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Abstract

Objective—pulse transit time (PTT) varies with blood pressure (BP) throughout the cardiac 

cycle, yet, because of wave reflection, only one PTT value at the diastolic BP level is 

conventionally estimated from proximal and distal BP waveforms. The objective was to establish a 

technique to estimate multiple PTT values at different BP levels in the cardiac cycle.

Methods—a technique was developed for estimating PTT as a function of BP (to indicate the 

PTT value for every BP level) from proximal and distal BP waveforms. First, a mathematical 

transformation from one waveform to the other is defined in terms of the parameters of a nonlinear 

arterial tube-load model accounting for BP-dependent arterial compliance and wave reflection. 

Then, the parameters are estimated by optimally fitting the waveforms to each other via the model-

based transformation. Finally, PTT as a function of BP is specified by the parameters. The 

technique was assessed in animals and patients in several ways including the ability of its 

estimated PTT-BP function to serve as a subject-specific curve for calibrating PTT to BP.

Results—the calibration curve derived by the technique during a baseline period yielded bias and 

precision errors in mean BP of 5.1 ± 0.9 and 6.6 ± 1.0 mmHg, respectively, during hemodynamic 

interventions that varied mean BP widely.
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Conclusion—the new technique may permit, for the first time, estimation of PTT values 

throughout the cardiac cycle from proximal and distal waveforms. Significance: the technique 

could potentially be applied to improve arterial stiffness monitoring and help realize cuff-less BP 

monitoring.

Index Terms

Arterial stiffness; blood pressure (BP)-dependent arterial compliance; cuff-less BP; nonlinear 
model; pulse transit time (PTT); pulse wave velocity; wave reflection

I. Introduction

Pulse transit time (PTT) is the time delay for the pressure wave to travel between proximal 

and distal arterial sites. According to the Bramwell–Hill equation, PTT varies with the 

arterial compliance. Since arterial compliance decreases as blood pressure (BP) increases, 

PTT is also often inversely correlated with BP. PTT can be estimated simply via the relative 

timing between proximal and distal waveforms reflecting the arterial pulse. Hence, PTT has 

proven to be a convenient marker of arterial stiffness [1] and could potentially permit cuff-

less BP monitoring [2]–[4].

As shown in Fig. 1(a), the conventional technique for estimating PTT is to detect the trough-

to-trough or foot-to-foot time delay between the proximal and distal waveforms [Td
F - F]. 

The premise is that arterial wave reflection interference is negligible during late diastole and 

early systole when the waveform feet occur. Hence, by virtue of being estimated at the 

waveform feet, conventionally estimated PTT is precisely a marker of arterial stiffness at the 

level of diastolic BP (DP) and generally correlates best with DP [2]. As again shown in Fig. 

1(a), PTT could also be estimated as the time delays between other characteristics points in 

the waveforms such as the mean level and the peak [Td
M-M and Td

P-P]. However, because 

wave reflection interference increases as the cardiac cycle progresses, this naïve technique 

can yield PTT estimates of little value. For example, as shown in Fig. 1(b), the peak-to-peak 

time delay can even be negative.

It would be desirable to have a technique that reliably estimates multiple PTT values at 

different BP levels in the cardiac cycle or, more generally, PTT as a function of BP (i.e., a 

one-to-one mapping from BP to PTT that indicates the PTT value for every BP level). Such 

a technique could be applied to improve arterial stiffness monitoring and help realize cuff-

less BP monitoring.

For arterial stiffness monitoring, the PTT-BP function estimated by the desired technique 

could enhance cardiovascular risk stratification over a single PTT estimate at the level of DP 

[5], [6]. In addition, the technique could be used to correct PTT for BP and thereby afford 

more precise tracking of arterial stiffness in an individual patient over time or more 

meaningful comparisons of arterial stiffness amongst different patients.

For cuff-less BP monitoring, the desired technique could be used to calibrate PTT (in units 

of ms) to BP (in units of mmHg). A straightforward approach for constructing a patient-

specific curve that relates PTT to BP (i.e., PTT as a function of BP) involves measuring pairs 
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of PTT and BP values in a patient during an experimental perturbation that varies PTT and 

BP over a significant range. (BP could thereafter be measured in that patient without using a 

cuff by applying the calibration curve to PTT estimates.) However, the experimental 

perturbation makes this approach less practical. The desired technique could provide the 

requisite curve without the need for inducing an artificial BP change (i.e., a “perturbation-

less calibration” approach).

In this paper, we propose a technique for estimating PTT as a function of BP from proximal 

and distal BP waveforms using a nonlinear arterial tube-load model. The model accounts for 

the BP-dependent arterial compliance and peripheral wave reflection. In this way, multiple 

PTT values at different BP levels in the cardiac cycle may be estimated after implicit 

mathematical elimination of the reflected wave. We demonstrate the efficacy of this 

technique in terms of calibration of PTT to BP in animals subjected to hemodynamic 

interventions, which perturbed BP over a wide range, and correlation between changes in the 

multiple PTT estimates and changes in the corresponding BP levels in patients receiving 

sublingual nitroglycerin, which altered systolic BP (SP) but not DP. A preliminary version of 

this manuscript has been reported in abbreviated form [7].

II. Methods

The technique proposed herein represents an extension of a previous technique that we 

introduced to robustly estimate PTT from proximal and distal BP waveforms using a linear 

arterial tube-load model [8]. We first review this linear arterial tube-load model technique 

for estimating a single PTT value. We then present the extended nonlinear arterial tube-load 

model technique for estimating PTT as a function of BP from the same waveforms. We 

thereafter describe the experimental data and data analysis that we employed to demonstrate 

the validity of the proposed technique.

A. Linear Arterial Tube-Load Model Technique for Robust Estimation of PTT

This technique is illustrated in Fig. 2 and described in detail elsewhere [8]. The underlying 

linear model assumes that arterial compliance is constant (for each segment of waveforms 

for analysis) but accounts for peripheral wave reflection. In this way, the true PTT may be 

robustly estimated from the entire waveforms, rather than just their feet, after implicit 

mathematical elimination of the reflected wave.

More specifically, the relationship between the measured proximal and distal BP waveforms 

is modeled with a linear, elastic tube terminated by a lumped parameter load (see top panel 

of Fig. 2). The tube represents the large artery path for the pressure wave to travel between 

the two measurement sites. This tube is assumed to be uniform and frictionless [9]. It is 

mathematically equivalent to an ideal, lossless transmission line (which is the form of the 

model shown in Fig. 2) and has constant characteristic impedance [ Zc = L/C, where L and 

C are the constant large artery inertance and compliance per unit length] and allows pressure 

waves to travel with constant PTT between the tube ends [ Td = D LC, where D is the length 

of the tube]. The load represents the small artery bed distal to the distal measurement site for 

wave reflection from the periphery (which may often be significantly more pronounced than 
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wave reflection from branching and tapering [9]). This load is characterized by peripheral 

resistance and compliance [Rp and Cp] while matching the tube impedance at infinite 

frequency. (Note that wave travel to other small artery beds could be represented by placing 

similar tube and load combinations in parallel.)

Waves traveling along the tube in the forward direction (left-to-right) are reflected in the 

backward direction at the load with a frequency-dependent reflection coefficient 

[ Γ( f ) = G
2π f c

2π f c + j2π f , where G =
Rp Cp

2Zc Cp + Rp Cp
 and f c = 1

Rp Cp
+ 1

2Zc Cp
] in order to mimic 

arterial wave transmission and peripheral wave reflection. According to the model, a transfer 

function defined by three unknown parameters [Td, G, fc] relates proximal BP [Pp (t)] to 

distal BP [Pd (t)] (see middle panel of Fig. 2). (While a model-based transfer function could 

likewise be defined to relate Pd (t) to Pp (t), this transfer function is noncausal and thus not 

as indicative of the physiology.) The parameters are estimated such that the Pd (t) segment 

predicted by applying the transfer function to the measured Pp (t) segment best fits the 

measured Pd (t) segment in the least squares sense. This optimization is achieved via an 

exhaustive search over a justifiable range of the parameters. The range is specifically as 

follows: Td = [0.5 · Td
F-F : 2 : 1.5 · Td

F-F] ms; G = [0 : 0.025 : 1] unitless, which constitutes 

the physical range of G; and fc = [0 : 0.1 : 15] Hz, which covers the typical frequency range 

of BP waveforms. PTT is finally given as the Td estimate (see bottom panel of Fig. 2). This 

estimate may be most indicative of PTT at the level of mean BP (MP), as it is determined by 

fitting the entire waveforms to each other. The estimate is thus denoted as Td
MP.

B. Nonlinear Arterial Tube-Load Model Technique for Estimation of PTT as a Function of 
BP

This technique is illustrated in Fig. 3. The technique extends the linear arterial tube-load 

model technique by making the arterial compliance dependent on BP instead of being 

constant. The resulting nonlinear arterial tube-load model may thus permit estimation of 

PTT as a function of BP after implicit mathematical elimination of the reflected wave.

More specifically, the large artery compliance per unit length in the model is dependent on 

BP according to the following relationship: C(P) = C0e−αP, where P is BP, C0 is the 

compliance per unit length at zero BP, and α> 0 indicates the extent of the BP dependence 

on the compliance (see top panel of Fig. 3). This exponential BP-dependent compliance 

model is based on experimental data [10]. Note that the large artery inertance per unit length 

L is still assumed to be constant. As outlined in [2] and [11], PTT and BP in the resulting 

nonlinear, lossless transmission line model are related as follows:

Td(P) = D2LC0e−αP . (1)

Hence, the model parameters specify a function relating BP to PTT [Td (P)]. All unknown 

parameters are estimated from the proximal and distal BP waveforms as follows.
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Since the model is nonlinear, it cannot represent the relationship between the proximal and 

distal BP waveforms with a transfer function. A finite-difference method is thus used to 

relate the waveforms (see the Appendix) [12]. The resulting numerical relationship is 

defined by four unknown parameters [D2LC0, α, G, fc]. This number of parameters may be 

reduced by one. In particular, the linear arterial tube-load model technique is first applied to 

the measured waveforms to estimate Td
MP, and MP is determined. This pair of values is then 

substituted into (1) (i.e., Td(P) = Td
MP and P = MP) to constrain D2LC0 entirely by the value 

of α. Hence, three unknown parameters [α, G, fc] remain for estimation (see middle panel of 

Fig. 3). The parameters are estimated such that the Pd (t) segment predicted by applying the 

finite-difference relationship to the measured Pp (t) segment best fits the measured Pd (t) 
segment in the least squares sense. The optimization is likewise achieved via an exhaustive 

search over a wide range of the parameters. This range is specifically as follows: α = [0 : 

0.001 : 0.05]mmHg−1, which generously encompasses the nominal α value of 0.016 – 

0.018mmHg−1 [10]; G = [0 : 0.025 : 1] unitless; and fc = [0 : 0.1 : 15] Hz. PTT as a function 

of BP is finally given as (1) equipped with the α and D2LC0 estimates (see bottom panel of 

Fig. 3). This technique was implemented in MATLAB on a desktop computer with 8, 2.5 

GHz processors.

The proposed technique has two potential applications. One is cuff-less BP monitoring. In 

particular, the resulting PTT-BP function could be used as a patient-specific curve for 

calibrating subsequent PTT estimates of a conventional technique to BP. Note that, unlike 

the proposed technique, conventional techniques nominally do not require any BP 

information; rather, they can estimate a single PTT value at the level of DP or MP (see Table 

II) from any pair of proximal and distal waveforms indicative of the arterial pulse. In this 

way, cuff-less BP monitoring may be achieved (after deriving the PTT-BP function). 

Another application is arterial stiffness monitoring wherein proximal and distal BP 

waveforms are readily available (see Section IV). For example, DP, MP, and SP may be 

substituted into the PTT-BP function to yield PTT estimates at the three different BP levels 

(see step 2 in Fig. 4). These multiple PTT estimates may provide more information about 

arterial stiffness than the single PTT estimates obtained by the conventional foot-to-foot 

detection technique [1] and thereby enhance cardiovascular risk stratification.

C. Experimental Data

We investigated the proposed technique using animal and patient data that we previously 

collected. These data are described in detail elsewhere [8], [13], [14]. We mention relevant 

aspects of the data below.

The animal data were obtained under protocols approved by the Michigan State University 

All-University Committee on Animal Use and Care [8]. These data included invasive aortic 

and femoral artery BP waveforms (via micromanometer-tipped catheters) sampled at 500 Hz 

from 12 healthy adult beagles (10–12 kg) during a baseline period and two to four 

hemodynamic interventions (among low and high rate cardiac pacing, dobutamine, esmolol, 

verapamil, phenylephrine, vasopressin, nitroglycerin, norepinephrine, xylazine, saline, 

hemorrhage) for a duration of about 1200 min in total. The effect of each of these 

interventions on BP is summarized in [14]. Table I shows the group average (mean over the 
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subjects ± SE over the subjects) range of DP, MP, and SP induced by the interventions and 

the group average correlation coefficients between pairs of the three BP levels. DP, MP, and 

SP each ranged over 60–101 mmHg in each animal on average (see y-axes of Fig. 6 for 

visual illustration of the MP range in each subject). Hence, all BP levels varied widely. 

Further, the correlation coefficients between each pair of BP levels were 0.84–0.96 in each 

animal on average. Hence, the BP levels varied similarly (i.e., DP, MP, and SP generally 

followed each other over time).

The patient data were obtained under a protocol approved by the Taipei Veterans General 

Hospital Institutional Review Board [13]. These data were deidentified and included 

invasive aortic and brachial artery BP waveforms (via micromanometer-tipped catheters) 

sampled at 500 Hz from 54 cardiac catheterization patients (66 ± 13 years; 81% male; 

clinical diagnoses of mainly hypertension (59% of patients), coronary artery disease (59%), 

dyslipidemia (31%), and/or diabetes (22%)) before and after sublingual nitroglycerin 

administration for a duration of about 50 min in total. Table I also shows the group average 

of DP,MP, and SP during the baseline period and nitroglycerin administration. SP, but not 

DP, was altered by the intervention. Hence, the BP levels varied differently but much less 

than in the animal data.

D. Data Analysis

We analyzed the experimental data to assess the proposed technique and competing 

techniques in three ways. Table II summarizes the considered techniques, while Fig. 4 

illustrates procedures for evaluating the techniques. Details follow.

First, we assessed the proposed technique in terms of its ability to improve the fit of the 

distal BP waveform over the linear arterial tube-load model technique. We used both the 

animal and patient data for this assessment. We computed the root-mean-squared-error 

(RMSE) between the estimated and measured distal BP waveforms for both techniques. We 

also computed the same RMSE value for the linear arterial tube-load model technique, as 

implemented with a finite-difference method instead of the transfer function, to determine 

the impact of using the numerical method. We then compared the RMSE values of the 

techniques using paired t-tests. Ap < 0.0167 (= 0.05/3) was considered significant based on 

Bonferroni correction for the three pairwise comparisons.

Second, we assessed the proposed technique in terms of its ability to calibrate PTT to BP 

[see Fig. 4(a)]. We used the baseline period data to construct the calibration curve and the 

hemodynamic intervention data to test the curve. We employed the animal data here, 

because the hemodynamic interventions varied BP enough to offer a meaningful assessment 

(see Table I). In particular, we applied the nonlinear arterial tube-load model technique to 

the proximal and distal BP waveforms from the baseline period of each subject to estimate 

PTT as a function of BP and thereby create subject-specific calibration curves. We then 

applied the linear arterial tube-load model technique to the proximal and distal BP 

waveforms from the hemodynamic interventions to estimate PTT. Note that we chose this 

technique to estimate PTT here over other potential techniques (e.g., foot-to-foot detection 

technique), because 1) it robustly estimates PTT at the level of MP; and 2) MP (as opposed 

to DP and SP) during the interventions would more likely fall within the baseline BP range 
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used to construct the calibration curves. We next applied the resulting PTT values for a 

subject to the calibration curve for that subject to estimate MP during the interventions. We 

finally computed the bias error (μ) and precision error (σ) between the estimated and 

measured MP.

Note that the nonlinear arterial tube-load model technique can yield a nearly constant PTT 

(i.e., essentially independent of BP). For example, if elastin dominates arterial wall 

mechanics such that the operating point of the arterial pressure–volume relationship is in the 

linear regime (which could occur in young, hypotensive subjects) [2], then the estimated 

PTT-BP function by the technique may be equivalent to a relatively constant PTT. As 

another example, if pulse pressure is small (i.e., BP does not change much over the cardiac 

cycle) such that the arterial pressure–volume relationship can be linearized, then the 

estimated PTT-BP function may likewise be equivalent to a relatively constant PTT. 

However, a constant PTT, which is a single PTT value, is of no value in calibration (see 

Table II). Hence, if the proposed technique does not significantly reduce the RMSE between 

the estimated and measured distal BP waveform relative to the linear arterial tube-load 

model technique (which assumes a single PTT value) for a given subject, then a calibration 

curve will not be outputted for that subject.

For comparison, we likewise assessed the naïve technique of Fig. 1(a). In particular, we 

applied this technique to the proximal and distal BP waveforms from the baseline period to 

estimate Td
F-F, Td

M-M, and Td
P-P. We then measured DP, MP, and SP during the same period 

and fitted an exponential function (Td = Ae−αP) to the three data pairs so as to create 

subject-specific calibration curves. We next applied the same technique to the proximal and 

distal BP waveforms from the hemodynamic interventions to estimate Td
M-M only. Finally, 

we similarly applied the resulting PTT values to the corresponding calibration curves to 

estimate MP and then computed the bias and precision errors. Note that other possible 

implementations of the naïve techniques yielded larger errors (results not shown).

Third, we assessed the proposed technique in terms of the validity of its multiple PTT 

estimates. Since we did not have reference arterial stiffness measurements (see Section IV), 

we specifically evaluated how well changes in its PTT values at the levels of DP, MP, and SP 

correlated with changes in the corresponding BP levels [see Fig. 4(b)]. We employed the 

patient data here, because sublingual nitroglycerin changed the BP levels differently enough 

to offer an interesting assessment (see Table I). By contrast, in the animal data, the 

interventions happened to change the BP levels similarly (see Table I) such that even a single 

PTT value could reasonably track all three BP levels. We first applied the nonlinear arterial 

tube-load model technique to the proximal and distal BP waveforms to estimate PTT as a 

function of BP. We then substituted the measured DP, MP, and SP into this function to 

estimate PTT at the three BP levels [Td(DP), Td(MP), Td(SP)] [see step 2 in Fig. 4(b)]. We 

next examined the changes in these PTT estimates induced by the intervention in relation to 

the corresponding changes in the measured BP levels, again using paired t-tests and a 

significance level of p < 0.0167. Since PTT and BP are inversely related, changes in PTT 

and changes in BP should also be inversely related. For comparison, we likewise assessed 

the PTT estimates of the naïve technique.
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Note that we applied all of the techniques to 15-s segments of the proximal and distal BP 

waveforms. For the naïve technique, we averaged the beat-to-beat time delays over the 15-s 

segments to yield single estimates of Td
F-F, Td

M-M, and Td
P-P for each segment. We applied 

the linear and nonlinear arterial tube-load model techniques to the entire 15-s segment of the 

waveforms (rather than to individual beats) to yield single estimates of Td
MP and Td (P), 

respectively. We computed the DP, MP, and SP corresponding to the PTT estimates by, 

respectively, averaging the feet, all samples, and the peaks of the distal BP waveform over 

the 15-s segments.

III. Results

Fig. 5 shows the group average of the RMSE between the distal BP waveforms measured 

and estimated by the nonlinear and linear arterial tube-load model techniques for the animals 

during the baseline period and patients. The RMSE values were similar for the animals and 

patients. Overall, the proposed technique reduced the RMSE by 0.5 and 1.0 mmHg 

compared to the linear arterial tube-load model technique, as implemented with a transfer 

function and finite-difference method, respectively. These absolute RMSE reductions were 

significant in the statistical sense and amounted to 24% and 35% reductions in the relative 

sense. Although the proposed technique is based on a nonlinear model, it fitted the distal BP 

waveform using the same number of adjustable parameters as the linear arterial tube-load 

model technique while also being subject to numerical error introduced by the finite-

difference method. In this light, the proposed technique may have afforded a meaningful 

improvement in the distal BP fitting.

Fig. 6 shows the calibration curves derived by the nonlinear arterial tube-load model 

technique for each animal during the baseline period. This figure also includes pairs of PTT 

estimated by the linear arterial tube-load model technique and measured MP during the 

hemodynamic interventions (i.e., data not seen by the calibration curve). In one subject, the 

RMSE between the estimated and measured distal BP waveform was only 2% smaller than 

that obtained by the linear arterial tube-load model technique as implemented with the finite-

difference method. Hence, the proposed technique did not output a calibration curve for this 

subject. Note that this technique achieved an RMSE reduction of at least 30% in every other 

subject and thereby produced testable calibration curves in these subjects. As expected, the 

correspondence between the calibration curve and the PTT-MP pairs was generally the best 

for the BP range used to generate the curve (indicated with vertical arrows). Table III shows 

the bias and precision errors between the MP estimated by applying the PTT estimates from 

the linear arterial tube-load model technique to the calibration curve and the measured MP 

for each subject during the hemodynamic interventions. The group average bias and 

precision errors were 5.1 ± 0.9 and 6.6 ± 1.0 mmHg, respectively. Hence, overall, the 

proposed technique was able to generate useful calibration curves. However, there was 

appreciable dispersion in the bias and precision errors per subject. The reason may be due 

more to the variance in the data (e.g., the BP ranges during the baseline period and 

interventions varied greatly between subjects as shown in Fig. 6) than the variance generated 

by the technique.

Gao et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The naïve technique yielded a nonphysiologic calibration curve (i.e., PTT and BP were 

positively related) for one subject. For the remaining 11 subjects, the group average bias and 

precision errors were 6.9 ± 1.6 and 10.2 ± 2.6 mmHg, respectively. The naïve technique 

yielded large errors in three of the subjects (RMSE of about 20 mmHg or greater) while 

showing comparable errors to the proposed technique in the other eight subjects on average 

(results not shown). Hence, the naïve technique was not able to provide useful calibration 

curves as consistently as the proposed technique.

Fig. 7(a) shows the group average of the changes in DP, MP, and SP induced by sublingual 

nitroglycerin administration in the patients. SP decreased the most, followed by MP, and 

then DP. These differences were statistically significant (as per pairwise, paired t-tests of the 

three BP levels with Bonferroni correction). Fig. 7(b) shows the group average of the 

nitroglycerin-induced changes in PTT at the levels of DP, MP, and SP estimated by the 

nonlinear arterial tube-load model technique [Td(DP), Td(MP), Td(SP)]. Td(SP) increased 

the most, followed by Td(MP), and then Td(DP). These differences were also statistically 

significant (as per pairwise, paired t-tests of the three PTT estimates with Bonferonni 

correction). (Note that nitroglycerin causes smooth muscle relaxation in addition to BP 

changes, which may have caused Td(DP) to increase despite little decrease in DP.) Hence, 

the changes in the three PTT estimates of the technique showed a physiologic, inverse 

relationship with the changes in the corresponding BP levels on average [compare Fig. 7(a) 

and (b)]. In this sense, the proposed technique was able to track the three differently varying 

BP levels. Fig. 7(c) shows the group average of the corresponding changes in PTT estimated 

by the naïve technique of Fig. 1(a) [Td
F-F, Td

M-M, Td
P-P]. The increase in Td

P-P was not 

statistically different from the changes in Td
F-F and Td

M-M (as per the same statistical tests). 

Hence, the naïve technique was not able to track the three BP levels as well as the proposed 

technique.

Finally, note that the validated nonlinear arterial tube-load model technique yielded group 

average baseline PTT estimates at the levels of DP and SP of 81.3 ± 5.6 and 52.3 ± 3.3 ms 

for the animals and 57.9 ± 2.1 and 39.2 ± 1.5 ms for the patients. The corresponding group 

average distal pulse pressures were 56 ± 3 mmHg for the animals and 71 ± 2 mmHg for the 

patients.

IV. Discussion

PTT varies with BP throughout the cardiac cycle, yet, because of wave reflection, only one 

PTT value at the level of DP is conventionally estimated from proximal and distal arterial 

waveforms (see Fig. 1). We developed a technique to estimate PTT as a function of BP from 

proximal and distal BP waveforms using a nonlinear arterial tube-load model (see Fig. 3). 

This model accounts for the BP-dependent arterial compliance (which makes it nonlinear) 

and the main wave reflection site at the periphery. Through finite differencing (see the 

Appendix), the model provides a relationship from the proximal BP waveform to the distal 

BP waveform in terms of four unknown parameters. One parameter is effectively determined 

by first applying a linear arterial tube-load model technique to the waveforms (see Fig. 2). 

The remaining three parameters are then estimated so as to optimally couple or fit the 

proximal BP waveform to the distal BP waveform through the finite-difference relationship. 
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PTT as a function of BP is finally specified by the parameter estimates. In this way, multiple 

PTT values at different BP levels in the cardiac cycle may be estimated after implicit 

mathematical elimination of the reflected wave.

The proposed nonlinear arterial tube-load model technique could potentially be applied to 

improve arterial stiffness monitoring and help realize cuff-less BP monitoring. For the 

former application, the technique may offer a marker of arterial stiffness at both DP and SP 

levels, which could enhance cardiovascular risk stratification [5], [6], and permit correction 

of PTT estimates for the BP level. For the latter application, the technique may afford a 

patient-specific curve to calibrate PTT to BP by exploiting the natural pulsatile variation in 

BP rather than employing an inconvenient and possibly unsafe experimental perturbation to 

vary BP.

We investigated the proposed technique using proximal and distal BP waveforms from 12 

animals whose BP levels varied widely but similarly and 54 cardiac catheterization patients 

whose BP levels varied differently but to a much less extent (see Table I). The proximal BP 

waveforms were from the aorta, while the distal BP waveforms were from the femoral artery 

for the animals and brachial artery for the patients. However, the waveforms could likely 

have been from other arterial sites that are proximal and distal to each other. We analyzed 

these data to assess the proposed technique in terms of its ability to fit the distal BP 

waveform, calibrate PTT to BP, and track multiple BP levels (see Fig. 4). For comparison, 

we likewise tested competing techniques including the naïve technique of Fig. 1(a), which 

ignores wave reflection to estimate multiple PTT values via time delays at different BP 

levels (see Table II).

The proposed technique fitted the distal BP waveforms well for both the animal and patient 

data (see Fig. 5). Further, it often improved the fitting compared to the linear arterial tube-

load model technique in which the underlying model assumes that the arterial compliance is 

constant but is otherwise similar (see Fig. 5). While the improvement in fitting was not large, 

it was achieved using the same number of parameters for the fit.

The proposed technique generated subject-specific calibration curves from the baseline 

period of the animal data that corresponded reasonably well to the pairs of MP and PTT 

estimates of the linear arterial tube-load model technique from the hemodynamic 

intervention periods (see Fig. 6). The bias and precision errors of the “cuff-less” MP 

measured by applying these PTT estimates to the calibration curves during the 

hemodynamic interventions were near the AAMI bias and precision limits of 5 and 8 mmHg 

(see Table III). However, the proposed technique may not always generate a calibration 

curve. In particular, if the technique does not significantly reduce the distal BP waveform 

fitting error compared to the linear arterial tube-load model technique, then PTT may be 

nearly constant. In this case, a useful calibration curve would not be obtained. The proposed 

technique did not output a calibration curve for one of the 12 animals in this study. Similarly, 

the naïve technique did not produce a physiologic calibration curve in one of the 12 subjects. 

However, its bias and precision errors were very large in three of the remaining subjects and 

thus appreciably higher on average than the proposed technique.
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The proposed technique produced PTT estimates at the levels of DP, MP, and SP that, on 

average, tracked the different DP, MP, and SP changes induced by the hemodynamic 

intervention in the patient data [see Fig. 7(a) and (b)]. By contrast, the naïve technique could 

not track the SP changes well via the peak-to-peak time delay or otherwise [see Fig. 7(c)].

We used invasive BP waveforms in this study to provide a laboratory demonstration of the 

potential of the nonlinear arterial tube-load model technique. In practice, the technique could 

be applied to noninvasive carotid and femoral BP waveforms via applanation tonometry. 

These waveforms are commonly measured to obtain conventional single PTT estimates for 

arterial stiffness monitoring [1]. Hence, the technique could be applied to waveforms that are 

already being measured to offer more information about arterial stiffness. In addition, after 

applying the technique to derive a patient-specific calibration curve from the noninvasive BP 

waveforms, the curve could be used to calibrate subsequent conventional PTT estimates to 

achieve continuous, noninvasive, and cuff-less BP monitoring. For example, 

photoplethysmography (PPG) or other conveniently measured arterial waveforms could be 

obtained from the neck and upper thigh. A single PTT value could then be estimated from 

these waveforms via a conventional technique such as the foot-to-foot detection technique. 

This PTT value could finally be applied to the calibration curve to determine DP or MP 

(depending on the particular conventional technique employed). Note that the calibration 

curve would have to be updated periodically (e.g., every year) to account for age- and 

disease-induced changes in PTT. Also note that the noninvasive BP waveforms should be 

well measured to realize these applications.

There are several limitations of this work. One limitation is that the nonlinear arterial tube-

load model technique is computationally expensive. However, the speed of the technique 

could be substantially increased by estimating the model parameters via a fast local search 

(e.g., sequential quadratic programming or trust region-reflective method) instead of via the 

currently employed exhaustive search. Also note that computational complexity may not be 

a factor for the aforementioned applications, as the technique would only be applied on 

occasion and need not produce an estimate in real time. Another limitation is that the 

technique employed a simple (two-parameter) exponential model of the BP-dependent 

arterial compliance rather than a possibly more realistic (three-parameter) derivative of an 

arctangent model (see [2, eq. (3)]). However, a simpler BP-dependent compliance model 

facilitates the speed and perhaps the reliability of the parameter estimation. A third 

limitation is that the evaluation of the technique did not include reference PTT 

measurements against which the PTT estimates could be directly compared. The reason is 

that independent measurement of PTT throughout the cardiac cycle is difficult. We thus 

demonstrated the accuracy of the multiple PTT estimates indirectly via their ability to track 

changes in BP.

V. Conclusion

We introduced a technique to estimate PTT as a function of BP from proximal and distal BP 

waveforms using a nonlinear arterial tube-load model. The model accounts for the BP-

dependent arterial compliance and peripheral wave reflection. In this way, multiple PTT 

values at different BP levels in the cardiac cycle may be estimated after implicit 
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mathematical elimination of the reflected wave. Excluding the naïve technique of Fig. 1(a), 

we are not aware of any other technique in the literature that is able to estimate PTT values 

throughout the cardiac cycle from a pair of arterial waveforms. We applied the nonlinear 

arterial tube-load model technique to invasive BP waveforms from animals and patients and 

showed that the estimated PTT-BP function could be used as a subject-specific curve for 

calibrating PTT to BP and that the estimated PTT at DP, MP, and SP levels could track the 

corresponding BP levels. These results suggest that the technique could potentially be used 

to help realize cuff-less BP monitoring and improve arterial stiffness monitoring. Future 

studies of the technique should assess its performance as applied to non-invasive BP 

waveforms and determine if the estimated PTT-BP function can afford an arterial stiffness 

marker of clinical value superior to conventional single PTT estimates. In addition, 

subsequent efforts aiming to extend the technique for estimation of multiple PTT values 

from waveforms that are more easily measured than BP waveforms (e.g., PPG waveforms) 

may be worthwhile. Such an extended technique would allow for PTT-based cuff-less 

monitoring of SP in addition to DP.
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Appendix

The governing differential equations of the nonlinear arterial tube-load model of Fig. 3 (top 

panel) are as follows:

− ∂P(t, x)
∂x = L∂Q

.
(t, x)
∂t (A1)
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− ∂Q
.
(t, x)
∂x = C0e−αP(t, x)∂P(t, x)

∂t (A2)

Q
.
(t, x) =

P(t, x) − Q
.
(t, x)Zc

Rp
+ Cp

d(P(t, x) − Q
.
(t, x)Zc)

dt . (A3)

The first two equations govern the transmission line, while the last equation governs the 

terminal load. P(t, x) and Q̇ (t, x) represent BP and blood flow rate as a function of time [t] 
and space along the line [x]. They are state variables of the model. The input is Pp (t), and 

the output is Pd (t).

To solve the nonlinear equations, the transmission line was meshed into N nodes for P and 

N–1 nodes for Q̇, as shown in Fig. 8. The subscript n is the spatial index, while the 

superscript k is the temporal index. So, P1
k and PN

k  are Pp (t) and Pd (t), respectively. The 

distance between adjacent nodes of the same kind is Δx. Eqs. (A1)–(A3) were discretized 

using this mesh and Euler’s method as follows:

Q
.
n
k + 1/2 = Q

.
n
k − 1/2 − Δt

ΔxL (Pn + 1
k − Pn

k) for n = 1:(N − 1) (A4)

Pn + 1
k = Pn

k − Δt

C0e
−αPn

k
Δx

(Q
.
n
k + 1/2 − Q

.
n − 1
k + 1/2) for n = 2:(N − 1) (A5)

PN
k + 1 = Δt

ZcCp
+ Δt

RpCp
+ 1 ZcQ

.
N − 1
k + 1/2 − ZcQ

.
N − 1
k − 1/2 + 1 − Δt

RpCp
PN

k . (A6)

The number of unknown parameters in the discretized equations may be reduced as follows. 

First, since Zc represents the characteristic impedance of the transmission line, this 

parameter was defined as follows:

Zc = L
C0e−αMP . (A7)

Then, substituting (A7) and Δx = D/(N – 1) into (A4)–(A6) and applying some simple 

manipulations gives the following equations:
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DLQ
.
n
k + 1/2 = DLQ

.
n
k − 1/2 − (N − 1)Δt(Pn + 1

k − Pn
k) for n = 1:(N − 1) (A8)

Pn + 1
k = Pn

k − (N − 1)Δt

D2LC0e
−α Pn

k (DLQ
.
n
k + 1/2 − DLQ

.
n − 1
k + 1/2) for n = 2:(N − 1) (A9)

PN
k + 1 = Δt

ZcCp
+ Δt

RpCp
+ 1 1

D2LC0e−αP DLQ
.

N − 1
k + 1/2 − 1

D2LC0e−αP DLQ
.

N − 1
k − 1/2

+ 1 − Δt
RpCp

PN
k .

(A10)

Now, RC and ZcC may be expressed in terms of G and fc (see Fig. 2) so that (A10) becomes 

the following:

PN
k + 1 = (Δt(2π f c + 2π f cG) + 1) 1

D2LC0e−αP DLQ
.

N − 1
k + 1/2 − 1

D2LC0e−αP DLQ
.

N − 1
k − 1/2 + (1

− Δt(2π f c − 2π f cG))PN
k .

(A11)

The final discretized model equations are (A8)–(A11). Now, the state variables are P and 

DLQ̇, and the unknown parameters are D2LC0, α, G, and fc.

For a given set of parameter values and Pp (t) input, these equations were iteratively solved 

for Pd (t). The iteration commenced with zero initial conditions. Proportional blood flow rate 

was first solved at all nodes using (A8), and then BP was solved at all nodes using (A9) and 

(A11). This process was repeated for each successive time step.

The values for N and Δt were chosen to balance accuracy and numerical stability. In 

particular, Δt was set to 0.02 s, and N was chosen as the largest integer that met the 

condition: N ≤ 1 + D2LC0e
−αPmax/Δt, where Pmax is the maximal BP that can appear on 

any node during the numerical simulation. This condition enforces the wave speed to not 

exceed Δx/Δt and is required for a stable solution [12].
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Fig. 1. 
Naïve technique for estimation of multiple PTT values at different BP levels in the cardiac 

cycle from proximal (gray) and distal (black) BP waveforms. (a) PTT at diastolic, mean, and 

systolic BP (DP, MP, and SP) levels are detected as the foot-to-foot (Td
F-F), mean-to-mean 

(Td
M-M), and peak-to-peak (Td

P-P) time delays, respectively. Td
M-M is specifically 

determined by identifying the times in the systolic upstrokes of the waveforms that 

correspond to the MP level and then taking the difference between these times. (b) Peak-to-

peak time delay is often not useful. The proximal and distal BP waveforms here were 

obtained with micromanometer-tipped catheters in the ascending aorta and femoral artery of 

swine.
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Fig. 2. 
Previous linear arterial tube-load model technique for robust estimation of PTT from 

proximal and distal BP waveforms [Pp (t) and Pd (t)]. The linear model accounts for 

peripheral wave reflection but assumes constant arterial compliance (top panel). The 

parameters [Td (PTT), G (gain of reflection coefficient Γ(f)), fc (Γ(f) cutoff frequency)] are 

estimated by finding the transfer function that optimally fits Pp (t) to Pd (t) (middle panel). 

PTT [Td
MP] is then given as the Td estimate (bottom panel).
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Fig. 3. 
Proposed nonlinear arterial tube-load model technique for estimation of PTT as a function of 

BP from proximal and distal BP waveforms. The nonlinear model accounts for BP-

dependent arterial compliance and peripheral wave reflection (top panel). The parameters [α 
(degree of BP-dependence), G, fc] are estimated by finding the finite-difference relationship 

(see the Appendix) that optimally fits Pp (t) to Pd (t) (middle panel). PTT as a function of BP 

[Td (P)] is then given via the α estimate and D2LC0 (bottom panel). Note that D2LC0 is 

specified by the α estimate, the Td
MP estimate via the linear arterial tube-load model 

technique, and MP (middle panel).
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Fig. 4. 
Procedures for assessing the nonlinear arterial tube-load model technique in terms of its 

ability to (a) calibrate PTT to BP in animals and (b) correlate changes in the PTT values at 

the levels of DP, MP, and SP with the changes in the corresponding BP levels in patients.
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Fig. 5. 
Group average (mean ± SE) of the RMSE between the distal BP waveforms measured and 

estimated by the nonlinear and linear arterial tube-load model techniques. p < 0.0167 is 

statistically significant.
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Fig. 6. 
Calibration curves (black lines) derived by the nonlinear arterial tube-load model technique 

during the baseline period along with pairs of PTT estimated by the linear arterial tube-load 

model technique and measured MP (gray dots) during the hemodynamic interventions. The 

vertical arrows indicate the baseline BP range utilized to derive the calibration curves.
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Fig. 7. 
Group average of (a) nitroglycerin-induced BP changes and corresponding PTT changes 

estimated by (b) nonlinear arterial tube-load model and (b) naïve [see Fig. 1(a)] techniques 

in patients.
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Fig. 8. 
Meshing of the nonlinear arterial tube-load model (top panel of Fig. 3) for numerical 

solution of the governing model equations. P is BP, while Q̇ is blood flow rate. The 

superscript k denotes time index, while the subscript N denotes space index.
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TABLE I

Group Average (Mean ± SE) BP Statistics

Animal data BP range (minimum–maximum) [mmHg]

DP MP SP

39 ± 2 – 99 ± 8 52 ± 2 – 125 ± 9 72 ± 4 – 173 ± 11

Correlation coefficient

DP and MP DP and SP MP and SP

0.96 ± 0.02 0.84 ± 0.06 0.94 ± 0.02

Patient data BP level [mmHg]

DP MP SP

Baseline 70 ± 1 97 ± 2 141 ± 2

Nitroglycerin 69 ± 2 88 ± 2 124 ± 2

The BP range in animals was elicited by various hemodynamic interventions (see [14]). DP is diastolic BP; MP, mean BP; SP, systolic BP.
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TABLE II

Summary of Investigated Techniques for Estimating PTT From Proximal and Distal BP Waveforms

Technique Capabilities Limitations

Foot-to-foot detection 
[Td

F-F in Fig. 1(a)]
Estimates a single PTT value at the level of DP [Td

F-F] 
(proven cardiovascular risk factor)

Cannot output a PTT-BP calibration curve or 
track multiple BP levels

Naïve [see Fig. 1(a)] Estimates multiple PTT values at different BP levels in the 
cardiac cycle [Td

F-F, Td
M-M, Td

P-P]
Ignores wave reflection and can thus be 
erroneous [see Fig. 1(b)]

Linear arterial tube-load 
model (Fig. 2 [8])

Robustly estimates a single PTT value at the level of MP 
[Td

MP] by modeling wave reflection
Cannot output a PTT-BP calibration curve or 
track multiple BP levels

Nonlinear arterial tube-
load model (Fig. 3)

Estimates PTT as a function of BP [Td (P)] and thus multiple 
PTT values at different BP levels in the cardiac cycle [Td 
(DP), Td (MP), Td (SP)] by modeling C(P) and wave 
reflection

Is computationally expensive

Td (MP) = TdMP. C(P) is BP-dependent large artery compliance.
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