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Abstract

Compressive sensing (CS) has proved effective for tomographic reconstruction from sparsely 

collected data or under-sampled measurements, which are practically important for few-view CT, 

tomosynthesis, interior tomography, and so on. To perform sparse-data CT, the iterative 

reconstruction commonly uses regularizers in the CS framework. Currently, how to choose the 

parameters adaptively for regularization is a major open problem. In this paper, inspired by the 

idea of machine learning especially deep learning, we unfold a state-of-the-art “fields of experts” 
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based iterative reconstruction scheme up to a number of iterations for data-driven training, 

construct a Learned Experts’ Assessment-based Reconstruction Network (LEARN) for sparse-data 

CT, and demonstrate the feasibility and merits of our LEARN network. The experimental results 

with our proposed LEARN network produces a superior performance with the well-known Mayo 

Clinic Low-Dose Challenge Dataset relative to several state-of-the-art methods, in terms of artifact 

reduction, feature preservation, and computational speed. This is consistent to our insight that 

because all the regularization terms and parameters used in the iterative reconstruction are now 

learned from the training data, our LEARN network utilizes application-oriented knowledge more 

effectively and recovers underlying images more favorably than competing algorithms. Also, the 

number of layers in the LEARN network is only 50, reducing the computational complexity of 

typical iterative algorithms by orders of magnitude.

Index Terms

Computed tomography (CT); sparse-data CT; iterative reconstruction; compressive sensing; fields 
of experts; machine learning; deep learning

I. Introduction

S-PARSE-DATA CT is a fascinating topic that is both academically and clinically important. 

Academically speaking, tomographic image reconstruction from under-sampled data was 

previously considered infeasible, prohibited by the requirement imposed by the classic 

Nyquist sampling theorem. Thanks to the compressive sensing (CS) theory, nowadays many 

ill-posed inverse problems including sparse-data CT problems can be effectively solved 

using CS techniques [1]. In its nutshell, the success of CS-inspired image reconstruction is 

due to the utilization of prior knowledge especially the fact that there are major sparsity and 

correlation properties for many images including CT images. As a result, although an image 

volume has an apparent high dimensionality, it actually stays on a very low dimensional 

manifold, and a meaningful image reconstruction can be done on this manifold from much 

fewer data points. Clinically speaking, sparse-data CT solutions can enable a number of 

important diagnostic and interventional applications. Some futuristic cardiac CT 

architectures use a field-emission-based source ring, which represents a few-view CT 

configuration [2]. C-arm-based CT scans are valuable for surgical guidance and radiation 

treatment planning [3, 4]. Tomosynthesis and limited-angle tomography are also examples 

of sparse-data CT [5].

Due to the incompleteness and noise of projections for sparse-data CT, brute-force analytic 

algorithms produce severe image artifacts rendering resultant images useless, and iterative 

techniques are usually utilized to perform image reconstruction. For this purpose, many 

efforts were made over the past decades. Well-known algorithms include algebraic 

reconstruction technique (ART) [6], simultaneous algebraic reconstruction technique 

(SART) [7], expectation maximization (EM) [8], and so on. However, when the projection 

measurements are highly under-sampled, it is very difficult or impossible to achieve a 

satisfactory and stable solution with any prior information.
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Compressive sensing (CS) is a breakthrough in solving under-determined inverse systems 

especially sparse-data CT [1]. Once the sampling process meets the restricted isometry 

property (RIP), there is a high possibility for CS to accurately reconstruct the original signal 

beyond the Nyquist sampling rate, aided by a proper sparsifying transform. The critical step 

is to find the sparsifying transform as the regularization term in the iterative reconstruction 

(IR) framework. Inspired by the theory of CS, Hu et al. and Sidky et al. used the discrete 

gradient transform, also termed as the total variation (TV) as the regularization term and 

obtained promising results [9-11]. However, as shown by Yu and Wang [12], the TV 

minimization is under the piecewise constant assumption that is generally unsatisfied in 

clinical practice, which means that TV compromises structural details and suffers from 

notorious blocky artifacts. To remedy this problem, many variants were proposed [13-16], 

and other substitutions were suggested to impose the sparsity prior into the iterative 

reconstruction framework, such as nonlocal means [17, 18], tight wavelet frames [19], 

dictionary learning [20-23], low rank [24], Gamma regularization (Gamma-Reg) [25, 26], 

and so on.

Most interestingly, via learning sparsifying transforms [27], Zheng et al. and Chun et al. 

combined penalized weighted-least squares and with sparsifying transform regularizations 

trained with high-quality external CT images for sparse-view and low-dose CT [28, 29]. 

Although CS-based iterative reconstruction methods achieved encouraging results, there are 

several drawbacks: (a) the iterative algorithms are timeconsuming. The iterative procedure 

needs to repeat the projection and backprojection operations many times at a high 

computational cost. Meanwhile, calculating the gradients of the objective function including 

regularization terms further aggravate the burden; (b) for different clinical CT imaging tasks, 

it is very difficult to find a universal regularization term for consistently superior 

performance; and (c) there are multiple parameters to balance the data fidelity and 

regularization terms, and these parameters cannot be easily set. To address these drawbacks, 

in several recent studies the idea of learning from external datasets was introduced to 

mitigate the problem (b) to a certain degree, but other two issues (a) and (c) have not been 

attempted, to our best knowledge.

Recently, deep learning (DL) has drawn an overwhelming attention [30]. Until now, machine 

learning especially deep learning were mainly utilized for medical image analysis, such as 

organ segmentation [31], nodule detection [32], nuclei classification [33]. However, inspired 

by the fruitful results gained in the realm of low-level image processing [34-37], like image 

denoising, inpainting, deblurring or super-resolution, major efforts are being made in our 

field to reconstruct tomographic images using deep learning techniques [38-44]. Particularly, 

in [38] Chen et al. proposed a three-layers convolutional neural network (CNN) for noise 

reduction in low-dose CT. Kang et al. transformed low-dose CT (LDCT) images into the 

wavelet domain for deep learning based denoising [39]. Yang et al. observed that deep CNN 

with pixel-wise mean squared error (MSE) overly smoothened images, and proposed a 

perceptual similarity measure to measure the loss [40]. Inspired by the idea behind the 

autoencoder, Chen et al. developed a residual encoder decoder CNN (RED-CNN) for low-

dose CT (LDCT) image denoising [41]. To suppress the artifacts from under-sampling for 

CT imaging, Han [42] and Jin et al. [43] independently proposed two U-Net based 

algorithms. More recently, generative adversarial networks (GANs) were introduced for low-
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dose CT [44]. In the Fully3D 2017 Conference, tomographic image reconstruction via deep 

learning (DL) is a highlight. Du et al. embedded a sparse prior trained through a K-sparse 

autoencoder (KSAE) into a classic iterative reconstruction framework [45, 46]. Researchers 

from KAIST utilized a U-Net architecture to deal with different topics in the image domain; 

e.g., sparse-view, limited-angle and low-dose CT [47-49]. Based on a denoising autoencoder, 

Li and Mueller proposed a symmetric network incorporating a residual block to suppress 

artifacts due to sparse sampling [50]. Another project presented by Cheng et al. from GE’s 

group used DL to accelerate the convergence of iterative reconstruction [51], similar to the 

idea mentioned in [52]. In their study, intermediate (after 2 or 20 iterations) and 

corresponding final results (after 200 iterations) were used to train a neural network which 

significantly accelerated the reconstruction process.

Although these initial results with deep learning techniques are encouraging, they are the 

post-processing methods, and inherently overlook the data consistence. Here we see an 

opportunity to combine the deep learning techniques and iterative reconstruction algorithm 

for improved image reconstruction from sparse data. Until now, very limited results were 

presented in this aspect. Wang et al. proposed an accelerating MRI reconstruction strategy 

by imposing a deep learning based regularization term [53]. Based on the work of sparse 

coding [54], Yang et al. unfolded the alternating direction method of multipliers (ADMM) 

into a CNN network, efficiently accelerating the MRI reconstruction [55]. Similar to this 

work, a variational model was embedded into an unrolled gradient decent scheme for CS-

based MRI reconstruction [56]. In [57], undersampled k-space data were utilized, and the 

zero-padded parts were replaced with predicted fully-sampled data from a trained image-to-

image network. In [58], a CS based MRI reconstruction method was adapted into the GAN 

framework. To ensure the learned manifold is data consistent, a least-square penalty was 

introduced into the training process. In the field of CT reconstruction directly from sinogram 

data, to our best knowledge, the only work with deep learning is to expand FBP into a three-

layer network, which learns the weightings and additional filters to reduce the error of a 

limited angle reconstruction [59]. However, when the sampling rate is low, the FBP network 

would fail to yield usable images.

Extending the prior results [54-56], in this paper we generalize the iteration reconstruction 

framework into a Learned Experts’ Assessment-based Reconstruction Network (LEARN). 

There are three major benefits from our efforts:

a. The reconstruction procedure is fully neural-networked and significantly 

accelerated. The iterative procedure is first unfolded into a recurrent residual 

network. By fixing an appropriate number of iterations, the network is casted 

into a CNN-based network. By feeding this network with projection data 

directly, we only perform a limited number of forward computational steps 

instead of hundreds of iterations.

b. All the regularization terms and balancing parameters can be adaptively learned 

in the training stage. In the unfolded network, the regularization terms and 

balancing parameters become iteration-dependent parameters of a neural 

network, which means that these parameters can vary with each iteration. This 
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characteristic makes our model more flexible and more robust than other types of 

iterative reconstruction methods.

c. As shown below in detail, the image quality of the LEARN network is superior 

to or competitive with the state-of-the-art iterative methods at a much-reduced 

computational cost.

We also note that our LEARN is different from the recently proposed KSAE [46]. KSAE 

follows the classical IR steps with a data fidelity term and a regularization term. The main 

innovation of KSAE is to include a sparse prior in the form of a learned image-to-image 

mapping. Different from the LEARN network, the KSAE network was trained by LDCT 

images and their corresponding NDCT images, and the learned mapping function is fixed for 

the entire iterative procedure. [57] and [58] also trained the networks but only with image 

samples. There are some differences between these two studies: [57] kept the nonzero-

padded parts unchanged, and [58] introduced a residual block. The proposed LEARN is 

directly trained by projection data and the corresponding NDCT images, and the learned 

regularization terms and balancing parameters are specific to each iteration.

The rest of the paper is organized as follows. In the next section, we derive and explain our 

proposed LEARN network. In the third section, we describe the experimental design and 

analyze representative results. In the last section, we discuss relevant issues and conclude the 

paper.

II. Methods

A. Regularized CT Reconstruction

Typically, the CT reconstruction problem is treated as solving a linear system:

Ax = y (1)

where x = (x1, x2, …, xJ)T denotes a vector of discrete attenuation coefficients for a patient 

image, A is the imaging system or projection matrix of I × J elements corresponding to a 

specific configuration of the CT system, and y = (y1, y2, …, yI)T represents the measured 

data after calibration and log-transform. Mathematically, the element of A, ai, j, stands for 

the intersection of the i-th x-ray path with the j-th pixel. The purpose of image 

reconstruction is to recover the unknown x from the system matrix A and observed data y.

If a set of projection data is complete without significant noise, (1) can be analytically 

inverted with FBP in either fan-beam or cone-beam geometry [60]. However, for the sparse-

data CT reconstruction problem, the linear system (1) becomes underdetermined and has 

infinite solutions. The reconstructed image with FBP will suffer from strong image artifacts 

and significantly degraded image quality, and iterative reconstruction algorithms are the 

method of choice to overcome the challenges because these algorithms can easily 

accommodate imaging physics and prior knowledge at the cost of much-increased 

computational time.
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For iterative image reconstruction, (1) can be solved by minimizing the following 

constrained objective function:

x = arg min
x

E(x) = arg min
x

Ax − y 2
2, s . t . x j ≥ 0 ∀ j, (2)

where ⋅
2

2

 denotes the L2 norm. Popular iterative methods, such as ART, SART and EM, 

can be employed to solve (2), but artifacts may still exist when (2) is not well posed. To 

address this problem, various prior knowledge can be incorporated into (2) for 

regularization. Then, a regularized objective function is expressed as

x = arg min
x

E(x)

= arg min
x

λ
2 Ax − y 2

2 + R(x), s . t . x j ≥ 0 ∀ j,

(3)

where the first term is for data fidelity, which addresses the consistency between 

reconstructed x and observed measurement y, the second term R(x) is for regularization, and 

λ controls the balance between data fidelity and regularization.

Previous studies were mainly focused on the development and implementation of different 

prior terms. For example, TV is a popular one for its ability of keeping sharp discontinuities 

but it is actually based on the piecewise constant assumption for an underlying image [61]. 

In biomedicine, it is generally inaccurate to assume that CT images are piecewise constant. 

Better alternative regularizers include various variants of TV and other regularizers, such as 

total generalized variation (TGV) [16], nonlocal TV (NLTV) [62], and tight framelet (TF) 

[63], but most of them were handcrafted and cannot be used for all kinds of images in 

different clinical applications.

B. LEARN Network for Sparse-Data CT

In [64], a generalized regularization term, referred to as fields of experts (FoE), was 

proposed as

R(x) = ∑
k = 1

K
ϕk(Gkx), (4)

where K is the number of regularizers, Gk is a transform matrix of size Nf, which can be 

seen as a convolutional operator for a CT image x, and ϕk(·) is a potential function. In the 

FoE model, both Gk and ϕk(·) can be learned from training data. Inserting (4) into (3), we 

have
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x = arg min
x

E(x)

= arg min
x

λ
2 Ax − y 2

2 + ∑
k = 1

K
ϕk(Gkx), s . t . x ≥ 0.

(5)

where λ is the weighting parameter for the data fidelity term.

Assume that the second term in (5) is differentiable and convex. Then, a simple gradient 

descent scheme can be applied to optimize (5):

xt + 1 = xt − α ⋅ η(xt) − α∂E
∂x , (6)

where a is the search step and should be carefully chosen. With (5), the gradient term can be 

obtained as

η(xt)λAT(Axt − y) + ∑
k = 1

K
(Gk)Tγk(Gkxt), (7)

where γ (·) = ϕ′(·), the superscript T stands for the transpose of a matrix, and AT denotes the 

back projection operator. The transpose of the filter kernel can be obtained after the 

convolutional kernel is rotated by180 degrees. In our previous work [65] for low-level vision 

tasks, a time-dependent version was proposed. The balancing parameters, potential functions 

and kernels can be changed iteration-wise, which makes our method more flexible. This 

method has achieved promising results in several important tasks, including image 

denoising, inpainting, and MRI reconstruction. To our best knowledge, our work is the first 

attempt to apply this strategy to CT reconstruction.

By letting the terms of (7) be iteration-dependent, (6) is changed to

xt + 1 = xt − λtAT(Axt − y) + ∑
k = 1

K
(Gk

t )Tγk
t (Gk

t xt) . (8)

Since η(xt) can be freely scaled, α is neglected in (8). All the symbols with the superscript t 

signifies an iteration-dependency. If λt, Gk
t and γk

t  keep fixed in (8), the iteration returns to the 

original FoE prior. Meanwhile, TV, wavelet, and other hand-crafted regularization terms can 

be seen as special cases of the FoE priors.

Our method has generalized these CS-based iterative reconstruction models. The critical part 

to solve (8) is to determine the specific forms of Gk
t  and γk

t . In the reference [64], the FoE 

prior was learned from training data by hybrid Monte Carlo sampling, which was based on 
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an idea similar to learning a sparse transform for CS-based reconstruction [27–29]. Although 

learned prior could improve the performance to a certain extent, the iterative procedure is 

still time-consuming.

Actually, the term ∑
k = 1

K
(Gk

t )Tγk
t (Gk

t xt) in (8), with the transforms dependent on the iteration 

index, can be interpreted as being parallel to a classical CNN. In each iteration, an image x is 

convolved with a set of linear filters, which can be treated as a recurrent residual CNN. 

There are two convolution layer, (Gk
t )T and Gk

t , and one activation function layer γk
t . 

Meanwhile, the image xt−1 in the previous iteration is involved to update the new one xt, 

which works in the principle similar to that of the residual network. Based on the above 

observation, the transform matrices Gk
t  and (Gk

t )T can be substituted by the corresponding 

convolutional kernels gk
t  and gk

t ’ respectively. Hence, (8) can be represented as a CNN shown 

in Fig. 1, where the loop denotes the iterative procedure.

To extend the flexibility of the network, we actually implement the term ∑
k = 1

K
(Gk

t )Tγk
t (Gk

t xt) in 

each iteration as a multilayer CNN, including convolutional and ReLU layers. With a 

predetermined number of iterations, we can unfold Fig. 1 to a deep CNN, with all the 

regularization terms and parameters trainable. In this sense, our proposed network to solve 

(8) is named as a Learned Experts’ Assessment-based Reconstruction Network (“LEARN”), 

as illustrated in Fig. 2.

In Fig. 2, we use a three layer CNN (3Layer-CNN) [38] to substitute ∑
k = 1

K
(Gk

t )Tγk
t (Gk

t xt) for 

each iteration. 3Layer-CNN was proposed to denoise low-dose CT images, which is a post-

processing method. The mapping function of 3Layer-CNN can be formulated by

M(xt − 1) = W3
t − 1 ∗ ReLU(W3

t − 1 ∗ ReLU(W3
t − 1 ∗ xt − 1 + b1

t − 1) + b2
t − 1) + b3

t − 1 (9)

where the weights W1
t − 1, W2

t − 1, W3
t − 1 consist of n1, n2 and n3 convolution kernels with a 

uniform size of s1, s2 and s3 respectively, b1
t − 1, b2

t − 1 and b3
t − 1 are the corresponding biases, 

* represents the convolution operator, and ReLU(·) is the activation function. The whole 

LEARN network is cascaded with multiple iterations denoted by blocks in Fig. 2. The 

zoomed green box shows the flowchart of operations in each block. In addition to the 

3Layer-CNN at the bottom, a term λtAT(Axt − y) corresponding to the data fidelity term, 

and a shortcut connection from xt−1 to xt . All these links are summed into the intermediate 

reconstruction xt. While the stacked 3Layer-CNNs alone are subject to the risk of over-

smoothing the image details and difficulty of training, the overall architecture is a residual 

network that preserves the structural details and accelerates the training speed [41].

Chen et al. Page 8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It is underlined that all the iteration-index-dependent parameters of the LEARN network, 

including the convolution operators, will be learned from training data. The numbers of 

filters {n1, n2, n3}, the kernel sizes {s1, s2, s3}, and the total number of iterations Nt are 

manually set in this pilot study. The initial inputs to the network include x0, A, AT and y, 

and the corresponding final output is the reconstructed image x
Nt. The input to the network 

x0 can be set to 0 or an approximate reconstruction such as that obtained with FBP or a 

popular IR method. The data fidelity term is utilized in every iteration. The convolution 

operations are performed on intermediate results in the image domain.

C. Training the LEARN Network

The proposed LEARN network can be trained in a supervised manner, which means a 

training dataset should be prepared with both undersampled measurements and paired high-

quality CT images. Specifically, the training dataset D consists of ND samples (ys, xs)s = 1
ND , 

where ys is undersampled measurements, and xs is the corresponding reference image. The 

parameter set Θt = λt, W1
t , W2

t , W3
t , b1

t , b2
t , b3

t  contains all the parameters that are iteration-

index-specific, including 1) the balancing parameter λt, 2) the filter weights W1
t , W2

t , W3
t

and biases b1
t , b2

t , b3
t . The training model is formulated to minimize the loss function in the 

form of accumulated mean squared errors (MSE):

minΘ L(D; Θ) = 1
2ND

∑
s = 1

ND
xs

Nt(ys, Θ) − xs 2

2

s . t .
xs

t + 1 = xs
t − λtAT(Axs

t − ys) + M(xs
t)

t = 0, 1, 2…, Nt − 1,

(10)

where xs
Nt(ys, Θ) denotes the reconstructed image after the final iteration Nt from under-

sampled data ys. In this study, we optimized the loss function using the Adam method [66]. 

For the initialization of training parameters, the base learning rate was set to 10−4, and 

slowly decreased down to 10−5. The convolution kernels were initialized according to the 

random Gaussian distribution with zero mean and standard deviation 0.01. The initialization 

of the network parameters may influence the training and the performance of LEARN. 

Although the optimization of the training parameter initialization was not the main point in 

this paper, some analyses were given in the supplemental materials.

To perform the back propagation procedure for the proposed LEARN network, the gradient 

computation is the key but it is different from that for a normal CNN due to the existence of 

the data fidelity term. The formulation of all the computational steps for back propagation 

involves the applications of the chain rule multiple times for every layer but they are 

technically trivial. For brevity, here we only choose the differentiation parts as an example to 

illustrate how to perform back propagation, and the other CNN layers can be similarly 

computed.
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The associated gradient ∂L/∂Θt can be obtained by back propagation as follows:

∂L

∂Θt = ∂xt + 1

∂Θt ⋅ ∂xt + 2

∂xt + 1… ∂x
Nt

∂x
Nt − 1

∂L

∂x
Nt

. (11)

Clearly, we need to compute the three kinds of differentiation in (11) respectively; i.e., ∂xt+2/

∂xt+1 and ∂L/ ∂x
Nt. First, according to (10) we compute the gradient of the loss function L 

with respect to the reconstructed result x
Nt as

∂L

∂x
Nt

= x
Nt − x . (12)

Second, due to Θt = λt, W1
t , W2

t , W3
t , b1

t , b2
t , b3

t , ∂xt+1/∂Θt can be respectively computed 

according to (10). For brevity, only ∂xt+1/∂λt, ∂xt + 1/ ∂W1
t  and ∂xt + 1/ ∂b1

t  are given here 

(other derivatives can be similarly obtained). The derivative of xt+1 with respect to λt is 

expressed as

∂xt + 1

∂λt = − AT(Axs
t − ys)

T, (13)

the derivative of xt+1 with respect to W1
t  is expressed as

∂xt + 1

∂W1
t = − ∂M(xt)

∂W1
t , (14)

and the derivative of xt+1 with respect to b1
t  is written as

∂xt + 1

∂b1
t = ∂Mxt + 1

∂b1
t . (15)

Third, according to the formula for updating xt+1 in (10), ∂xt+2/∂xt+1 is given as

∂xt + 2

∂xt + 1 = I − (λt + 1AT A + ∂M(xt + 1)
∂xt + 1 ) (16)
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where I is an identity matrix of J × J and ∂M(xt+1)/∂xt+1, ∂M(xt + 1)/ ∂W1
t  and 

∂M(xt + 1)/ ∂b1
t  are the derivative of the CNN-based mapping function in (9), which can be 

calculated in the standard back propagation procedure for a classical CNN. With (12) to 

(16), all the terms in (11) can be calculated. As a result, ∂L/∂λt, ∂L/ ∂W1
t  and ∂L/ ∂b1

t  can be 

respectively obtained.

III. Experimental Design and Representative Results

To evaluate the imaging performance of the LEARN network under realistic conditions, a set 

of clinical data and images was used, which was established and authorized by Mayo Clinics 

for “the 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge”. The image dataset 

contains 5,936 1mm thickness full dose CT images from 10 patients. Refer to [67] for more 

details about this dataset. The projection dataset is composed of projection data from 2,304 

views per scan. The reference images were generated using the FBP method from all 2,304 

projection views. The projection data was downsampled to 64 and 128 views respectively to 

simulate the few-view geometry. 25 images were randomly selected for each patient, and 

there are totally 250 images cases into our dataset for this study. Fig. 3 demonstrates 

examples in the dataset. It is seen that different parts of the human torso were included. 

Another observation is that due to the thin slice thickness, image noise is evident even in the 

fully sampled images. The LEARN network was trained with a subset of paired full dose 

and under-sampled images, totally 200 image pairs from 8 patients. The rest of the 50 image 

pairs from the other 2 patients were respectively used for testing. After the first random 

selection, the training set included 37 thoracic, 82 abdominal and 81 pelvic images. Then, 

the testing dataset included 8 thoracic, 18 abdominal and 24 pelvic images. For fairness, 

cross-validation was performed with the testing dataset.

In our experiments, the following basic parameters were evaluated for their impacts on 

image quality. The number of filters in the last layer n3 was set to 1 and the numbers of 

filters in the first two layers were both set to 48. The kernel size of all layers was set to 5×5. 

All λt in our network were initialized to 0 and the initial input to the network x0 was set to 

the FBP result. The number of iterations Nt was set to 50. The proposed LEARN network 

was implemented in MAT-LAB using MatConvNet [68] and all the experiments were 

performed in MatLab 2017a on a PC (Intel i7 6800K CPU and 64 GB RAM). The training 

stage is time-consuming on CPU. A common way for acceleration is to work in parallel on 

GPU. In our work, the training process was executed with a graphic processing unit card 

GTX Titan Xp. Our codes for this work are available on https://github.com/maybe198376/

LEARN.

Three classic metrics, including the root mean square error (RMSE), peak signal to noise 

ratio (PSNR) and structural similarity index measure (SSIM) [69], were chosen for 

quantitative assessment of image quality.

Five state-of-the-art methods were compared against our LEARN network, including ASD-

POCS [11], dual dictionary learning (Dual-DL) [20], total generalized variation based 

penalized weighted least-squares (PWLS-TGV) [16], GammaReg [25, 26] and FBPConvNet 
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[43]. ASD-POCS is a widely used iterative reconstruction method with the TV 

regularization. Dual-DL is a contemporary iterative reconstruction model aided by learned 

dictionaries from external data, which can be grouped into the category of learning-based 

methods. PWLS-TGV is a statistical IR method with a regularization term constructed with 

higher order derivatives. Gamma-Reg is a recently proposed IR method, which utilizes the 

Gamma regularization to simulate the fractional norm between the l0-norm and l1-norm. 

FBPConvNet is the most recently proposed CNN-based sparse-view CT method. It is 

essentially a post-processing method. The parameters of ASD-POCS, PWLS-TGV, Gamma-

Reg and Dual-DL were optimized using a golden-section search to minimize RMSE. For fair 

comparison, the external global dictionary for Dual-DL was trained with the same training 

dataset as that used by the LEARN network. FBPConvNet was trained with the same 

training strategy in the original reference [43]. Totally, 500 images were selected, including 

the 200 images in the LEARN’s training set. Meanwhile, data augmentation was applied, 

making the total number of training samples reach 2000, which is consistent with [43].

A. Visualization-Based Evaluation

To visualize the performance of our LEARN network, representative slices using the first 

random training and testing dataset were selected. In Fig. 4, the abdominal image 

reconstructed from 64 views were reconstructed using different methods. As the sampling 

rate was rather sparse, the artifacts in the resultant FBP reconstruction is too severe to show 

any diagnostically useful information. All the other four methods efficiently suppressed the 

artifacts. However, as shown in Fig. 4(c), ASD-POCS suffered from the notorious blocky 

effect, caused by the clinically improper assumption that the underlying image was 

piecewise constant [61]. Dual-DL produced a better visual effect than ASD-POCS, but the 

edges of tissues were blurred. The reason for blurring is the use of the weighted average of 

dictionary atoms. This procedure can efficiently remove the noise in smooth regions, but the 

details may not be kept very well. In Fig. 4(e) and (f), PWLS-TGV and Gamma-Reg 

mitigated the blocky effect to a certain extent, but the details in the liver were still noisy. It is 

observed that Fig. 4(g) has the best spatial resolution. The structures were clear, and even the 

noise in the reference image was eliminated. However, comparing to the reference image, 

many important details were smoothened away. Except enhanced blood vessels, some other 

structures were distorted as indicated by the red arrows. This phenomenon was also 

observed in [38, 41] and a brief analysis was given in our previous paper [41]. Three 

comments can be made on this defect. First, FBPConvNet involves multiple down-sampling 

and up-sampling operations. These operations may help enlarge the effective receptive field 

to extract global features of artifacts, but the images details may be missed during these 

operations. Second, learning-based post processing methods are heavily dependent on the 

training samples, and 500 samples may be a small number relative to the current capacity of 

FBPConvNet. Third, FBPConvNet only uses projection data to generate the pseudo-inverse, 

which led to the result close to that reconstructed via FBP. In other words, their work did not 

involve the measurements into the processing procedure, which means that the image quality 

could only be suboptimal. In Fig. 4(h), the LEARN network maintained most of the details, 

especially in terms of noise reduction, the contrast enhanced blood vessels and other small 

structures.
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Fig. 5 demonstrated the results in the zoomed ROI, which was indicated by the red box in 

Fig. 4(a). The red arrows indicated a liver region containing several contrast enhanced blood 

vessels. The blue arrow pointed to a location with possible metastasis, which is clinically 

important. In Fig. 5(b), the artifacts were severe and covered all the information. Although 

ASD-POCS preserved some structures, the details were heavily blurred. Dual-DL kept parts 

of the details, but the contrast was low with artifacts due to the weighted average of 

dictionary patches. PWLS-TGV did not remedy the blocky effect very well. The noise in 

Fig. 5(f) is still noticeable. FBPConvNet gave the best contrast in all the cases, but many 

details were smoothened in the liver. The possible metastasis was difficult to be recognized. 

In Fig. 5(h), the LEARN network preserved the vessels better than the other methods, with 

the metastasis being clearly identified. To validate whether the proposed method introduced 

HU bias, Fig. 6 shows the means and standard deviations in two (liver and kidney) 

homogeneous regions reconstructed using different methods, as indicated with the two blue 

boxes (ROI I and ROI II) in Fig. 4(a). It can be seen that LEARN had the mean closest to the 

reference image in both ROIs and its standard deviations were more consistent to that in the 

reference image. ASD-POCS, Dual-DL, PWLS-TGV and FBPConvNet had much smaller 

standard deviations than that in the reference image in ROI I, which can be viewed as an 

evidence of over-smoothing.

Fig. 7 presents the thoracic images reconstructed from 128 views using the different 

methods respectively. With the increase of sampling angles, the artifacts in the FBP 

reconstruction were significantly reduced than the counterpart in Fig. 4(b). All the other 

methods eliminated most of the artifacts. The red arrows indicated three regions with 

structural details. The Dual-DL, PWLS-TGV, Gamma-Reg and LEARN network reproduced 

images most consistent to the reference. ASD-POCS blurred the edges in the top of the 

image. FBP-ConvNet distorted the details in the top region in the image, and overly 

smoothened the interventricular septum in the middle of the image. We also chose a small 

region in Fig. 7 to enlarge more details for further examination in Fig. 8. As marked by the 

red arrows, the LEARN network preserved the edges better than the other methods. The blue 

circle indicates a pseudo-structure observed by FBP and FBPConvNet in Fig. 8(b) and (g) 

respectively. Actually, the FBP result was the input of FBPConvNet so that it can be 

predicted that without referencing to the original projection data, CNN-based post-

processing methods cannot reliably distinguish between subtle details and weak artifacts. To 

further demonstrate the ability of our method for structure preservation, the horizontal 

profile was plotted as a dotted blue line in Fig. 9. It can be easily observed that the profile of 

LEARN is most consistent to the reference image across edges and in approximately 

homogeneous regions.

B. Quantitative and Qualitative Evaluation

Table I lists the quantitative results for the reconstructions from 64 and 128 views in Fig. 4. 

It is seen that the proposed LEARN network achieved the best results in terms of the 

metrics, which agrees with our visual observations. In the cases of 64 and 128 views, our 

model gained improvements of 5.2 and 3.1 dB for PSNR respectively. Our results were also 

impressive in terms of RMSE and SSIM.
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The quantitative results for the images in Fig. 7 from either 64 or 128 views were presented 

in Table II. Similar trends can be observed in Table I. The LEARN network preformed the 

best overall, making consistent improvements in all the metrics.

Table III shows the quantitative results in the full cross validation, obtained by averaging the 

corresponding values of testing cases. The proposed LEARN network outperformed all the 

other methods in all the metrics significantly. This solid evidence is in strong agreement with 

our visual observations. The run time for each method was also given in the table, 

benchmarked in the CPU mode. Due to the operations invovling the system matrix, the 

LEARN network was a bit slower than FBPConvNet but LEARN could be viewed as a 

smarter and faster implementation of iterative algorithms, carries over all the advantages of 

iterative reconstruction, runs 3-, 300-, 100- and 8-fold faster than ASD-POCS, Dual-DL, 

PWLS-TGV and Gamma-Reg respectively.

For qualitative evaluation, 30 reference images used for testing and their corresponding 

under-sampled images reconstructed using different methods were randomly selected for 

experts’ evaluation. Artifact reduction, noise suppression, contrast retention and overall 

quality were included as qualitative indicators with five assessment grades: from 1 = worst 

to 5 = best. Two radiologists D1 and D2 respectively with 8 and 6 years of clinical 

experience scored these images. The reference images were used as the gold standard. For 

each set of images, the scores were reported as means ± SDs (average scores ± standard 

deviations). The student’s t test with p < 0.05 was performed to assess the discrepancy. The 

statistical results are summarized in Table IV.

As demonstrated in Table IV, the impressions on the images reconstructed by FBP were 

much poorer than that on the reference images in terms of the scores. All the other image 

reconstruction methods significantly improved the image quality, and PWLS-TGV, Gamma-

Reg, FBPConvNet and the proposed LEARN network achieved similar results. The scores of 

LEARN were closer to the ones of the reference images, and the student’s t test results 

showed a similar trend that the differences between the reference images and the results 

from LEARN were not statistically significant in all the qualitative indices.

C. Trade-Offs Between Network and Performance

Although it is believed that one of the advantages of the neural network approach is 

parameter-free, several parameters of the network architecture are still needed to be set. In 

practice, with traditional IR methods, such as ASD-POCS, we must adjust the regularization 

parameter for every task, since the structures of images may be extremely different. On the 

other hand, with neural networks, the regularization parameters can be learned from training 

samples, which is highly desirable for image reconstruction targeting a much wider class of 

tasks. In other words, all the parameters of the LEARN architecture can be selected to match 

the whole training dataset for multiple tasks. once the network is trained, it can be applied to 

all the targeted tasks without further modification.

Specifically, we evaluated the impacts of several key factors of the network, including the 

number of filters, filter size, number of iterations, the number of training samples and the 

number of layers in each iteration. The impact of other components of network, including 
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the batch normalization, activation function and loss function were discussed in the 

supplemental materials. The effect of the parameter was sensed by perturbing one while the 

others were fixed. The default configuration of the network were Nt = 30, n1 = n2 = 24, n3 = 

1, s1 = s2 = s3 = 3 and ND = 100. In this study, the training and testing sets corresponding to 

64 views were chosen and analyzed in the same way as used in the above-described 

experiments. All the numbers in the following tables or figures denote the average values 

from all the testing images.

1) Number of Filters: We tested the cases of n1 = n2 = 8, 16, 24, 32 and 48 

respectively. The corresponding quantitative results were given in Table V. It can 

be seen that with the increase of the number of filters, the performance was 

improved, but the profit gradually declined. Meanwhile, the training and run 

time will significantly rise. To balance performance and computational time, the 

number of filters was set to 24 in our LEARN prototype.

2) Impact of the Filter Size: Different filter sizes, 3, 5, 7 and 9 respectively, were 

tested. The results are in Table VI. First, the scores went up with an increased 

filter size, but when the size was larger than 7, the values of the metrics began to 

decline. It is well known that increasing the filter size can enlarge the receptive 

field, which will help CNN extract higher-level features. These features are quite 

similar to high order statistical features. However, when the filter size increases, 

more training samples are needed to avoid overfitting. Meanwhile, increasing 

the filter size will also increase the training and run time.

3) Number of Iterations: To achieve a satisfactory result, we usually iterate the 

algorithm a sufficient number of times. Our model can learn the parameters to 

accelerate the reconstruction procedure, making each LEARN-type iteration 

more effective than an equivalent iteration in the classic iterative reconstruction 

process. The quantitative results with different iterations were plotted in Fig. 10. 

It is seen that when the number of iterations was less than 30, the improvement 

by adding more iterations was significant. After the number of layers went 

beyond 30, the performance became saturated. When the number went up to 50, 

the performance reached the peak and began to decline with additional 

iterations. Meanwhile, adding more iterations into the network will aggravate the 

computational burden (more parameters of the network) for training the 

network. Taking both performance and computational cost into account, we 

chose Nt = 50 in our experiments.

4) Number of Samples: In traditional applications of deep learning, a huge number 

of training samples will help improve the performance of the network, but in our 

work with the utilization of data fidelity in each iteration, the amount of training 

samples seems not necessary huge. The results with different amounts of 

training samples are given in Table VII. Clearly, before the number of training 

samples reached 150, the improvements were significant. After it exceeded 150, 

the gain diminished greatly. As a result, 200 samples seems adequate for the 

capacity of our proposed LEARN network. In a general sense, it is with high 

possibility that over-fitting will be observed while training such a deep network 
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(150 layers) with relatively few samples (200 images in our experiments). Fig. 

11 is given to plot the losses with training and validation datasets, and it is 

suggested in Fig. 11 that the convergence behavior is fast and stable (the weights 

were initialized with Gaussian noise of zero mean), and over-fitting is not a 

problem for our proposed LEARN, which means that 200 examples is a proper 

number to fit the proposed 150-layer network. In other words, the data was 

sufficiently large such that over-fitting would not occur, and yet not too huge to 

be inefficient or impractical. At this moment, there no thorough theory to 

describe this behavior or find such a sweet spot. Nevertheless, we would like to 

offer two plausible reasons as follows.

First, the problem we deal with is sparse-view CT reconstruction. The key is to recover local 

structural details while suppressing artifacts and noise. In contrast to the pattern recognition 

problems, here we only focus on low-level features, such as edges, shapes, and texture, and 

200 images may be already informative to cover these features. There will be no more 

significant low-level features if more samples are added. Second, different from the 

traditional CNN architecture, which only has a single input layer, the projection data are 

directly involved at different layers in LEARN as a strong constraint or regularizer so that 

large-scale features cannot be much off-target. It can be seen as a simplified version of the 

densely connected convolutional network (DenseNet) [70], which is proved to have a fast 

and stable convergence behavior.

5) Number of Layers for Each Iteration: To evaluate the impact of the numbers of 

layers for each iteration, the number of layers per iteration was varied from 2 to 

6 with a unit step. The quantitative results are in Table VIII. It can be seen that 

the performance was significantly improved when the number of layers was 

greater than 2 and it reached the peak while the number was 4. The performance 

began to decline after 4. When the number of layers was 6, the number of the 

network parameters become huge. We had to decrease the batch size to fit the 

data into the video memory. Based on our feasibility data, 3 layers per iteration 

seems a decent choice balancing the imaging performance and the 

computational cost.

D. Robustness and Generalization

In this subsection, the robustness and generalization of LEARN were also assessed.

1. Initialization of the Iterative Process: Due to the non-convexity of the proposed 

LEARN network, the initial values may affect the performance. Here we 

conducted experiments with two typical initialization schemes, which are FBP 

and zero images respectively, to sense the influence of initialization. Fig. 12 

shows four slices from different parts of the human body reconstructed using 

different initialization schemes. In Fig. 12, it is hard to detect any visual 

differences between the reconstructed images regardless of the initialization 

scheme: either FBP or zero images. Table IX lists the quantitative results of these 

four slices and full cross validations. It is seen that in all the cases, the results 

with the FBP initial image had a better performance than those with zero initial 

images, but the differences were not significant, being consistent to the visual 
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inspection. Although the convexity of our model cannot be guaranteed, the 

merits originated from the proposed framework with learned iteration-wise 

regularization terms and balancing parameters did yield a competitive 

performance.

2. Noise Levels: To show the robustness of the proposed LEARN network against 

different noise levels, Poisson noise of different strengths was added into the 

sinograms of testing samples. The networks were trained with noiseless samples 

from 64 and 128 views respectively. The simulation strategy was similar to that 

described in [41], and the blank scan factor b0 was set from 4 × 107 to 1 × 105 

with step of 1 × 105. Fig. 13 demonstrates the changes of PNSR values 

associated with different noise levels. It can be seen that the performance of 

LEARN was quite stable until b0 was decreased below 1 × 107. When the noise 

level was worse than 1 × 107, the performance of LEARN began gradually 

deteriorating. Fig. 14 presents the results of LEARN for three different noise 

levels, L1 = 3 × 107, L2 = 2 × 107 and L3 = 1 × 107 respectively. In Fig. 14, with 

the increment of the noise level, the FBP results were degraded heavily. When b0 

was greater than 1 × 107, the noise was efficiently suppressed using our method, 

and the image quality of LEARN was judged clinically acceptable. Our results 

show that the LEARN method can handle a broad range of noise strengths.

3. Inconsistency of Training and Testing Samples: It is well known that the 

performance of learning based methods are usually dependent on training 

samples. It is meaningful to inspect the robustness relative to training samples. 

Hence, we trained our network with two different data sources: 200 thoracic and 

200 abdominal images. The quantitative results are in Table X. LEARN-All-T 

and LEARN-All-A denote that the training datasets included different parts of 

the human body and the corresponding testing datasets contained only thoracic 

and abdominal images respectively. On the other hand, LEARN-T-A represents 

the training dataset that only included thoracic images and its corresponding 

testing dataset only contained abdominal images. LEARN-A-T was just opposite 

to LEARN-T-A, whose training dataset was composed of only abdominal images 

and corresponding testing dataset only had thoracic images. Comparing to the 

results with more diverse training dataset, the results from a single data source 

had a similar performance. Although some small differences can be noticed, the 

overall performance was still close to the results with more diverse training 

dataset. We infer that there would be two reasons for the robustness of our model 

with respect to training samples: 1) the introduction of projection data helps 

maintain the reconstruction result within a credible range; and 2) although the 

structural details of thoracic and abdominal images are quite different, the 

artifacts caused by the sparse sampling are similar in these cases, and LEARN 

introduced the residual block that makes the learning procedure of LEARN more 

focus on artifacts. For these reasons, the ability of the learned filters will not be 

very sensitive to training samples.
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E. Computational Cost

Due to the complexity of the proposed network architecture, we implemented it in MatLab 

aided by MatConvNet. The efficiency of the program can be improved in the current popular 

frameworks, such as Caffe or TensorFlow. A major issue is how to deal with the huge 

number of network parameters. For 3 layers in each iteration and 50 iterations in our 

experiments, the total layers exceed 150 layers and challenges the video memory. For our 

current implementation, it took 49 hours to train the network with 100 images and 80 hours 

with 200 images. Although the training stage is time-consuming, the run time is much faster 

than the classic iterative reconstruction methods, as shown in Table III. Once the training 

stage is finished offline, the LEARN-based reconstruction is much more efficient than the 

competing iterative reconstruction methods, be it of the simple TV type or of more 

advanced, PWLS-TGV, Gamma-Reg, and dictionary learning types.

IV. Discussion and Conclusion

Deep learning has achieved remarkable results in many fields such as computer vision, 

image analysis, and machine translation. Inspired by this exciting development, it is 

envisioned that machine learning especially deep learning will play an instrumental role in 

tomographic reconstruction such as in the field of radiology [52, 71]. Along this direction, 

learning-based or learned image reconstruction algorithms are being actively developed, 

focusing on utilizing prior knowledge to improve image quality. Two representative 

examples are dictionary learning and learned sparsifying transform. In the first example, 

either a synthesis or an analysis dictionary can be learned from an external data source to 

represent sparsely an underlying image to be reconstructed. In the second example, a fixed 

sparsifying transform can be learned from training data. Both examples allow sparse coding 

data-driven and much more efficient. In this paper, we have demonstrated the feasibility and 

merits of simultaneously learning multiple transforms/dictionary atoms and associated 

weighting factors, making the deep learning based image reconstruction more adaptive and 

more powerful. Essentially, our model can be seen as a generalized version of the previously 

published learned reconstruction algorithms, with a potential to train the system matrix as 

well, which not only learns the regularization terms but also all the other parameters in the 

model. It is underlined that in all the published methods, once the dictionary or the transform 

was learned, it will not change during the iterative procedure. For the first time, our model 

learns all regularization terms and parameters in an iteration dependent manner, thereby 

optimizing image quality and accelerating reconstruction speed in an intelligent way.

Distinguished from most of the previous works, which treated the network structures as 

black boxes, our model was directly motivated by the numerical scheme for solving the 

optimization problem based on physical, mathematical and application-relevant knowledge. 

Hence, the resultant neural network architecture, the LEARN network in this study, was well 

motivated at the first place, and then optimized via training and testing using the machine 

learning techniques. This setup offers us unique insights into how the LEARN network 

achieves its excellent performance. In this sense, we believe that the LEARN network was 

designed via transfer learning; i.e., some best algorithmic elements from classic iterative 

reconstruction efforts has been utilized in the LEARN network.
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From a general point of view, it is indeed questionable with using a few gradient steps to 

solve an energy minimization problem, especially for a non-convex energy functional, like 

(5). Usually, a better way is to consider more advanced optimization algorithms, such as a 

Quasi-Newton’s method or algorithms in [72, 73]. Our original energy functional is truly 

non-convex since there is a non-convex penalty function in the regularization term. We use a 

few gradient descent steps for the corresponding energy functional, and this process is 

finally expressed as a multi-layer CNN model. These gradient descent steps are not to 

exactly find the global minimum of a specific energy functional. Instead, our intent is to do a 

few jumps from a starting point, and hopefully we can arrive at a better point closer to the 

ground truth. As a consequence, the outcome depends on jumping paths, which are 

controlled by the CNN parameters, as well as the starting point. Under the data fidelity 

constraints, the training phase is to search such good jumps, and then validated to be 

successful. In other words, the exploited gradient descent method is used only to derive a 

very special multi-layer architecture instead of a commonly-used CNN architecture nor a 

global optimizer. Therefore, it does not matter whether the original energy functional is 

convex or non-convex, as long as data-driven machine learning yields good results.

In our experiments, our LEARN model has been shown to be generally advantageous in 

terms of noise suppression, feature preservation, quantitative and qualitative evaluations but 

image contrast cannot keep perfect in all the situations, such as in Fig. 4. A reason could be 

due to the utilization of MSE as the loss function, as mentioned in [40]. A perceptual 

similarity measure may be a better choice for clinical applications. More generally, we can 

add a discriminative network to measure a more general loss; or in the other words, our 

current LEARN model can be retrofit into the GAN network, which is currently a hot topic 

and will be our future effort as well.

In conclusion, motivated by the pioneering results [55, 56] in deep learning for sparse 

coding [54], we have unfolded a state-of-the-art iterative framework for CT reconstruction 

into a deep-learning network, called the LEARN network. Except for the system matrix 

elements, all the other key parameters from the original algorithm have been learned from 

training samples. We have evaluated the LEARN network with the well-known Mayo Clinic 

low-dose image dataset in comparison with several state-of-the-art image reconstruction 

methods. In the experimental results, our LEARN network has demonstrated a favorable 

performance over the other methods in both image quality and computational efficiency. In 

our future work, we will further optimize the LEARN network for clinical applications by 

training the system matrix as well and generalizing the loss function in the GAN framework.
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Fig. 1. 
Network architecture corresponding to (8).
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Fig. 2. 
Overall structure of our proposed LEARN network.
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Fig. 3. 
Examples in the dataset. The display window is [−150 250] HU.

Chen et al. Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Representative abdominal images reconstructed using various methods. (a) The reference 

image versus the images reconstructed using (b) FBP, (c) ASD-POCS (λ = 0.07), (d) Dual-

DL (n = 16, ds = 2, β = 0.03), (e) PWLS-TGV (β1 = 1 × 10−2, β2 = 1.3 × 10−4), (f) Gamma-

Reg (λ = 3 × 10−3, α = 1.5, β = 8), (g) FBPConvNet, and (h) LEARN respectively. The red 

arrows point to some key details, which can only be discriminated with the LEARN 

network. The red box labels a region of interest (ROI), which is magnified in Fig. 5. The 

display window is [−150 250] HU.
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Fig. 5. 
Zoomed region of interest (ROI) marked by the red box in Fig. 4(a). (a) The reference image 

versus the images reconstructed using (b) FBP, (c) ASD-POCS, (d) Dual-DL, (e) PWLS-

TGV, (f) Gamma-Reg, (g) FBPConvNet, and (h) LEARN respectively ((a)-(g) from Fig. 

4(a)-(g)). The arrows indicate two locations with significant visual differences. The display 

window is [−150 250] HU.
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Fig. 6. 
Means and standard variations for (a) ROI I and (b) ROI II reconstructed using different 

methods.
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Fig. 7. 
Representative thoracic images reconstructed using various methods. (a) The reference 

image versus the images reconstructed using (b) FBP, (c) ASD-POCS (λ = 0.05), (d) Dual-

DL (n = 25, ds = 2, β = 0.01), (e) PWLS-TGV (β1 = 1 × 10−2, β2 = 0.5 × 10−4), (f) Gamma-

Reg (λ = 2 × 10−3, α = 1.2, β = 7), (g) FBPConvNet, and (h) LEARN respectively. The red 

arrows point to some details, which can be discriminated by the LEARN network. The red 

box labels an ROI to be magnified in Fig. 8. The profiles along the dotted blue line are in 

Fig. 9. The display window is [−1000 200] HU.
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Fig. 8. 
Zoomed parts over the region of interest (ROI) marked by the red box in Fig. 6(a). (a) The 

reference image versus the images reconstructed using (b) FBP, (c) ASD-POCS, (d) Dual-

DL, (e) PWLS-TGV, (f) Gamma-Reg, (g) FBPConvNet, and (h) LEARN respectively ((a)-

(h) from Fig. 6(a)-(f)). The red arrows indicate a selected region for visual difference. The 

blue dotted circle shows another region, where the results of FBP and FBPConvNet 

generated similar artifacts. The display window is [−1000 200] HU.
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Fig. 9. 
The horizontal profiles along the dotted blue line in Fig. 7(a) of the reference image versus 

the images reconstructed using (a) FBP, (b) ASD-POCS, (c) Dual-DL, (d) PWLS-TGV, (e) 

Gamma-Reg, (f) FBPConvNet, and (g) LEARN respectively. Two dotted green boxes label 

approximately homogenous and edge-rich regions respectively.
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Fig. 10. 
PSNR and RMSE values for the testing dataset with different numbers of iterations.
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Fig. 11. 
The loss curves of LEARN for training and validation datasets during the training stage.
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Fig. 12. 
Four slices reconstructed by LEARN from different initial images. The images in the first 

column were initialized with the FBP results while the images in the second column were 

initialized with zero images.
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Fig. 13. 
PSNR values for the reconstructed results using LEARN with different noise levels. The 

dotted green lines indicate three different noise levels. The corresponding results are in Fig. 

13.
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Fig. 14. 
Reconstructed results from 64 views using FBP and LEARN for different noise levels 

respectively. (a) FBP result with b0 = 3 × 107, (b) LEARN result with b0 = 3 × 107, (c) FBP 

result with b0 = 2 × 107, (d) LEARN result with b0 = 2 × 107, (e) FBP result with b0 = 1 × 

107, and (f) LEARN result with b0 = 1 × 107.
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TABLE VI

Quantitative Results (Mean) Associated With Different Filter Sizes

Filter Size 3 5 7 9

RMSE 0.0115 0.0114 0.0121 0.0124

PSNR 38.8135 38.9543 38.4023 37.1574

SSIM 0.9514 0.9541 0.9507 0.9488
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TABLE X

Quantitative Results (Mean) Associated With Inconsistency of Training and Testing Samples

LEARN-All-T LEARN-A-T LEARN-All-A LEARN-T-A

RMSE 0.0140 0.0139 0.0100 0.0109

PSNR 37.1999 37.1102 40.0845 39.3153

SSIM 0.9472 0.9484 0.9574 0.9526
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