component. 
This regimen is continued in parallel with the control group 
(eliminating less appropriate dosing regimens) in the phase III 
study of the drug’s efficacy and safety. Data are combined across 
both phases in the final analysis. This design reduces the overall 
number of subjects and eliminates delay during the transition 
between the 2 phases.

A multiarm design can be used for a trial comparing new 
drugs, established drugs in various combinations, or different 
treatment strategies, in comparison with each other and with 
a control. New arms can be added after trial initiation with 
between-arm comparisons restricted to use of concurrent data 
to retain randomization integrity. The control may be eliminated 
if a treatment arm is shown to be superior, in which case this 
arm becomes the new control though with added complexities.

Operational bias may be introduced if the results of the in-
terim analysis lead to modification of the arms of the trial that 
infer treatment effects, particularly if the results are published 
or the modifications are easily and widely recognized. For 
seamless phase II/III trials, the impact of this bias is not likely 
to differ from for separate phase II and III studies, especially if 
the availability of the new drug is restricted to participation in 
the study or for compassionate use. Operational bias may be 
more difficult to control in a multiarm design if clinicians have 
access to the drugs and modify their behavior in ways that com-
promise the trial.

Population Enrichment Designs

In a population enrichment design, the subject eligibility cri-
teria are modified to increase the enrollment of subjects likely 
(or decrease enrollment of subjects less likely) to experience a 
treatment effect [34]. An adjustment may be based on accumu-
lating data regarding demographic or clinical characteristics of 
enrolled subjects, analysis of biomarkers, or other factors that 
are known or observed to affect treatment response (eg, host 
genomic markers, antimicrobial resistance genotypes or phe-
notypes). Eligibility criteria may be modified based on interim 
analyses of blinded or unblinded data.

Modification of eligibility criteria based on pooled blinded 
data regarding subject characteristics is straightforward, 
whereas modification of eligibility criteria based on unblinded 
data of treatment effects is more complicated. Limitations asso-
ciated with this approach are similar to those discussed previ-
ously for sample size recalculation using blinded and unblinded 
results. In addition, population enrichment may reduce the 
generalizability of the trial.

Response-Adaptive Randomization Designs

A response-adaptive randomization (RAR) design takes the 
approach of population enrichment using unblinded data a step 
further [35]. In a RAR design, the randomization ratio may be 
modified during the trial depending on the observed responses 
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of trial participants. For example, a trial comparing intermittent 
versus continuous dosing of aerosolized ribavirin for treatment 
of respiratory syncytial virus infection in cancer patients shifted 
the randomization ratio toward intermittent dosing because it 
had a lower observed failure rate [36]. The motivation behind 
this adaptation is primarily ethical, attempting to assign fewer 
patients to less effective treatment based on early results [37]. 
Some have argued that this is misleading because equipoise 
must exist for randomization to occur in the first place [38].

While appealing, a RAR design can produce biased estimates 
of effects when there is temporal or geographic variation in dis-
ease or advances in supportive care. Modeling can be used to 
adjust for the induced confounding though imperfectly. Two 
trials comparing similar regimens, one using RAR and one with 
fixed randomization, produced different results raising ques-
tions about the potential bias [39]. Consequently, RAR may 
be contraindicated for trials of long duration. Confounding by 
geographic factors can also occur if sites start after or complete 
before the randomization ratio is adapted. Given the gradual 
and episodic evolution of antimicrobial resistance and geo-
graphic diversity in the incidence and molecular mechanisms 
involved in infections caused by multidrug-resistant bacteria, 
RAR may be a suboptimal fit for trials of interventions for in-
fectious disease settings [40].

RAR can be inefficient from the statistical perspective as well. 
Trial power is maximized when the randomization ratio is 1:1. 
Diversion from 1:1 requires a larger sample size to maintain 
desired power, increasing costs and prolonging the trial. This 
also eliminates the advantage of fewer participants being rand-
omized to the potentially inferior arm [41, 42].

RAR can induce operational bias in open-label trials given 
that treatment effects may be inferred from observed ran-
domization rates. RAR is also complex to apply because the 
randomization schedule cannot be conducted before trial 
initiation.

Umbrella, Basket, and Platform Designs

An umbrella design includes 2 or more subtrials linked through 
a common subject-screening infrastructure [34, 43]. Subjects 
are screened for a set of characteristics, such as a specific infec-
tion, pathogen, or antimicrobial resistance genotype or pheno-
type, and assigned to an appropriate subtrial. The screening 
process acts as an enrichment process, facilitating accrual for 
trials examining low-prevalence diseases. The design has the 
flexibility to add, drop, or modify subtrials. Threats to integrity 
are minimal because each subtrial can run independently.

A basket design, often used in oncology trials, evaluates the 
effect of a drug on a single mutation in a variety of cancer 
types, or in some cases multiple mutations in a single cancer 
type [34, 43]. Basket trials can screen multiple drugs across 
many cancer types. This design may be attractive for testing 
a new antibiotic against a rare, highly resistant pathogen or 

antimicrobial-resistant genotype or phenotype when alter-
natives are limited by the challenge of recruiting a sufficient 
number of subjects. A  significant concern is that heteroge-
neity in treatment effects across infection sites likely to go 
undetected.

A platform design is an extension of the multiarm design 
evaluating different treatment strategies, potentially involving 
several subtrials [43, 44]. A platform trial may also evaluate the 
efficacy of treatment strategies in subgroups identified by sub-
ject characteristics, illness severity, biomarkers, or antimicro-
bial resistance genotypes or phenotypes. The Antimicrobial 
Resistance Leadership Group (ARLG) has proposed a platform 
trial to evaluate new treatments for infections at various sites 
caused by multidrug-resistant bacteria [45]. The European 
Commission has funded a platform trial to evaluate multiple 
treatments (eg, antimicrobials, adjunctive agents, ventila-
tion strategies) for severe community-acquired pneumonia 
(ClinicalTrials.gov, NCT02735707) [46].

Changing End Points

Revisions to end points may compromise the validity of the 
trial, so they should be considered rarely—for instance, if sci-
entific knowledge has evolved significantly after trial initiation, 
new benefits or harms are identified, or improved surrogate 
markers are identified, or to incorporate patient perspectives 
[47]. A  trial examining the effectiveness of guideline recom-
mendations for the duration of antibiotic treatment in hospi-
talized adults with community-acquired pneumonia included a 
change in its primary end points [48].

APPLICATION OF ADAPTIVE DESIGNS TO 
HEALTHCARE EPIDEMIOLOGY RESEARCH

We outline opportunities for application of adaptive designs to 
trials of interventions to prevent healthcare-associated infec-
tions, treat infections caused by antimicrobial-resistant bacteria 
and enhance antimicrobial stewardship (Table 3).

Prevention of Healthcare-Associated Infections

Cluster (group) randomized trials have been used to evaluate 
interventions to prevent healthcare-associated infections 
caused by antimicrobial-resistant bacteria and Clostridium 
difficile. These studies face challenges regarding accurate 
sample size calculation (due to imprecise estimates of base-
line incidence and within- and between-group variance of 
the group-level outcome), differences in population charac-
teristics among groups, and suboptimal adherence with the 
intervention, both overall or in individual groups. Adaptive 
sample size recalculation and population enrichment offer 
potential solutions (Table  3). Limitations include inability 
to increase the number of groups midway through the trial, 
reduced generalizability, and difficulty estimating the budget 
for the trial.
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Treatment of Infections Caused by Antimicrobial-Resistant Bacteria

The development of new treatments for infections caused 
by highly antimicrobial-resistant gram-negative bacteria is 

complicated by the relative infrequency of these infections [49]. 
MAMS designs may speed development of these treatments. For 
instance, a multistage seamless phase II/III design may be a more 

Table  3.  Conventional and Adaptive Trial Designs for Healthcare-Associated Infection Prevention, Treatment of Infections Caused by Antimicrobial-
Resistant Bacteria and Antimicrobial Stewardship: Examples, Challenges of Conventional Designs, and Potential Advantages and Limitations of Adaptive 
Designs

Domain (Possible Research 
Question)

Conventional trial design Adaptive trial design

Example Common Challenge Example
Potential 

Advantage Limitation

Healthcare-associated 
infection prevention  
(What is the effect of a  
novel screening test to  
identify patients colonized 
with MDR GNB on  
admission on the  
transmission of these 
organisms in healthcare 
facilities?)

Group-level 
cluster-randomized 
trial

Inaccurate power calculation 
due to imprecise estimate  
of incidence and  within-  
and between-group  variance 
of the control group–level 
outcome

Sample size recalculation  
(No. of groups or duration  
of study) using blinded interim  
analysis of baseline incidence  
and within- and between-group  
variance of the group-level 
outcome

Adequately  
powered study; 
early identification 
of futility

May be unable to 
add groups midway 
through the trial;  
difficult to estimate 
the budget for the 
trial

Variation in population  
characteristics among groups 
likely to affect the response 
to the intervention

Population enrichment using 
blinded interim analysis of  
population characteristics  
among groups

More likely to 
detect a positive 
effect associated 
with intervention; 
more precise  
estimate of  
effect size in 
subjects likely to 
respond

May overestimate the 
size of the effect in 
a general population; 
difficult to estimate 
the budget for the 
trial

Treatment of infections 
caused by antimicrobial- 
resistant bacteria (What is  
the effect of a novel  
antibiotic, used alone or in 
combination with existing 
antibiotics, on the MDR  
GNB BSI-associated  
mortality rate?)

Separate phase 
II and III trials 
for a new drug 
development

Delay and inefficiency of  
conducting separate  
phase II and III trials  
of a new drug

Multistage seamless phase  
II/III trial design with interim  
analysis to choose the  
optimal dosing regimen to  
complete trial

Eliminates delay 
between phases 
II and III; smaller 
overall sample  
size; combines 
data from both 
phases for final 
analysis

Additional planning 
required to specify 
the phase II to III 
transition; operational 
bias when changes 
can be used to infer 
phase II results

Separate random-
ized trials of  
different treatment 
strategies (eg,  
different doses,  
administration  
regimens,  
agents, or 
combinations)

Inefficiency of  
conducting separate  
trials of various  
strategies

Multiarm design to test different 
treatment strategies vs a  
common control; interim  
analysis to choose  
best-performing strategy  
to continue the trial

Simultaneous  
evaluation of 
multiple  
treatment 
strategies allows 
direct comparison 
of each; interim 
analyses allow  
discontinuation 
 of ineffective  
treatment  
strategies or  
early stopping if 
one strategy is 
superior; arms 
testing new  
treatment  
strategies can  
be added

Careful planning and 
coordination required 
for multiarm studies; 
operational bias when 
changes in arms infer 
interim results

Antimicrobial  
stewardship (What is the 
effect of different novel  
rapid tests for detection  
of resistance genes in  
MDR GNB on time to  
initiation of effective  
antibiotic treatment for  
MDR GNB BSI?)

Separate 
randomized trials 
of new diagnostic 
tests

Inefficiency of conducting  
separate trials of new  
diagnostic tests

Umbrella or platform design  
to evaluate multiple new  
diagnostic tests using samples 
from single subjects (see text)

Simultaneous 
 evaluation of  
multiple new  
diagnostic tests 
allows direct  
comparison of 
each; smaller  
overall sample  
size compared 
with separate trials

Careful planning and 
coordination required

Abbreviations: BSI, bloodstream infection; GNB, gram-negative bacilli; MDR, multidrug-resistant.
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efficient approach for development of a new drug (Table  2). 
A multiarm design may be a more effective approach for com-
paring different doses, administration regimens, agents, or com-
binations of drugs for treatment of ≥1 resistant pathogen versus 
a common control (Table 3). Limitations to these approaches are 
the required increased planning and coordination, reluctance of 
pharmaceutical companies to participate in head-to-head com-
parison, and the potential for operational bias.

Enhance Antimicrobial Stewardship

Trials evaluating antimicrobial stewardship interventions may 
need to use cluster randomization, in which case previous 
statements about appropriate adaptive designs are applicable 
(Table 3). Trials that evaluate interventions at the subject level 
may use sample size recalculation or population enrichment 
designs [50]. The ARLG has proposed a platform design to 
evaluate multiple new diagnostic tests, individually and in com-
parison (Table 3) [51]. A (diagnostic) platform study to evaluate 
the performance of nucleic acid amplification tests for detec-
tion of Neisseria gonorrhoeae and Chlamydia trachomatis in 
extragenital sites is currently enrolling subjects (ClinicalTrials.
gov, NCT02870101). This approach will reduce the number of 
subjects required and reduce costs substantially. Although this 
design will not involve treatment strategies, the development of 
new diagnostic tests to direct appropriate antimicrobial therapy 
is a key stewardship priority.

CONCLUSIONS

Used appropriately, adaptive designs can be informative and ef-
ficient and represent a promising innovation for clinical trials in 
healthcare epidemiology research. Used inappropriately, these 
designs threaten trial integrity through loss of control of statis-
tical error rates and induction of operational bias. Investigators 
must consider these factors and determine how to apply these 
designs. Increasing experience and additional developments 
in field will yield more insight into how these designs can be 
applied most appropriately to improve the effectiveness and ef-
ficiency of healthcare epidemiology research.
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