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Summary

Visceral leishmaniasis (VL) is a disease transmitted by phlebotomine sand flies, fatal if untreated, 

and with no available human vaccine. In rodents, cellular immunity to Leishmania parasite 

proteins as well as salivary proteins of the sand fly is associated with protection, making them 

worthy targets for further exploration as vaccines. This review discusses the notion that a 

combination vaccine including Leishmania and vector salivary antigens may improve vaccine 

efficacy by targeting the parasite at its most vulnerable stage just after transmission. Furthermore, 

we put forward the notion that better modeling of natural transmission is needed to test efficacy of 

vaccines. For example, the fact that individuals living in endemic areas are exposed to sand fly 

bites and will mount an immune response to salivary proteins should be considered in pre-clinical 

and clinical evaluation of leishmaniasis vaccines. Nevertheless, despite remaining obstacles there 

is good reason to be optimistic that safe and effective vaccines against leishmaniasis can be 

developed.
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1. Introduction

Leishmaniasis is a complex of parasitic diseases caused by several different species of 

Leishmania. The parasites are transmitted to and from animals or humans through the bite of 

infected phlebotomine sand flies leading to an intracellular infection in the mammalian host, 

predominantly within macrophages (Figure 1) (1, 2). Together with parasites and other 
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parasite-derived molecules, such as the promastigote secretory gel (PSG) (3), an infected 

sand fly injects saliva, composed of biologically active components, mostly proteins, with 

anti-hemostatic and immunomodulatory properties that help the insect to acquire a blood 

meal and consequently benefits Leishmania parasite establishment in mammalian hosts (4).

The main clinical manifestations of the disease include visceral leishmaniasis (VL), also 

known as kala azar, cutaneous leishmaniasis (CL), and mucosal leishmaniasis (ML). Post-

kala-azar dermal leishmaniasis is considered a complication of VL in areas where 

Leishmania donovani is endemic. Fortunately for vaccine development the parasite species 

are highly related antigenically, raising the potential for developing cross-protective 

vaccines. In addition, some of the vector salivary gland components are also conserved 

among vector species.

VL, the most serious form of leishmaniasis, is primarily caused by parasites of the 

Leishmania donovani complex, including L. donovani and L. infantum (5, 6). VL is 

characterized by fever, wasting, anemia, hepato-splenomegaly, and a depressed immune 

response (7). VL has a very high fatality rate in the absence of treatment. After malaria, VL 

is the second most common parasitic cause of death and is prevalent in 47 countries with 

about 200 million people at risk and an estimated annual incidence of approximately 

500,000 cases (8, 9). In South Asia and East Africa, VL is anthroponotic and caused by L. 
donovani (10). In the Mediterranean region, and in Central and South America, the disease is 

zoonotic and caused by L. infantum (= L. chagasi) where the main reservoir is dogs (11). 

Recently, cats and leporids have also been considered as possible alternative reservoirs of 

VL in certain foci in the Mediterranean region (12). Ninety percent of VL cases occur in five 

countries – India, Bangladesh, Nepal, Sudan, and Brazil – most often in remote regions 

without ready access to medical care. In the state of Bihar where more than 90% of all the 

cases in India are reported, high prevalence of asymptomatic persons and clinical VL cases 

has led to increased transmission of VL (8).

In this opinion piece, we present an additional consideration for vaccine development, i.e. 

the inclusion of vector components and the relevance of immunity to vector components in 

endemic populations.

2. Development of a Vaccine for Leishmaniasis

Efforts to develop a safe, effective, and practical vaccine for one or more leishmanial 

diseases have been driven by a largely unmet need. Measures such as vector control by 

insecticide spraying or impregnated bed nets have been insufficient, impractical, or difficult 

to sustain. Adding to the problem are issues with the drugs used to treat VL that are toxic 

(pentavalent antimonials, amphotericin B), or expensive (AmBisome) (8, 13–15). Similar 

issues exist for CL, particularly for the virulent L. braziliensis (CL, ML) and L. tropica (CL) 

(16).

Development of effective defined vaccines for the leishmaniases should be possible for the 

following reasons:
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• Unlike many other protozoa, Leishmania do not undergo significant antigenic 

variation.

• Leishmania have a single host cell, the macrophage, although it interacts with 

neutrophils and dendritic cells. There are ample immunologic data on enhancing 

macrophage killing of pathogenic organisms.

• A single morphologic form, the amastigote, is associated with pathology in the 

mammalian host.

• Although there are many distinct species of Leishmania, most pathogenic species 

share many important antigens.

• Safe and effective adjuvants that preferentially induce TH1 responses are now 

available.

• Both parasite and vector proteins may have protective capabilities

2.1 Brief History of Vaccination

There is evidence for natural immunity in human leishmaniasis. Sero-epidemiological 

studies indicate that the majority of infections with L. donovani or L. infantum, the causative 

agents of VL, remain asymptomatic with natural immunity to disease being the norm rather 

than the exception (7, 17, 18). Individuals cured from certain forms of CL are resistant to 

subsequent development of CL disease (though this is not true for all forms, particularly CL 

caused by L. braziliensis) (19). There are clearly parasite, as well as host factors that may 

influence the development of immunity.

The history of leishmaniasis vaccine development and a description of tried vaccine 

candidates have been reviewed (20). Much as in the case of small pox, early attempts at 

vaccination against CL involved the use of live parasite inoculation, leading to self-healing 

lesions and subsequent immunity. However, this approach was only used for CL, particularly 

L. major (21). Attempts to modernize the approach included using killed Leishmania 
preparations, with only partial and sporadic success in clinical studies (22–25). Experience, 

generally failures, with developing CL vaccine candidates has led scientists to question how 

to best mimic natural infection, and indeed how to do so for not only different forms of CL 

but for VL as well. One approach is obviously to continue efforts on attenuated live vaccines 

(26, 27), including genetic knockout strains (28), but manufacturing and regulatory issues 

will likely add additional barriers to the development of a commercially viable vaccine. 

Despite setbacks, past vaccine studies have been instructive. In this article, we present 

evolving concepts; which may lead to practical vaccine approaches that take aspects of 

natural infection into consideration.

2.2 New Approaches to Vaccine Development: Antigen Components

Immunity to the intracellular Leishmania parasites appears to be dominated by appropriate 

CD4+ T cell responses, particularly those with TH1 dominant profiles, characterized by the 

production of IFNγ, IL-2 and TNFα by polyfunctional CD4+ T cells (29–31). Negative 

effects on immunity to leishmaniasis have been associated with excess production of IL-10 

and TGF-β (32–36). Understanding the positive and negative aspects of immunity are 
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important considerations for vaccine development, including both antigen and adjuvant 

selection. Several parasite proteins have been evaluated as vaccine candidates in a variety of 

animal models, including mice, hamsters, dogs, and non-human primates. A summary of 

Leishmania antigens tested in experimental studies was recently reviewed (20).

Several Leishmania protein antigens induce potent antibody and T cell responses, yet it is 

clear that they are unable to induce protection in animal models, regardless of adjuvant 

formulation or delivery method used. Indeed, it appears that the majority of 

immunodominant parasite components, such as the repeat antigens represented by k39 (37), 

are not able to induce protection.

It has been appreciated that phlebotomine sand fly vectors of Leishmania can greatly affect 

the immune response to the parasite as well as the development of disease (3, 4, 38–40). 

This has rarely been considered in vaccine development. Two important paradigms 

establishing the influence of vector-derived factors on transmission and disease progression 

of leishmaniasis should be of interest to vaccinologists. The first concerns the heightened 

virulence of Leishmania transmission by vector bites resulting in enhanced disease 

pathology. Currently, this is mostly attributed to the immunomodulatory properties of saliva 

and the PSG (3, 4, 40). Other mechanical and behavioral factors such as the site of parasite 

deposition and altered feeding behavior of infected flies (41) may also contribute to the 

observed virulence of vector-transmitted leishmaniasis. Importantly, this virulence overrides 

protection provided by vaccines tested against needle-injected parasites (42) revealing a 

weakness in current preclinical evaluation of the efficacy of most vaccines. The second 

paradigm involves the use of such vector-derived factors to protect against Leishmania 
infections. Indeed, immunity generated against salivary proteins or PSG protected rodents 

against vector-transmitted leishmaniasis (3, 4, 40, 43) demonstrating their potential as 

vaccines against leishmaniasis.

The concept of vector salivary proteins as vaccines against human leishmaniasis has been 

gaining traction in recent years. Evidence to date indicates that salivary molecules inducing 

a TH1-delayed type hypersensitivity response in immunized animals create an adverse 

immunological environment at the bite site that impacts the co-deposited parasites, 

controlling disease and promoting Leishmania-specific immunity (Figure 2). Importantly, 

there is no cross reaction between vector salivary proteins and parasite antigens. The 

immunological environment (TH1) developed at the bite site to the salivary protein promotes 

a protective TH1 response against the parasite (Figure 2). These sand fly salivary proteins 

have emerged as candidates for a vaccine or components of a vaccine against leishmaniasis. 

Table 2 lists the three most promising candidates to date: PdSP15, a 15 kDa salivary protein 

member of the family of small odorant binding proteins from P. duboscqi (4), the vector of 

L. major in Sub-Saharan Africa, as a candidate antigen against cutaneous leishmaniasis (39); 

LJM19, an 11 kDa salivary protein with unknown function, and LJL143, a 38 kDa salivary 

protein with anti-coagulant activity (44), both from saliva of the sand fly Lutzomyia 
longipalpis, the vector of L. infantum in Latin America, as candidates against visceral 

leishmaniasis (38).
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PdSP15 protected non-human primates against vector-transmitted parasites (39). Rhesus 

macaques immunized with PdSP15, a major component of the saliva of this insect, showed a 

significant reduction in lesion pathology, a decrease in parasite number, and the induction of 

Leishmania-specific immunity. Importantly, individuals from a CL endemic area in Mali 

recognized the PdSP15 salivary protein suggesting this molecule is also immunogenic in 

humans (39). Mice immunized with PpSP15, the homologue of PdSP15 in Ph. papatasi, the 

vector of L. major in the Middle East and North Africa, were also protected against CL (45). 

PdSP15 also shares homology with PsSP15 from Ph. sergenti, a principal vector of L. 
tropica (39) and as such is a good candidate antigen for a vaccine against Old World CL. 

LJM19 protected hamsters against the fatality of VL caused by L. infantum (38) and against 

CL caused by L. braziliensis infection when challenged together with Lu. Longiplapis saliva 

(46). LJL143 is immunogenic in dogs, was detrimental to the parasites in vitro (47). 

Importantly, these salivary proteins are mostly unique to sand flies and do not have human 

homologues (39, 48).

2.3 Vaccine Development: Inclusion and Selection of Adjuvant

Clinical grade adjuvants that induce preferential and durable TH1 responses in experimental 

animal models and in humans are now available. Recombinant proteins often induce only 

weak T cell responses without the inclusion of adjuvant. Distinctively, salivary antigens 

induce a robust T cell response in mice without adjuvant (49). Specific adjuvant molecules 

may directly activate innate immune receptors, for example, Toll-like receptors (TLRs) (50, 

51). Other formulation systems may include both delivery and immunostimulatory 

components. Thus, adjuvants may be broadly classified into three groups of delivery 

systems: immunomodulatory molecules, particulate formulation and combinations of the 

former two classes (combination systems) (Table 3).

In leishmaniasis vaccine development, a synthetic toll-like receptor 4 (TLR-4) ligand, 

Glucopyranosyl Lipid A (GLA) is in clinical development (52). When formulated in a stable 

oil-in-water nano-emulsion (SE), the GLA-SE adjuvant system induced antigen-specific TH1 

immune responses that are associated with vaccine or protective efficacy in several animal 

models of infection, including tuberculosis, malaria, and influenza (53–55).

A clinical study that evaluated LEISH-F3, a fusion of nucleoside hydrolase (NH) and sterol 

24-c-methyltransferase (SMT), combined into a fusion construct, combined with GLA-SE 

was safe and immunogenic. T cell cytokines and TH1 biased Ab responses were seen in 

subjects immunized with protein/adjuvant, but not protein alone, demonstrating the need for 

adjuvant (56). This result, along with the results of several clinical studies with GLA-SE in 

nearly 1000 human subjects demonstrates the potential for a safe and efficacious adjuvant 

that can practically be applied to development of a human vaccine against leishmaniasis. 

This, along with the potential of using a sand fly protein as adjuvant, perhaps alone or in 

combination with GLA-SE, opens exciting and practical development opportunities.
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2.4 New Approaches to Vaccine Development: Formulating Parasite and Vector Salivary 
Antigens

Considering that both parasites and salivary proteins are co-deposited at the bite site, and 

that immunity to a sand fly salivary protein promotes protective immunity against the 

parasite in rodents and non-human primates (39, 45), it is possible that a combination of 

antigens from different sources may be complementary. Recently, a study provided evidence 

that combining a salivary molecule and a recombinant Leishmania tarentolae parasite 

confers a stronger protection against CL compared to the efficacy of each antigen alone (57). 

For this combination approach, the best immunization strategy consisted of priming with a 

sand fly salivary antigen and boosting with the salivary antigen and L. tarentolae (57). It is 

likely that the salivary antigen rapidly recalled an immune response to itself during the boost 

resulting in a TH1-type environment against L. tarentolae parasites that favored the 

development of a protective immunity (57). Importantly, the immunity generated against a 

salivary protein and a Leishmania antigen is likely to be amplified when the immunized 

animals encounter an infective bite. Additionally, this immune response will be localized to 

the skin interface when the parasites are at their most vulnerable stage, in low numbers and 

transitioning from the insect to the vertebrate host.

2.5 New Paradigms for Vaccine Design and Evaluation: Modeling Natural Transmission

The use of challenge models that mimic natural transmission has been a neglected aspect of 

vaccine development for vector-borne diseases. Nevertheless, developing such models is 

vital to vaccine assessment. In addition to the pathogen itself, a vector inoculum is complex 

comprising a multitude of vector-derived factors of pathogen and vector origin. In 

leishmaniasis, the infected sand fly salivates into the bite site in the skin and egests 

molecules alongside the parasites that modulate the bite site and participate in enhancement 

of disease (3, 4, 40). Sand flies are telmophagic feeders that lacerate skin capillaries creating 

a shallow pool of blood and lymph mixed with tissue into which the parasites are deposited. 

The site of parasite deposition in the skin, the first barrier to infection and an 

immunologically rich compartment, most likely influences the nature of the early host 

immune response. This response is further modulated by vector-derived factors that are 

egested by the fly into the bite site together with the parasites. These include a plethora of 

salivary proteins to facilitate feeding (58). Studies, reviewed in (4, 59) have established the 

immunomodulatory properties of several of these proteins, all of which promote Leishmania 
establishment. The infected sand fly also egests a proteophosphoglycan-containing PSG that 

modulates the environment to the benefit of the parasites (3). Additional non-biological 

factors such as the modified persistent feeding behavior of infected flies (41) also contribute 

to the complexity and virulence of a vector-challenge. We are therefore proponents of 

incorporating a vector-challenge study at the final stages of preclinical testing of a vaccine. 

The need for this additional selection step has been validated by the failure of a vaccine 

considered efficacious after a needle-initiated infection when challenged by infected sand 

flies (42). We have developed vector-transmission models for both CL (39, 60) and VL (61). 

These models provide a more stringent evaluation of vaccines and a more accurate readout 

of their expected performance under field conditions. We are currently using these models to 

prioritize promising vaccines for further development.
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Proposed Sequence of Testing Vaccine Candidates—

2.6 Clinical Development: A New Strategy to Demonstrate Vaccine Efficacy in the Field

A vaccine cannot be useful if not used, not used if not approved, and not approved without 

demonstration of safety and efficacy in field studies. Following research efforts to 

demonstrate pre-clinical rationale, early clinical studies may involve, for example antigen 

and adjuvant dose finding to optimize safety and immunogenicity. Such studies may be 

critical, as recent studies have led to an improved understanding of how to increase potency 

and efficacy of adjuvanted proteins by lowering the dose, a concept described in 

leishmaniasis more than 20 years ago (62). We have recently demonstrated that a lower dose 

(2ug) of a recombinant adjuvanted tuberculosis vaccine candidate was more potent than a 

higher dose (10ug) when used to immunized Mycobacterium tuberculosis-exposed 

individuals (Coler et al., unpublished),

Classically, testing vaccine candidates is performed in naïve animals. However field testing 

of VL vaccine candidates will likely be conducted in adults in endemic areas, and these 

individuals have been exposed to vector salivary proteins through sand fly bites. Following 

natural challenge via a sand fly bite, the parasites will most likely encounter a site that is 

already primed to salivary proteins as well as by the injected vaccine. The same applies to a 

vaccine that includes a salivary molecule where the salivary antigen injected during 

vaccination will encounter a site naturally primed to sand fly salivary proteins. In exposed 

populations, therefore, the first injection of a salivary antigen may act as a boost of a 

preexisting immune response. Even if testing solely a Leishmania antigen, the 

immunological environment will be different (from naïve animals or naïve healthy 

individuals) due to the immune response to salivary proteins induced by a sand fly bite (in 

sand fly exposed individuals in endemic areas). The presence of immune responses to sand 

fly salivary proteins in humans living in endemic areas is well documented (4). Exposure to 

sand fly bites is known to generate specific antibodies to sand fly salivary proteins (63–65) 

but more importantly individuals experimentally or naturally exposed to sand fly bites 

develop a cellular immune response to these salivary proteins (66, 67). It was recently shown 

that a TH1 response at the bite site was developed in individuals from endemic areas in Mali 

after exposure to small number of uninfected sand flies (68) suggesting that the 

immunological site for any given vaccine to be tested has to be considered also in the 

context of the immune response in the skin to vector salivary proteins.

These scenarios are often neglected when designing or testing vaccines against leishmaniasis 

and may be also of consequence for other vector-borne diseases including malaria and 
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dengue. Using animal models previously exposed to vector bites as part of pre-clinical 

testing may provide a more stringent approach to vaccine evaluation and also provides 

insights into the early immunological events following an infection event in vaccinated 

animals. In addition to previous exposure to vector salivary proteins, individuals living in 

endemic areas may harbor subclinical Leishmania infections. The prevention of disease in 

individuals with asymptomatic infections raises an interesting vaccine development issue, as 

rather than inducing de novo T cell responses, a vaccine candidate may act as a boost to an 

immune response primed by asymptomatic infection. This may affect the choice of adjuvant 

for example, as well as dose of both antigen and adjuvant components.

Using VL as an example, the desired effects of a vaccine would be to prevent clinical disease 

and to prevent or decrease infection to reduce the human reservoir. Demonstrating 

prevention of infection may be possible in areas with high rates of transmission, but will 

require surveillance with sensitive and specific tools to monitor asymptomatic infection and 

progression from negative to positive during one or more transmission seasons (69, 70). 

Although effective VL diagnostics for detecting disease have been widely available for years 

(71–76), only recently has the promise of sensitive and specific tools for monitoring early 

and low level infection been demonstrated (77).

Rather than attempting to demonstrate prevention of infection during initial stages of 

vaccine development, a more practical approach to evaluating VL vaccines will be to 

perform clinical studies in individuals with latent L. donovani infection to prevent 

progression to disease. In India and Bangladesh, it has been estimated that 5–7% of recently 

infected individuals may progress to acute VL within 12–18 months. This raises the 

possibility of demonstrating vaccine efficacy in relatively small clinical studies, using 

development of disease (and potential stabilization or decrease of parasite replication in 

asymptomatic individuals) as an endpoint(s).

Regardless of the approach used to evaluate vaccine efficacy, vaccine recipients are likely to 

have been exposed (repeatedly) to sand fly proteins or to both sand fly and parasite proteins, 

and these factors should be considered in the approach to prevention of infection and to 

prevention of disease progression, respectively, in pre-clinical modeling.

3. Expert commentary and five-year view

There is every reason to be optimistic that safe and effective vaccines against leishmaniasis 

can be developed. Many of the developmental hurdles can be overcome with a transition 

from first generation vaccines to defined vaccines that induce long-lasting protection. As we 

learn more about the appropriate interplay between host and parasite, host and vector, vector 

and parasite we should be able to design safe and effective vaccine candidates that can be 

delivered at low cost. Critical to this is, for the first time, availability of a safe and effective 

T cell adjuvant formulation not controlled by big pharmaceutical companies that can be 

produced in large volume at low cost. Sand fly components with both antigen and adjuvant 

activity have been identified and are now undergoing process development for clinical 

testing, which may be performed in conjunction with other promising clinical stage vaccine 

candidates, such as Leish F3. Perhaps of critical importance will be the design of clinical 
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trials that will enable a more direct and affordable path toward demonstration of efficacy and 

ultimate approval. These trials will take into account the realization that we will be in most 

cases boosting, not priming, an immune response capable of preventing disease development 

in healthy individuals previously exposed to both parasite and vector. Identification of these 

individuals is now feasible with new diagnostic tools, enabling targeting of a vaccine to the 

most susceptible population.
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Key Issues

• Leishmania delivered into the skin of humans by sand bites are accompanied 

by immunomodulatory vector-derived factors forming a complex infectious 

inoculum that enhances the virulence of transmitted parasites. Importantly, the 

immune response to vector-derived factors has a negative impact on parasite 

establishment.

• Certain Leishmania and sand fly salivary antigens induce a cellular immune 

response that protects animals against leishmaniasis. Combining antigens 

form these two sources may produce a more effective vaccine as recently 

demonstrated in rodent models.

• Leishmania vaccines are tested in naïve animals neglecting the fact that 

individuals living in endemic areas are constantly exposed to sand fly bites. 

Potentially, these individuals may react differently to a Leishmania vaccine as 

they concurrently mount an immune response to vector saliva.

• New models for testing Leishmania vaccines are needed that account for 

virulence of natural transmission as well as pre-existing confounders 

including an underlying immunity to vector saliva in target populations.

Reed et al. Page 15

Expert Rev Vaccines. Author manuscript; available in PMC 2018 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Leishmania species are inoculated into the skin together with vector-derived factors after an 

infected sand fly bite where they infect macrophages and form skin lesions (cutaneous 

forms) or migrate, typically to the spleen, liver, and bone marrow (visceral forms).
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Figure 2. 
(1) Immunizing with sand fly salivary proteins induces a TH1 delayed type hypersensitivity 

response specific to the salivary protein (2) recalled to the bite site after the sand fly deposits 

parasites and salivary proteins while feeding where it activates nearby macrophages and (3) 

promotes Leishmania-specific immunity.
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Table 1

Examples of Parasites Causing Human Leishmaniases

Parasite Diseases Distribution

L. donovani visceral leishmaniasis, post-kalaazar dermal leishmaniasis Human India, Nepal, Bangladesh, Sudan, Ethiopia

L infantum visceral leishmaniasis Human, Canine Brazil, Mediterranean Region

L. major cutaneous leishmaniasis Human Middle East

L. tropica cutaneous leishmaniasis Human Middle East

L. braziliensis cutaneous leishmaniasis, mucocutaneous leishmaniasis Human Brazil
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Table 3

List of Adjuvants

Adjuvant Class Mechanism of action Type of immune 
response

Aluminum mineral salts Particulate formulation antigen 
depot

NACHT, LRR and PYD 
domains-containing protein 3 
(NALP3), immunereceptor 
tyrosine-based activation motif 
(ITAM), antigen delivery, 
Interleukin-1 secretion, 
Inflammasome, necrosis

Antibody, T helper 2

Lipid A analogues (for example, 
Monophosphoryl Lipid A (MPL,) 
Glucopyranosyl Lipid A (GLA))

Immunomodulatory molecule Toll-like receptor 4 Antibody, T helper 1

Imidazoquinolines (for example 
Imiquimod, R848)

Immunomodulatory molecule Toll-like receptor 7 Antibody, T helper 1

Toll-like receptor 8

CpG oligodeoxynucleotides (CpG 
ODN)

Immunomodulatory molecule Toll-like receptor 9 Antibody, T helper 1, T 
helper 2, CD8+ T cells

Saponins (for example, QS21) Immunomodulatory molecule Unknown

Virosomes Particulate formulation Antigen delivery Antibody, T helper 1, T 
helper 2

GLA-SE (GLA, stable emulsion) Combination Toll-like receptor 4 Antibody, T helper 1
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