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Introduction

Pharmacological recanalization with recombinant tissue plasminogen activator (rt-PA) has 

been the mainstay for acute ischemic stroke (IS) treatment.1 Recent randomized controlled 

trials have additionally demonstrated the efficacy of mechanical thrombectomy (MT).2-4 

While the restoration of blood flow is a major goal in acute treatment, if this occurs too late, 

worse damage can ensue, compared to no revascularization.5 This worsening results due to 

the generation of excess reactive oxygen species (ROS) which leads to direct cellular 

damage and indirect damage through the triggering of inflammation. Inflammation causes 

the generation of damaging immune mediators, effector molecules and more ROS.6 ROS can 

also lead to apoptosis/necrosis via DNA/RNA damage and lipid peroxidation. This cycle is 

known as reperfusion injury (R/I) (Figure). Experimental studies have shown that durations 

of more than 2-3h transient middle cerebral artery occlusion (tMCAO) lead to worsened 

injury compared to permanent MCAO.7 At the clinical level, delayed revascularization can 

sometimes lead to worsened outcomes.8 Hyperintense acute reperfusion marker (HARM) 

seen on MRI in some stroke patients has been associated with hemorrhagic transformation 

(HTf) and clinical worsening, suggesting the existence of R/I in humans.9 Hence, adjunctive 
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treatments to recanalization to target R/I has the potential to improve current outcomes, 

while reducing complications of rt-PA.

We will focus on the underlying mechanisms of R/I and laboratory studies which targeted 

these mechanisms in experimental ‘revascularization models’ such as tMCAO or 

thromboembolic stroke (Table 1).10-18 We will also review past and present clinical trials 

that attempt to study these targets, some in the setting of combined use with 

revascularization treatments (Table 2).19-30

Anti-inflammatory approaches to reperfusion injury

Post-stroke inflammation has largely been thought to exacerbate ischemic injury. Several 

immune molecules to contribute to this worsening, including inflammatory cytokines, 

chemokines, and immune cell-produced reactive species. Immune cell activation is thought 

to first occur in microglia following release of molecules elaborated by ischemic brain cells. 

Leukocyte activation and infiltration into the brain soon follows. Several laboratory studies 

showed that preventing leukocyte infiltration led to better outcomes in stroke models, 

although its efficacy has not yet been shown clinically.31

Inflammation begins after stroke as ischemic brain cells elaborate molecules collectively 

known as damage-associated molecular patterns (DAMPs). These include high mobility 

group box-1 (HMGB-1), peroxiredoxin, purines, nucleotides such as ATP and UDP, and 

nucleic acid fragments.6, 31 DAMPs bind innate immune receptors such as Toll-like (TLRs) 

and purinergic receptors on microglia and leukocytes leading to their activation followed by 

activation of inflammatory transcription factors NF-κB and MAPK. Deficiency or 

pharmacological inhibition of these factors have largely been shown to protect against 

experimental stroke.32, 33 These factors give rise to cytokines, chemokines, adhesion 

molecules, matrix metalloproteinases-9 (MMP-9), inducible nitric oxide synthase (iNOS) 

and NADPH oxidase (NOX), leading to exacerbation of ischemic injury. Proinflammatory 

cytokine IL-1β has moved the farthest forward in terms of translation. In a phase II clinical 

trial, human recombinant IL-1 receptor antagonist (IL-1Ra), IL-1 β’s endogenous inhibitor, 

reduced infarct volume and improved neurological outcome at 3 months.34 T-cell releasing 

pro-inflammatory cytokines (IFN-γ, IL-17, and IL-23) have recently emerged as therapeutic 

targets. IL-17 promotes TNF-α, IL-1β, and MMP-9 expression, whereas IL-23 induces the 

expression of IL-17.35 Inhibiting these cytokines improves neurological outcome in 

experimental R/I. TNF-α-inducible protein 8-like 2 (TIPE2), expressed in microglia/

macrophages following tMCAO, contributes to anti-inflammatory effects, and TIPE2-

deficient mice subjected to tMCAO have exacerbated neurological and inflammatory 

outcomes.36 IL-10, IL-4 and TGF-β1 are anti-inflammatory cytokines, and all seem 

associated with improved neurological outcomes in stroke models.6, 37 MMP-9, which is 

expressed by immune cells, contributes to inflammation by disrupting the blood brain barrier 

(BBB). Furthermore, endogenous tissue plasminogen activator (t-PA) activates plasmin, 

which activates MMP-9. Thus, administration of rt-PA may accelerate hemorrhage and 

edema should it enter the brain, making MMP-9 a relevant target.38

Several anti-inflammatory treatments have been studied in stroke models, especially in a 

combination therapy with rt-PA. Minocycline, with its pleiotropic effects against cell death, 
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improved neurological outcome and decreased rt-PA related HTf.10 One mechanism of 

minocycline’s protective effect may be its ability to suppress microglial activation by 

inhibiting p38-MAPK. Minocycline also improved BBB integrity via MMP inhibition.39 

BB-94, a MMP-9 inhibitor, reduced rt-PA-induced HTf in a rabbit stroke model.11 However, 

MMPs are involved in neurovascular remodeling, and longterm inhibition may impede 

repair.40 Epigallocatechin gallate (EGCG), found in green tea, has gained interested for its 

antioxidant and neuroprotective properties. EGCG downregulated MMP-2 and MMP-9 

while upregulating plasminogen activator inhibitor-1 (PAI-1) in stroke models.12 EGCG 

combined with rt-PA extended the therapeutic time window of rt-PA and reduced brain 

edema and BBB disruption.12 Progranulin (PGRN), a growth factor found in the brain, is 

thought to contribute anti-inflammatory and vasoprotective properties. It is particularly 

increased in microglia and endothelial cells after ischemia.13 rt-PA plus PGRN in a stroke 

model was shown to improve neurological outcomes and reduce brain hemorrhage and 

edema. Granulocyte-colony stimulating factor (G-CSF) may provide neuroprotection 

through anti-inflammatory effects.41 In a model of tMCAO, rt-PA plus G-CSF reduced HTf 

and improved of neurological function compared to rt-PA alone.14

Anti-oxidative/nitrosative approaches to reperfusion injury

Reperfusion after IS induces oxidative stress through the mitochondrial respiratory chain 

(MRC) and NOX. Ischemic mitochondria, overwhelmed by ROS introduced by oxygenated 

blood, become unable to efficiently neutralize these species. Overexpression of endogenous 

antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase and catalase have 

been shown to improve outcome from experimental stroke. Transgenic mice overexpressing 

SOD had significantly reduced infarct size in experimental tMCAO, while SOD-deficient 

mice had worsened outcomes.42 Overexpressing other endogenous antioxidants such as 

glutathione peroxidase and catalase were similarly neuroprotective.43 At the clinical level, 

ebselen, a glutathione peroxidase mimic, improved neurological outcomes in IS patients 

treated within 6h of symptom onset.44

Superoxide generated by immune cells occurs via NOX, leading to more oxidative stress.45 

NOX inhibition has been shown to improve outcome in experimental stroke45, but NOX may 

also play an important role in hyperglycemia-induced stroke exacerbation. Glucose can be 

metabolized via the hexose monophosphate shunt to produce NADPH, thereby providing 

substrate to generate NOX. Apocynin, a NOX inhibitor, improved outcome from 

experimental hyperglycemic tMCAO46, and reduced hyperglycemia-induced worsening of 

BBB disruption and HTf due to rt-PA use.47

Other related strategies have been investigated over the years. Free radical scavengers such 

as tirilazad and 4-benzene-1,3-disulphonate N-oxide (NXY-059) plus rt-PA showed efficacy 

in experimental stroke15, but were negative when studied clinically.48, 49 Postsynaptic 

density-95 (PSD-95) protein is associated with the N-methyl-D-aspartate receptor 

(NMDAR). It recruits neuronal NOS (nNOS), responsible for generating neurotoxic NO.50 

NA-1 inhibits PSD-95 and improves outcome in experimental R/I. Insulin-like growth factor 

(IGF-1), a pleiotropic peptide involved in pro-survival signaling, may also inhibit oxidative 

and nitrosative stress.51 Uric acid (UA), through its antioxidant properties, improved 
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outcomes in a thromboembolic stroke model.16 ROS scavenger edaravone also improved 

neurological outcome in experimental models in combination with rt-PA17, and is used 

clinically in Japan for acute IS.19

Anti-apoptotic approach to reperfusion injury

ROS-mediated damage leads to apoptosis, and may be especially relevant to R/I, as 

apoptosis requires the presence of cellular energy stores to drive cell death.52 Mitochondrial 

initiation of apoptosis is referred to as the intrinsic pathway. This occurs when mitochondria 

release cytochrome c to the cytosol, and forms a complex with apoptotic protease-activating 

factor 1 (APAF-1) and pro-caspase-9 to form the apoptosome.53 The apoptosome activates 

caspase-9 and activates effector caspase-3 which promotes DNA cleavage.52 SOD-

overexpressing mice showed reduced apoptosis and cytochrome c translocation in R/I53, as 

did blocking both second mitochondria-derived activator of caspase/direct IAP-binding 

protein of low pI (Smac/DIABLO) and Omi stress-regulated endoprotease/high temperature 

requirement protein A2 (Omi/HtrA2).54

Bcl-2 family molecules involved in apoptosis include BAX, BAD, and BID which trigger 

cytochrome c release, whereas Bcl-2 and Bcl-XL prevent it.52 Changing the balance of these 

molecules to favor anti-apoptotic isoforms has been shown to improve outcome in 

experimental stroke. The extrinsic apoptotic pathway is activated when death receptors are 

bound by their ligands. The best studied of these receptor-ligand pairs is Fas/FasL. FasL 

ligates Fas and leads to caspase-8 activation, followed by eventual caspase-3 activation and 

DNA cleavage.52 Mice with Fas mutations seem protected from R/I.55

Finally, estrogen is known to factor in IS. Female animals are known to have better 

outcomes after experimental stroke compared to male, and 17- β estradiol (E2)’s protective 

effect seems related to Bcl-2 upregulation, and suppression of apoptosis.56 Thus, 

neuroprotective effects for sex-specific steroids may be linked to the modulation of 

apoptosis.

Clinical studies of combination therapy with revascularization

While several drugs have been studied in combination with rt-PA in experimental stroke 

models to prevent R/I, clinical studies have also been carried out in combination with rt-PA 

and/or MT. Although not specifically designed to target reperfusion injury, these studies may 

provide a framework to design future trials.

Combination treatment with rt-PA/MT plus edaravone is already being used clinically in 

Japan. Although lacking control groups, two observational studies were suggestive. 

PROTECT4.5 evaluated edaravone plus rt-PA, and suggested that this combination might 

increase the chances for better outcomes and reduce HTf.19 YAMATO indicated that 

favorable outcomes after rt-PA were not related to the timing of edaravone infusion.20 

Finally, a subanalysis of a stroke registry (RESCUE Japan Registry) indicated that 

edaravone was more effective in patients treated with rt-PA than MT.21

The URICO-ICTUS trial, which assessed the efficacy of UA plus rt-PA/MT in acute IS, 

confirmed safety in patients treated within 4.5h of symptom onset. This study also reported 
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that UA was associated with reduced infarct growth and improved outcome in IS patients 

with early recanalization and hyperglycemia.16 Efficacy was also demonstrated when UA 

was given in addition to MT.22

Therapeutic hypothermia (TH), which is thought to target multiple R/I mechanisms, is 

already indicated to improve neurological outcomes following cardiac arrest and neonatal 

hypoxia-ischemia.57 In combination with rt-PA in experimental tMCAO, TH led to reduced 

BBB disruption and HTf.18 The ReCCLAIM (Reperfusion and Cooling in Cerebral Acute 

Ischemia)23 and ICTuS224 trials examined this combination in stroke patients, and both 

showed that this approach was safe and feasible, although RECCLAIM-II, which 

additionally examined MT, was stopped early for lack of funding.25 Pilot studies of MT plus 

selective brain cooling via intra-arterial chilled saline infusion are ongoing, and appear 

feasible and safe.58

The ACTION-I trial studied safety and efficacy of natalizumab in acute IS. Natalizumab, an 

antibody to α4 integrin is used in multiple sclerosis. Natalizumab is thought to reduce 

lymphocyte invasion and adhesion molecule upregulation. Although nataliizumab failed to 

show efficacy in experimental stroke59, ACTION-I included patients receiving rt-PA.60 

Infarct volume was not significantly different with the addition of natalizumab, but 

neurological outcomes were improved.

Other anti-inflammatory and anti-oxidant drugs, all of which are used clinically for other 

indications, have also been studied clinically in combination with rt-PA. The phase I trial, 

Superselective Administration of VErapamil During Recanalization in Acute Ischemic 

Stroke (SAVER-I) studied the therapeutic potential of verapamil with rt-PA and MT and 

found that this combination was safe.26 Similarly, minocycline with rt-PA appears safe, 

although efficacy is unclear.27 EGCG plus rt-PA seemed to extend the temporal therapeutic 

window of rt-PA and improve outcome.28 Oral fingolimod in a small study indicated that it 

could be given safely with improved neurological recovery at 90d61, while a pilot study of 

fingolimod plus rt-PA demonstrated safety and trends towards favorable clinical outcomes 

and reduced HTf.29 Recently, the Stroke Treatment with Acute Reperfusion and Simvastatin 

(STARS07) trial, which was a phase IV trial to demonstrate the efficacy and safety of 

simvastatin treatment in acute stroke, showed that simvastatin plus rt-PA were safe and 

reduced HTf.30

There are currently several ongoing trials specifically evaluating the safety and efficacy of 

revascularization plus neuroprotection. Compared to earlier trials, these studies directly 

examined whether adjunctive treatments to rt-PA and/or MT improve outcome, and may 

inadvertently study R/I. Activated protein C (APC), which is thought to suppress 

inflammation and prevent BBB disruption, is being studied in combination with rt-PA/MT in 

The “Safety Evaluation of 3K3A-APC in Ischemic Stroke (RHAPSODY)” trial 

(NCT02222714).62 Another clinical trial of atorvastatin combined with MT, The Safety and 

Efficacy Study of High Dose Atorvastatin After Thrombolytic Treatment in Acute Ischemic 

Stroke (SEATIS)” trial (NCT02452502) is also ongoing.63 Combined therapy with NA-1 

and MT in the “Safety and Efficacy of NA-1 in Subjects Undergoing Endovascular 

Thrombectomy for Stroke (ESCAPE-NA1)” trial (NCT02930018) plans to assess safety and 
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efficacy. Although it did not limit enrollment to IS patients receiving rt-PA/MT, ACTION II 

(NCT02730455) evaluates the safety and efficacy of intravenous natalizmab. Finally, 

“Fingolimod with Alteplase bridging with Mechanical Thrombectomy in Acute Ischemic 

Stroke (FAMTAIS, NCT02956200)”, a phase II trial of bridging therapy (fingolimod plus rt-

PA/MT), was recently started to assess safety and efficacy in large vessel occlusion.64

Conclusions

The broad field of R/I in acute stroke may identify potential treatment targets and lead to 

clinical translation. The phenomenon of R/I is well established in the laboratory. While it is 

less clear clinically, recent advances in acute revascularization may make it possible to 

establish whether this occurs in humans. Regardless, pharmacological thrombolysis carries 

an increased risk of brain hemorrhage, and adjunctive therapies against the same targets that 

contribute to reperfusion injury in the laboratory could reduce HTf, lengthen the time 

window for intervention and further improve outcomes. We propose that such approaches 

may also increase the numbers of stroke patients eligible for treatment.
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Figure. 
Reperfusion injury is thought to occur when a sudden influx of oxygenated blood introduces 

reactive oxygen species (ROS) into critically damaged ischemic brain. Ischemically 

damaged mitochondria become unable to efficiently neutralize ROS. Elevated ROS can 

directly damage DNA, RNA and cause lipid peroxidation. ROS lead to immune cell 

activation including brain resident microglia. Ischemic brain may also elaborate damage-

associated molecular patterns (DAMPs) that act on Toll-like receptors (TLR) present on the 

surface of microglia. TLR activation triggers immune signalling with upregulation of 

cytokines and chemokines, which upregulate adhesion molecules involved in the recruitment 

and infiltration of circulating leukocytes. Once inside of the brain, leukocytes potentiate 

immune responses already established by microglia. Some leukocytes and platelets may 

remain in the intravascular space, and form plugs which compromises local blood flow. 

Activated immune cells elaborate various toxic mediators including matrix 

metalloproteinases (MMPs) which can disrupt the extracelluar matrix and blood brain 

barrier (BBB) leading to brain edema and haemorrhage. Other immune molecules include 

iNOS (inducible nitric oxide synthase) and NADPH oxidase-2 (NOX2) which generate nitric 

oxide (NO) and superoxide, respectively. Mitochondria also release pro-death factors such as 

cytochrome c (cyto c) which ultimately lead to DNA damage and apoptosis.
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Table 1

Laboratory studies of antioxidant and anti-inflammatory combination therapies with rt-PA.

Therapy 
(Author / 
Year)

Animal Model Therapeutic Target Treatment Outcomes

Minocycline 
(Fan et al. 
2013)10

Thromboembolic stroke, rat p38 MAPK rt-PA alone (1.5h 
post emboliztion) vs 
rt-PA + minocycline 

1h, post 
embolization)

Minocycline ↓ infarct volume, 
hemorrhage, & edema

BB-94 
(Lapchak et al. 
2000)11

Large clot embolic Stroke, 
rabbit

MMPs rt-PA (1h post 
embolization) vs. rt-
PA + BB-94 5 min 
after embolization.

BB-94 ↓rt-PA-induced hemorrhage

EGCG (You et 
al. 2016)12

Thromboembolic stroke, rat MMPs, ROS EGCG every 4h 
after embolization 

treated + rt-PA

EGCG ↓rt-PA extended therapeutic 
window, ↓ infarct volume, edema, & 

BBB disruption

Progranulin 
(Kanazawa et 
al. 2015)13

Thromboembolic stroke, rat inflammation rt-PA (4h post 
MCAO), vs. PA 

+progranulin 
immediately before 

rt-PA rt-

Progranulin ↓infarct size, cerebral 
edema, rt-PA induced hemorrhagic 

transformation; improved motor 
outcome

G-CSF (dela 
Peña et al. 
2015)14

tMCAO x 1 h, rat IL-1β, iNOS, apoptosis IV rt-PA vs. rt-PA + 
G-CSF immediately 
before reperfusion

rt-PA+G-CSF ↓neurological deficit & 
hemorhhagic transformation vs rt-PA 

alone

NXY-059G 
(Lapchak et al. 
2002)15

Large clot embolic Stroke 
rabbit

ROS NXY-059G 5min 
after embolization 
vs. rt-PA 1h after 
embolization + 

NXY-059G

NXY-059G + rt-PA ↓ rt-PA-induced 
hemorrhagic transformation and 

↑behavioral function.

Uric Acid 
(Romanos et al. 
2007)16

Thromboembolic stroke, rat ROS rt-PA + uric acid 20 
mins after occlusion

Uric acid+rt-PA ↓infarct volume, 
↑neurological function

Edaravone 
(Yagi et al. 
2009)17

tMCAO x 3h, rat ROS and MMP-9 rt-PA alone vs rt-PA 
+ edaravone 

immediately after 
reperfusion

Edaravone ↓ rt-PA-induced 
hemorrhagic transformation

Hypothermia 
(Tang et al. 
2013)18

tMCAO x 1 or 3 h, rat multiple mechanisms rt-PA 1h or 3h after 
ischemia vs. rt-PA 

plus cooling (33 °C) 
prior to or 

concurrent with rt-
PA

hypothermia ↓infarct size, neurological 
deficits, brain hemorrhage, BBB 

disruption

Abbreviations: rt-PA=recombinant tissue plasminogen activator; MMP=matrix metalloproteinase; tMCAO=transient middle cerebral artery 
occlusion; EGCG=epigallocatechin gallate; ROS=reactive oxygen species; BBB=blood brain barrier; G-CSF=granulocyte-colony stimulating 
factor; iNOS=inducible nitric oxide synthase;
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