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Significance Statement

The reconstruction of cancer phylogeny trees and quantifying the disease evolution is a challenge 

task. LICHeE and BAMSE are two computational tools designed and implemented recently for 

this purpose. They both utilize estimated variant allele fraction of somatic mutations across 

multiple samples to infer the most likely cancer phylogenies. This unit provides extensive 

guidelines for installing and running both LICHeE and BAMSE.
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1 Introduction

Evolution of somatic mutations that accumulate over time and confer a fitness advantage to 

tumor cells is the main driver of cancer progression as described in several recent studies. 

Furthermore, the heterogeneity of somatic variants within subpopulations of cells within the 

tumor has been increasingly characterized in multiple cancer types [1, 2, 9, 10]. These 

subpopulations are referred to as subclones with distinct sets of mutations. The strides that 

have been made in next-generation DNA sequencing technologies have allowed for many 

large-scale efforts aimed at characterizing the genetic profile of tumors and matched normal 

DNA in order to identify driver events in tumors. Using this genomic data, it is necessary to 

infer the evolutionary relationship between subclones as this information is increasingly 

recognized as having value when making clinical decisions.
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With the emphasis being placed on characterizing tumor heterogeneity, computational tree-

building methods are required for cancer phylogeny reconstruction. Here, we present two 

protocols that define the use of LICHeE (Lineage Inference for Cancer Heterogeneity and 

Evolution) and BAMSE (BAyesian Model Selection for tumor Evolution), two states-of-the-

arts computational methods for inference of tumor lineage trees in the context of 

heterogeneous multi-region tumor samples. LICHeE and BAMSE identify the set of lineage 

trees that are consistent with variant allele frequencies (VAFs) profiles obtained from deep-

sequencing from somatic single nucleotide variants (SSNVs). LICHeE is a combinatorial 

approach. It utilizes an evolutionary constraint network that represents all possible trees that 

can potentially be obtained from the data and evaluates constraints of evolution in order to 

reduce the search space. In contrast, BAMSE is a probabilistic approach to building lineage 

trees and inferring subclonal history. It uses read counts taken from standard sequencing of 

heterogeneous tumor samples and employs a novel Bayesian model selection to identify the 

models that most accurately fit the observed data.

2 BASIC PROTOCOL 1: Running LICHeE on tumor data

LICHeE is a computational approach aimed at the reconstruction of tumor phylogenies and 

the characterization of the subclonal composition of tumor samples using variant allele 

frequencies (VAFs) of somatic single nucleotide variants (SSNVs) from multiple samples of 

the same patient (e.g. extracted from different regions of the tumor) sequenced at high depth. 

LICHeE relies on the perfect phylogeny model to define a set of constraints on the 

evolutionary ordering of SSNVs using their presence patterns and VAFs across input 

samples and finds all the lineage trees that satisfy these constraints. LICHeE can efficiently 

find all such trees by formulating the problem as a search for all valid spanning trees in an 

evolutionary constraint network, which encodes all valid pairwise ancestral relationships 

among the SSNVs. Given each such tree, LICHeE also provides estimates of the subclonal 

mixtures of each input sample. LICHeE is freely available at https://github.com/viq854/

lichee.

At a macroscopic level, LICHeE’s execution can be broken down into the following steps: 

(1) SSNV calling across input samples, (2) SSNV clustering using VAFs (each group of 

SSNVs present in the same set of samples is clustered separately), (3) construction of the 

evolutionary constraint network (where the nodes are the clusters obtained in step (2) and 

the edges represent valid pairwise ancestry relationships), (4) search for lineage trees 

embedded in the network that satisfy all the phylogenetic constraints, and (5) output 

visualization. In this protocol we describe how various parameters can control the execution 

of the program at each step, providing some insights into their tuning, and comment on the 

interpretation of the results.

Necessary Resources

Hardware: Computer running Linux, Mac OS or Windows

System Requirements: Java Runtime Environment (JRE) 1.6

Files: Text file with SNVs with specified per-sample VAFs
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1. Prepare the input file

LICHeE requires a tab-delimited text file with one SSNV entry per line. The 

columns include information about the SSNV (e.g. position in the genome) and 

its VAF in each sample according to the following required header:

#chr position description <sample names separated by tabs>

An example of a valid input file can be found in LICHeE’s repository here: 

https://github.com/viq854/lichee/tree/master/LICHeE/data/ccRCC/RK26.txt

Given this information, LICHeE will first call the SSNVs in each sample using a 

simple heuristic method and then cluster them according to their VAFs. However, 

if the SSNV calls are already available to the user from a different specialized 

program, they can be directly provided to LICHeE, bypassing the first step. This 

can be achieved by enabling the -sampleProfile flag and extending the input file 

to include a binary string denoting SSNV presence and absence in each sample 

as an additional column (added before the sample frequency information). If 

available, the user can also directly substitute VAFs in this file with the more 

informative cell prevalence (CP) values (and enable the -cp flag).

Similarly, pre-computed SSNV cluster assignments can also be specified by the 

user, bypassing the default clustering step, by providing an additional tab-

delimited input file containing the clusters (with the corresponding centroid 

VAFs per sample and the member SSNVs): one cluster per line. This file should 

be of the form:

profile <cluster VAFs per sample separated by tabs> <comma-separated list of SSNVs>

2. Identify and set relevant parameters and flags

Let’s assume that LICHeE is installed in the $LICHEE_ROOT_DIR directory. 

LICHeE is designed to be run from the command-line console using the 

following guidelines.

From $LICHeE_ROOT_DIR/LICHeE/release, the command template is:

$ ./lichee -build -i <input_file_path> [-minVAFPresent <VAF1> -maxVAFAbsent <

   VAF2> -n <normal_sample_id>] [other options]

These parameters control the initial SSNV filtering and calling and are required 

if the -sampleProfile flag is not specified (i.e. when SSNV calling is executed). 

Additional parameters can be supplied from the following list:

Parameter Description

Input/output and display options

-i <arg> Input file path (required)

-o <arg> Output file path where the results should be written
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Parameter Description

-cp Input data represents cell prevalence (CP) values (as opposed to 
default VAF values)

-n,−normal <arg> Normal sample column id in the list of samples, 0-based (e.g. 0 is 
the first column) (required*)

-clustersFile <arg> SSNV clusters file path

-s,−save <arg> Maximum number of output trees to save, if any (default: 1)

-showNetwork,−net Display the constraint network

-showTree,−tree <arg> Display the top ranking lineage tree(s) (default: 0)

-color Enable lineage tree visualization in color mode

-dot Enable DOT file export of the top-scoring tree for Graphviz 
visualization (saved by default to: input file with suffix.dot)

-v,−verbose Verbose mode, prints more information about each step of the 
algorithm

SSNV filtering and calling

-maxVAFAbsent,−absent <arg> Maximum VAF to consider an SSNV as robustly absent from a 
sample (required*)

-minVAFPresent,−present <arg> Minimum VAF to consider an SSNV as robustly present in a sample 
(required*)

-maxVAFValid <arg> Maximum allowed VAF in a sample (default: 0.6)

-minProfileSupport <arg> Minimum number of robust SSNVs required for a group presence-
absence profile to be labeled robust during SNV calling: SNVs from 
non-robust groups can be re-assigned to existing robust groups 
(default: 2)

SSNV clustering

-maxClusterDist <arg> Maximum mean VAF difference on average per sample up to which 
two SSNV clusters can be collapsed (default: 0.2)

-minClusterSize <arg> Minimum number of SSNVs required per cluster (default: 2)

-minPrivateClusterSize <arg> Minimum number of SSNVs required for a private cluster (i.e. with 
SSNVs occurring only in one sample) (default: 1)

Constraint network construction and tree search

-e <arg> VAF error margin (default: 0.1)

-minRobustNodeSupport <arg> Minimum number of robust SSNVs required for a node to be 
labeled robust during tree search: non-robust nodes can be 
automatically removed from the network when no valid lineage 
trees are found (default: 2)

-c,−completeNetwork Add all possible edges to the constraint network, by default private 
nodes are connected only to closest level parents and only nodes 
with no other parents are descendants of root

-nTreeQPCheck <arg> Number of top-ranking trees on which the QP consistency check is 
run, we have not seen this check to fail in practice (default: 0, for 
best performance)

*
these parameters are required unless the -sampleProfile option is specified

The defaults for some of these parameters are set fairly conservatively, assuming 

noisy real data. For best results, or when testing on simulated data, users are 

advised to customize these parameters to their datasets. For example, lowering -

maxClusterDist, which controls the collapsing of nearby clusters, can order 

additional SSNVs by keeping them in separate clusters (originally obtained by 

the GMM clustering algorithm); similarly, lowering -minClusterSize will keep 

single-SSNV clusters in the network.
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3. Run LICHeE to infer lineage trees and tumor heterogeneity

We provide several examples of running LICHeE on the following two publicly-

available data sets included in the LICHeE repository (https://github.com/viq854/

lichee/tree/master/LICHeE/data) for testing while varying several parameters:

• ccRCC - from the study by Gerlinger et al. [4] that validated 602 non-

synonymous nucleotide substitutions and indels from multiple samples 

of eight individuals.

• hgsc - from the study by Bashashati et al. [5] that validated 340 somatic 

mutations from 19 tumor samples of six patients.

To display the top ranking lineage tree for the ccRCC RK26 patient dataset:

$ ./lichee -build -i ../data/ccRCC/RK26.txt -maxVAFAbsent 0.005 -minVAFPresent

 0.005 -n 0 -showTree 1

LICHeE will use the -maxVAFAbsent and -minVAFPresent arguments as 

thresholds when calling SSNVs in each sample. The -showTree argument will 

display the top ranking tree.

To infer trees that don’t contain private clusters (clusters with SSNVs present in 

only one sample) with fewer than 2 SSNVs, while also increasing the error 

margin used in phylogenetic constraint enforcement, and save the top ranking 

tree (for the ccRCC RMH008 patient dataset):

 $ ./lichee -build -i ../data/ccRCC/RMH008.txt -maxVAFAbsent 0.005 -

  minVAFPresent 0.005 -n 0 -minPrivateClusterSize 2 -e 0.2 -s 1

To prevent initial clusters from being collapsed (for the hgsc case6 patient 

dataset):

 $ ./lichee -build -i ../data/hgsc/case6.txt -maxVAFAbsent 0.005 -minVAFPresent

  0.01 -n 0 -maxClusterDist 0 -showTree 1

4. Save and visualize results

The resulting trees and sample decomposition information produced by LICHeE 

can be written to a text file (using the -s option that specifies up to how many top 

trees should be saved) and visualized via the interactive LICHeE Lineage Tree 

Viewer GUI (using the -showTree option that specifies how many trees should be 

displayed). It is also possible to export the best-scoring tree as a DOT file for 

Graphviz visualization (using the -dot or -dotFile options).

If Graphviz is installed, you can visualize the dot file as in Fig.1B using:

$ dot -Tpdf ../data/ccRCC/RK26.txt.dot -O

The output file (default ending in trees.txt) lists each node in the tree(s), the 

binary presence profile of SSNVs in that node, a vector representing the VAF 

centroid of that node and members of that node. It also reports the adjacencies of 

the nodes in the tree(s) and how much each node contributes to the 

decomposition of each sample within the tumor.
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5. Tune additional parameters for lineage tree generation

In some cases, LICHeE may not be able to infer a valid tumor lineage tree for the 

input dataset under the default parameter setting. In addition, alternative lineage 

trees might be valid under a different set of parameters. Therefore, it might be 

useful to tune parameters and explore the possible set of solutions. For instance, 

reliable SSNV calling results are imperative for lineage tree reconstruction. Since 

LICHeE uses a heuristic method to call SSNVs that heavily relies on appropriate 

values of the -maxVAFAbsent and -minVAFPresent parameters, adjusting these 

parameters to reflect the expected noise levels in the data, or supplying pre-

computed calls can be very useful.

As an example, the trees obtained for the ccRCC RK26 patient dataset differ as 

follows based on the values of these parameters (e.g. the higher -maxVAFAbsent 

threshold of 0.01 will filter out many more SSNVs as noise).

$ ./lichee -build -i ../data/ccRCC/RK26.txt -maxVAFAbsent 0.01 -minVAFPresent 0.2

  -n 0 -showTree 1 -color

$ ./lichee -build -i ../data/ccRCC/RK26.txt -maxVAFAbsent 0.005 -minVAFPresent

 0.005 -n 0 -showTree 1 -color

6. Adjust criteria for incorporating clusters into the constraint network for futher 

refinement (optional)

As a further refinement, it might be useful to adjust the criteria for incorporating 

clusters into the constraint network. For example, clusters that contain only a few 

SSNVs are more likely to represent mis-called presence patterns and can be 

filtered out by increasing the -minClusterSize and -minPrivateClusterSize 

parameters. The parameter -minRobustNodeSupport (which determines how 

many robustly-called SSNVs are required for a node to be non-removable) can 

be increased to iteratively remove nodes from the network while no valid trees 

are found automatically. For very noisy data (e.g. due to low coverage), nearby 

clusters can also be collapsed using the -maxClusterDist parameter as described 

above (or, additionally, the -e parameter can be increased). On the other hand, 

adjusting these parameters in the opposite direction can result in more granular 

trees and is advisable on less noisy datasets in order to get the most informative 

results.

7. Account for CNVs (Copy Number Variants)

Since LICHeE does not detect and incorporate CNVs explicitly into its model, 

CNVs can be a major cause for the violation of phylogenetic constraints applied 

to VAF values, and the resulting absence of valid lineage trees. While some of 

the above parameters can remedy the effect of CNVs (e.g. clustering-related 

parameters and the -e parameter), providing pre-computed CP values instead of 

VAFs would be the most effective approach to overcome this limitation. These 

can be provided to LICHeE directly instead of VAFs and enabled using the -cp 

flag.
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Finally, orthogonal data and information about the dataset can be helpful in 

analyzing the resulting lineage trees when multiple trees are produced.

3 BASIC PROTOCOL 2: BAMSE

In this section, we present a new probabilistic technique, BAMSE, for inferring cancer 

phylogenetic trees. Considering possible evolutionary scenarios for tumor evolution as 

models, BAMSE performs a search over the model space and reports the models that best fit 

the read count profile for the somatic mutations. BAMSE requires the number of reference 

and variant read counts for each SSNV across the tumor samples. The output is the 

description of top scoring models and one DOT file per model for visualization. BAMSE is 

freely available at https://github.com/HoseinT/BAMSE.

Necessary Resources

System Requirements: A computer with Python 2.7 Interpreter

Files: text file with SSNVs and their variant and reference read counts across the 

samples

1. Install BAMSE dependencies:

Add scikit-learn [14] and CVXPY [15] to your python installation

2. Prepare the Data

Make a tab delimited file including somatic mutations as rows and including 

columns named <sample_name>.ref for reference reads and <sample_name>.var 

for each sample.

3. Run BAMSE

use this syntax to run BAMSE:

$ python2 bamse.py [-e sequencing_error] [-s sparsity] [-nc num_candidates] [-n

  maximum_subclones] [-t top_trees] <inputfile>

Input Description

input_file A tab delimited input file

sparsity A number between zero and one that represents the prior probability that any 
subclone is absent at any sample, negative values are interpreted as zero

num_candidates Number of initial clusterings to pick for tree analysis

maximum_subclones Maximum number of subclones

top_trees Number of top solutions to show

The results are saved in the bamse.pickle file and also in a text file for each top 

model. The entries of the list inside the pickle file is a sorted list of top trees. 

Text file names are numbered and the number 0 represents the model with 

highest score. Each text file (equivalently a pickle file entry) provides additional 
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information on a model. i.e. its tree structure, its score and maximum likelihood 

subclone fractions.

4. Visualize the Results

For each reported model two DOT files are created. One of them visualizes 

subclone usage per sample, showing the clonal make up of eash sample. The 

other illustrates details about the subclones and the evolutionary tree connecting 

them. The details include the number of mutations in that subclone and the 

percentage of cells harboring those mutations in each sample. These files are 

easily visualized using Graphviz. For example:

dot -Tpdf tree_number_0_samples.dot -O

and

dot -Tpdf tree\_number_0_clusters.dot -O

For example to generate likely evolutionary scenarios for sample EV006 of the 

ccRCC study, we assume the number of subclones is not larger than 15, 

sequencing error rate is 0.001. To inform BAMSE to test 20 initial clusterings for 

each possible number of subclones and generate output for the top scoring 5 trees 

with sparsity parameter set to 0.1, we use the command:

$ python2 bamse.py -e 0.001 -s 0.1 -nc 20 -m 15 -t 5 EV006.dat

The visualized result for the top tree is in Fig[3,4]:

In Fig[3], each subclone is denoted by a letter followed by the number of 

mutations in that subclone. For each subclone, the maximum likelihood fraction 

of cells that carry the mutations originating in that subclone are plotted for each 

sample. Fig[4] shows the subclonal composition for each of the samples i.e 

which subclones are present in the sample and what fraction of cells they 

contain.

4 Guidelines for Understanding Results

4.1 LICHeE

The ‘-s,-save’ parameter allows inferred trees to be saved to a text file. This output file is 

divided into multiple sections. The first of which describes the nodes present in the tree. 

Below in an example of the first three lines of this section for the tree shown in Fig 2A.

Nodes:

1 011111101001 [ 0.21 0.25 0.23 0.2 0.23 0.19 0.17 0.18] snv1 snv2 snv3 snv4

2 011110000000 [ 0.19 0.22 0.2 0.17] snv9 snv28 snv5 snv6 snv7 snv8 snv10 snv11 snv12

  snv13 snv14 snv15 snv16 snv17 snv18 snv19 snv20 snv21 snv22 snv23 snv24 snv25

  snv26 snv27

The output gives the node id in the first column followed by the binary presence of 

mutations found in that node. In the third column is a vector which represents the centroid 

VAFs for that node followed by all the mutations which were assigned to that node.
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The second section of the text output describes connectivity between nodes:

****Tree 0****

0 -> 4

0 -> 1

1 -> 5

1 -> 3

1 -> 2

Error score: 0.041299345649182535

Numbers shown here correspond to node ids from the aforementioned section of the file. 

Next, the sample decomposition for each sample in the tree is displayed and how much each 

node contributes to the genomic makeup of the sample. For example see the breakdown of 

sample R2 in Fig 2A below:

  Sample lineage decomposition: R2

GL

…..010000000000: 0.323 [0]

…..011111101001: 0.211 [0.032]

……….011110000000: 0.185 [0.049]

The final section of the output file provides additional information about the mutations 

which have been placed on the tree.

4.2 BAMSE

In its text output, BAMSE specifies tree structure using asciitree format. For the EV006 

solution shoown in Fig[3], the section of text output describing the tree is:

logscore = 1049.694176

tree = [ 1, 3, 3, -1, 0, 0, 0, 2, 0]

D    [ 0.79 0.6 0.57 0.72 0.71 0.58 0.81 0.45 1. ]

 +-- C   [ 0.24 0.08 0.26 0.27 0.09 0.07 0.34 0.16 0.39]

 ∣ +-- H   [-0. -0. 0. 0.1 -0. -0. 0.07 0.05 -0. ]

 +-- B   [ 0.55 0.28 0.31 0.44 0.37 0.27 0.47 0.28 0.61]

  +-- A   [ 0.55 0.28 0.31 0.26 0.37 0.27 0.27 0.17 0.61]

    +-- F  [ 0. 0. 0. 0. 0.37 0. 0. 0. 0. ]

    +-- E  [ 0. 0. 0.05 0.26 0. 0.04 0.27 0. 0. ]

    +-- G  [ 0.55 0.28 0. 0. 0. 0. 0. 0. 0. ]

         +-- I     [ 0. -0. 0. -0. -0. -0. -0. -0. 0.39]

this shows the natural logarthm of tree score, the vector representation of the tree, a text 

based drawing of the tree along with the maximum likelihood VAF for each subclone at each 

sample. The vector representation is included for more convinient programmatic access. In 

this format the nodes are labeled with non-negative integers and T[i] shows the label for the 

parent of node labeled i. The root node has T[i] = −1. For each subclone, the row number of 

its mutations in the input file are also listed:
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A [0, 23, 24, 25, 30, 33, 45, 51]

B [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 26, 27,

  28, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47]

C [9, 52]

D [32, 48, 49, 50]

E [53]

F [54, 55, 56, 57]

G [58]

H [59, 66, 67, 68, 69, 70, 71]

I [60, 61, 62, 63, 64, 65]

this shows the natural logarthm of tree score, the vector representation of the tree, a text 

based drawing of the tree along with the maximum likelihood VAF for each subclone at each 

sample. The vector representation is included for more convinient programmatic access. In 

this format the nodes are labeled with non-negative integers and T[i] shows the label for the 

parent of node labeled i. The root node has T[i] = −1. For each subclone, the row number of 

its mutations in the input file are also listed:

A [0, 23, 24, 25, 30, 33, 45, 51]

B [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 26, 27,

  28, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47]

C [9, 52]

D [32, 48, 49, 50]

E [53]

F [54, 55, 56, 57]

G [58]

H [59, 66, 67, 68, 69, 70, 71]

I [60, 61, 62, 63, 64, 65]

The maximum likelihood fraction of cells inside each subclone are also provided.

5 Commentary

5.1 Background information

Recently, several studies have been directed at comparing multiple tumor samples from the 

patient with samples representing different time points in tumor progression or distinct 

regions of the same tumor [7, 8]. To study these multi-sample datasets, tumor phylogenies 

are normally inferred manually from a small number of SSNVs and their VAFs along with 

presence/absence profiles [9, 10], and the ability to scale such studies to handle large, highly 

heterogeneous samples per patients was lacking in the available approaches. LICHeE was 

developed to address this need to build phylogenies from large numbers of SSNVs and to 

resolve the evolutionary timing of these mutations.

LICHeE also represents an improvement over developed methods which exist in a similar 

functional space. LICHeE is able to handle a large number of samples unlike 

SubcloneSeeker [11] which takes clusters of variant cell prevalence (CP) values and outputs 
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all possible subclone structures and finds a compatible tree across samples but cannot do this 

for more than two samples. PhyloSub [12] is another approach to inferring phylogenies but 

is ideal for datasets with few mutations that resolve to relatively simple topologies as 

performance dwindles on larger multi-sample datasets. CITUP [13] is a combinatorial 

solution to this problem that uses an integer programming formulation to find the optimal 

lineage tree given the VAF data observed in samples, however its optimization problem may 

become exceedingly difficult with an arbitrarily large lineage tree. LICHeE was developed 

to provide a useful alternative to these approaches in order to infer tumor phylogenies.

BAMSE is also a unique approach to building tumor phylogenies when multiple samples are 

available. It is able to assess the fit of multiple models to the data in order to arrive at the 

most probable tumor phylogeny. While probabilistic, BAMSE is able to avoid the 

computational burden that is associated with using Markov chain Monte Carlo (MCMC) 

sampling by integrating out continuous parameters. The discrete parameters remaining are 

the assignment of mutations to subclones and arrangement of subclones on the evolutionary 

tree. BAMSE uses heuristic clustering to choose candidates for the clustering, and uses a 

branch and bound algorithm to get top scoring trees for each configuration. While many 

tools also rely on external clustering tools to obtain the number of subclones, BAMSE has 

its own built-in clustering method which allows it to be independent. CNVs can also be 

considered by BAMSE as it allows for the incorporation of copy number information into 

the frequency probability distribution for mutations that fall within a CNV region.

5.2 Critical Parameters

In cases where binary presence/absence profiles of somatic mutations are not provided to 

LICHeE and LICHeE is required to calculate these profiles, special attention must be paid to 

the selected values for ‘-maxVAFAbsent’ and ‘-minVAFPresent’ as these affect the 

clustering of mutations and the ability to find a valid tree within the dataset. If ‘-e’ is used to 

adjust the error margin, too wide of a margin will affect the ability of LICHeE to produce an 

informative tree based on constraints of perfect phylogeny so caution must be exercised in 

relaxing this parameter.

For BAMSE, the maximum number of subclones, the number of candidates for each are 

very important. Higher these numbers, the algorithm will take more time to run but will test 

more candidates and the outputs are more accurate.

5.3 Troubleshooting

LICHeE outputs a log detailing the execution of each step of the algorithm (with more 

information provided using the verbose, -v, flag). This log can be very useful when trying to 

diagnose the performance of the program and view any of its intermediate results. In 

particular, it provides information about SSNV calling and filtering, clustering, the structure 

of the resulting constraint network, tree scoring, and any other operations controlled by 

various parameter settings. For example, any cluster removal or collapse operations triggered 

by the specified parameter settings are recorded in the log as shown in the following snippet 

(extracted from the log of the ccRCC RK26 patient):

  …

Ricketts et al. Page 11

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clustering results for group: 010000010000

Size: 1

VAF Mean: [ 0.08 0.01 ] Stdev: [ 0 0 ]

**Filtered due to cluster size constraint (010000010000 size 1):

chr6 7246926 desc43 0.00 0.083786725 0 0 0 0 0 0.009090909 0 0 0 0

 Collapse clusters: group = 000001000000 cluster 0 and 1 distance = 0.0659543605.

New cluster: Size: 10

VAF Mean: [ 0.2 ] Stdev: [ 0.03 ]

…

Using the log, the user can also trace why a particular SSNV was not included in the final 

output tree(s) (e.g. due to filtering based on the maximum VAF allowed or due to cluster size 

constraints) by searching the log for the “Filtered” keyword or for the unique descriptor of 

the SSNV (the log will output the SSNV entry line for each filtered SSNV as it appears in 

the input file). Furthermore, when no valid trees are found, examining the cluster centroid 

VAFs and the topology of the constraint network can be helpful to determine why at least 

one phylogenetic constraint is violated in each candidate embedded spanning trees.

There is no specific troubleshooting log for BAMSE to report here.
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Figure 1. 
Visualization of lineage tree
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Figure 2. 
Trees build with different parameters

Ricketts et al. Page 15

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Clonal evolution plot of the top BAMSE solution for EV006

Ricketts et al. Page 16

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Sublonal composition of the samples for the top BMASE solution for EV006
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