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ABSTRACT

We describe TissueInfo, a knowledge-based method
for the high-throughput identification of tissue
expression profiles and tissue specificity. TissueInfo
defines a set of tissue information calculations that
can be computed for large numbers of genes,
expressed sequence tags (ESTs) or proteins. Tissue
information records that result from the TissueInfo
calculations are used to generate tables suitable for
data mining and for the selection of genes according
to a given expression profile or specificity. When
benchmarked against a test set of 116 proteins and
literature information, TissueInfo was found to be
accurate for 69% of identified tissue specificities and
for 80% of expression profiles. The accuracy of the
identifications can be increased if query sequences
for which little information is available from dbEST
are ignored. Thus, with 80% coverage, TissueInfo
achieves an accuracy of 76% for specificity and 89%
for expression. For the same set of proteins, the
curated tissue specificity offered in SWISS-PROT
was accurate in 78% of cases. TissueInfo can be
useful for the selection of clones for custom micro-
arrays, selection of training sets for ab initio identifi-
cation of tissue information, gene discovery and
genome-wide predictions. Further information about
the program can be found at http://icb.mssm.edu/
tissueinfo.

INTRODUCTION

Expressed sequence tags (ESTs) derive from libraries of
expressed genes made from specific tissues, organs or cell
types. Clones are selected randomly from these libraries and
their cDNA inserts are sequenced, either randomly from
anywhere in the cDNA or more generally from the 3′- or 5′-ends.
ESTs from the 3′-end frequently correspond to the 3′-untranslated
region (3′-UTR) of the gene (1). ESTs are usually short
(∼400 bp) (2) and, because they are subjected to unedited
single pass sequencing, they can incorporate a high error rate
(∼2–3%; 2,3).

EST sequencing projects escalated in the early 1980s when it
was recognized that short stretches of DNA sequence from

cDNAs could be used to identify genes (4). In 1992, a central
repository for EST sequences, called dbEST, was established
at NCBI (5). The biggest contributors to the human and mouse
EST sequencing projects have been the WashingtonU Merck
EST sequencing project (6) and the project funded by the
Howard Hughes Medical Institute (7), respectively. ESTs now
currently sample more eukaryotic genes than any other data
source (8).

The information available from dbEST has been used primarily
for the identification of new genes, physical map construction,
identification of disease-causing mutations and other poly-
morphisms, and annotation of genomic sequence (e.g. finding
splice sites) (3,9–11). They have also been used to determine
expression profiles of genes (12,13), compare expression
patterns in different tissues or disease states (11) and in micro-
array studies (14,15).

As ESTs have been primarily used to identify new genes, it
has become redundant to sequence repetitively the more
commonly expressed genes, which can comprise as much as
50–65% of the total mRNA mass (16). Therefore, different
methods of eliminating, or significantly reducing, highly
expressed transcripts have been developed (1). The most
common of these is normalization (16,17), where the
frequency of finding rare messages in a normalized library is
increased to a frequency similar to that of finding the more
common mRNAs. Normalization does not result in the
complete removal of members of gene families (6). Libraries
can also be subtracted (i.e. made more specific to a particular
tissue or to remove clones that have already been sampled)
(16) or enriched (i.e. clones selected for a particular feature)
(18). Because of the different ways of preparing EST libraries,
the quantitative distribution of tissue expression becomes
harder to determine and therefore the frequency of representation
of a gene in dbEST should not be used to predict its expression
level (19).

However, the presence in a tissue-specific library of an EST
attributed to a certain gene implies that the given gene is
expressed in that specific tissue (or set of tissues). This
reasoning can be used to calculate not only general expression
profiles, but also to identify genes that are specifically
expressed in one particular tissue or organ. In 1998, Vasmatzis
et al. used EST data to predict genes specific to the human
prostate (20). Of 15 predicted genes, four were already known
to be prostate specific and three were experimentally verified
to be novel prostate-specific genes. Four more predictions
could not be experimentally confirmed, as there was no
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hybridization of the cDNA probes in either RNA dot blots or
northern blots. The authors also reported that PSSPP, a gene
previously believed to be expressed specifically in the prostate,
is also found to be expressed in lung and trachea (which was
both predicted and experimentally verified).

In this paper, we generalize and extend the approach
pioneered by Vasmatzis et al. to calculate, for any query sequence,
the tissue expression profile and specificity to any tissue type
represented in dbEST. We present a new method (TissueInfo) that
makes possible the high-throughput identification of tissue
distribution of ESTs, mRNAs and protein sequences. To eval-
uate the approach that TissueInfo automates, we compared the
tissue expression profiles obtained for 116 proteins to their
SWISS-PROT entry annotations and to a subset of the
literature referenced by SWISS-PROT (21). This evaluation
helps highlight drawbacks of this approach but shows that
TissueInfo can identify tissue specificity or expression with
~75% accuracy.

MATERIALS AND METHODS

TissueInfo: a tissue expression identification pipeline

The main components of TissueInfo are illustrated in Figure 1.
These include the following. (i) The Calculation Pipeline
determines which ESTs are to be used to calculate the tissue
expression profile of a query sequence. The selected ESTs are
said to match the query sequence. The set of matching ESTs is
then used to retrieve information about the set of tissues and/or
organs from which their libraries have been prepared. This is
achieved by using the Information Management component.
(ii) Information Management involves the importation of data
from the public dbEST section of GenBank. For each EST in
dbEST, TissueInfo attempts to extract the following triplet:
accession code of the EST; tissue or organ from which the EST
library has been made; organism from which the tissue or
organ has been collected. Raw data are stored as imported from
dbEST, in a relational database, which provides the indexing
capabilities required for quick querying, and enables scheduled
updates of any new information in dbEST. Data cleaning is
performed by a manual curation that removes natural language
variations, aliases and typographical errors from the tissue
description, which are frequent in the raw data. (iii) Background
Knowledge is provided about the tissues. We defined tissue
hierarchies (described later) to provide TissueInfo with the
knowledge that ‘cerebral cortex’ is a part of ‘brain’, such that
genes found to be expressed in a library made from cerebral
cortex are considered to be expressed in brain for the purpose
of tissue distribution calculations. The default tissue hierarchy
provided with TissueInfo describes more than 165 tissues and
their relationships.

Calculation Pipeline

ESTs that match the query sequence. Depending on the
sequence type of the query sequence, one of two approaches is
taken to identify ESTs that match the query sequence: (i) protein
query sequences are searched against dbEST using BLAST
(22); (ii) nucleic acid query sequences are searched against
dbEST using MegaBLAST (23). Both approaches yield a list
of high scoring pairs (HSPs) that match the query sequence
over a given length, with a certain proportion of mismatches.

Because ESTs result from a single pass sequencing run,
complete sequence identity cannot be assumed with the query
sequence. HSPs are considered to match the query sequence if
the length of their alignment is longer than min_length and the
sequence identity between the query sequence and the HSP is
≥ (100% – sequencing_error). An EST is considered to match
the query sequence if at least one of its HSPs matches the query
sequence. In typical cases, min_length is set to 100 bp and
sequencing_error to 5%. Due to the occasional presence of
introns in pre-spliced mRNAs, these query sequences can be
treated slightly differently. ESTs that span over two exons may
prevent HSPs from reaching min_length. In these cases,
lengths of HSPs from the same EST are summed before
min_length is tested. Each HSP is still required to pass the
sequence identity test independently to prevent low sequence
identity regions from acting as a bridge between two short
segments of high sequence identity.

This procedure identifies ESTs that are likely to be derived
from the mRNA of the gene which encodes the query
sequence. The second step implemented by the Calculation

Figure 1. The components of TissueInfo are illustrated and their relation to a
local infrastructure. Arrows represent either a flow of data or relationships among
components that provide or use services. Information Management imports raw
data from dbEST, stores it in a relational database and supports the curation of
such data. Curated information is made available as objects empowered with meth-
ods necessary to implement the algorithms described in Table 1. See the text for
a description of the other components. TissueInfo requires access to dbEST,
MegaBLAST and BLAST, which must be provided by the local bioinformatics
infrastructure. TissueInfo records are generated for each query sequence going
through the pipeline. A suitable data mining environment helps navigate data
sets produced when large numbers of query sequences are annotated.
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Pipeline retrieves the tissue information associated with each
matching EST.

Querying TissueInfo. The set of ESTs that match each query
sequence is considered in turn. Accession numbers of
matching ESTs are used to retrieve the tissue information that
is stored in dbEST with most entries. The direct consultation of
dbEST for each EST would be prohibitively slow. In addition, the
raw data available in dbEST are unsuitable for direct calculations.
Therefore, we designed the Information Management component
of TissueInfo to accelerate this retrieval, clean the data and
transform it into a machine-friendly representation of the tissue
information. Details of this process are provided in the
Information Management section.

Once the tissue information is obtained as illustrated in
Figure 1, the Calculation Pipeline performs a series of calculations.
Each calculation uses the tissue information with some
optional parameters and returns a single value. The simplest
calculation, isExpressedIn(tissue), determines if tissue appears
in the tissue information associated with the query sequence.
Therefore, isExpressedIn(tissue) returns true when tissue is an
element of the set of matching tissues, otherwise false. Another
calculation, mostExpressedIn() returns the tissue in which the
query sequence is found expressed most often.

Algorithms can be formally defined for each calculation
applied to the tissue information. The calculations that we
devised are described in the Algorithm section of this paper.
Names of the calculations have been chosen such that they
allude to the biological concepts that they were designed to
calculate. This makes the data analysis a more intuitive
process, but should not hide the fact that each result is obtained
through an objective, algorithmic process, making large-scale
analysis of tissue distribution information possible.

Information Management

Importing raw data from dbEST. TissueInfo relies on a local
bioinformatics infrastructure to provide GenBank EST files.
Each file is parsed to retrieve the organism and tissue type for
every EST accession number. The organism name is extracted
from the line beginning with ‘ORGANISM’. The tissue type is
retrieved from the line containing ‘TAG_TISSUE’,
‘tissue_type’ or ‘/Note: ‘Organ’’, in that order of preference.
This procedure extracts a triplet for each EST (accession
number, tissue and organism), where tissue can be a tissue,
organ or cell type. For a number of dbEST entries (∼30%), the
tissue data cannot be identified using this automated approach.
Manual inspection of these records shows that the tissue data
are often found embedded in the Note field and thus cannot be
extracted accurately by conventional parsing approaches. In
these cases, no data are stored in TissueInfo and subsequent
queries from the Calculation Pipeline will result in no tissue
information being returned (defined as being ‘null’).

Tissue curation: curating the tissue information. There is no
set method for describing libraries or describing the tissue type
from which the EST library was made. Many libraries from the
same tissue are labeled differently. The library information can
also contain spelling mistakes. For example, ‘kkin’ is
described as coming from primary fibroblasts, but as there is
no published data, it is difficult to know what the tissue type

actually is, and it has therefore been assumed to be ‘skin’; a
more straightforward example is ‘sanal mucosa’, which is a simple
misspelling of ‘nasal mucosa’. These differences may appear subtle
but could introduce serious algorithmic complications if tolerated
in the input data. Therefore we opted to clean raw tissue data to
correct for these variations.

In addition to spelling mistakes, the tissue data found in
dbEST present additional challenges to computational analysis:
‘whole brain’, ‘brain’, ‘left brain’, ‘corpora quadrigemina’ all
represent the ‘brain’ tissue in part or its entirety. The Calculation
Pipeline needs a quick way to identify that isExpressedIn(brain)
equals true for any raw tissue data synonymous with ‘brain’.

EST libraries can also be derived from pools of tissues or
whole organisms. In this case, the tissue data play a special
role, as they do not identify the tissue in which the gene is
expressed. Any EST that is labeled as coming from a whole
body library or from an unspecified tissue, such as ‘whole
embryo’, ‘Mixed’, ‘pooled organs’ or ‘Cell line’, is annotated
as being non-specific. We label this special tissue information
‘all’.

Finally, ESTs derived from a mixture of specified tissues,
such as ‘brain,liver,kidney,lung,heart,spleen’, are annotated as
coming from each of those tissues; plant tissues are also
flagged as such.

As stated previously, TissueInfo stores the raw tissue data as
imported from dbEST. The process of curation consists of
reading each raw tissue type to associate it with a curated
tissue. For curation convenience, we defined a text-based
language to represent curated tissues. Sentences of this
language include ‘+brain’, ‘!all’, ‘+brain, +liver, +kidney,
+lung, +heart, +spleen’ or ‘+leaf, !plant’.

Background Knowledge. The Background Knowledge compo-
nent provides the Calculation Pipeline with a mechanism to
determine when a tissue is part of an organ or larger tissue.
Many entries in dbEST are annotated as coming from very
specific tissues, such as the hypothalamus or the corpus
striatum, as well as more general tissue types, such as the brain.
For example, to determine whether a query sequence is
expressed in brain, ESTs that are annotated as coming from a
brain library, as well as those annotated as coming from more
specific libraries such as hypothalamus and hippocampus
libraries, must all be taken into account. To facilitate this
process, we have created a Tissue Hierarchy. This enables us to
construct queries for very specific tissue types, as well as the
more general tissues, without losing any data. For example, a
query sequence is determined to be expressed in the hippocampus
if it matches any ESTs that come from a hippocampus library.
Similarly, a query sequence is determined to be expressed in
the eye if it matches any ESTs that come from an eye library or
any library created from an eye-specific tissue type (e.g. retina,
cornea, iris or lens) or from even more specific libraries such as
pigmented retinal epithelium libraries. The level of detail in
our hierarchy is determined by the histological detail given in
the library annotations in dbEST.

We define Background Knowledge as a Tissue Hierarchy
where each node is a tissue and where links are made between
tissues when the parent tissue contains the child tissue. The
root of the hierarchy is the special ‘all’ tissue.
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Algorithms

Table 1 presents the algorithms of the TissueInfo calculations.
These calculations provide an objective way to obtain answers
to the following biological questions. Is the query sequence
expressed in a given tissue? Does the query sequence show
specific tissue expression? Is the query sequence specific to a
given tissue? In which tissue is the query sequence most
expressed? What are all the tissues in which the query
sequence is found to be expressed? Is the query sequence
expressed in plants?

Implementation

Triplets imported from dbEST are stored in a relational database.
This makes possible concurrent updates to the database and
provides support for integrity constraints. The content of the
relational database can be dumped periodically to flat files.

The Calculation Pipeline consists of timegablast and
tisearch. These two Java applications filter the output of
BLAST or MegaBLAST to extract ESTs that match the query
sequence. Both applications share the same XML output file
format so successive steps in the pipeline are independent of
the path used to calculate the matches. A third Java application,
tiquery, reads the XML tiac file (TissueInfo Accession Codes)
and queries the Information Management component for raw
tissue data. Two Information Management implementations
have been developed. The first one uses a JDBC driver to
connect to the central TissueInfo relational database. A
caching mechanism is implemented to speed up repetitive
queries. A second implementation reads a flat file representation
of the TissueInfo raw data and holds it entirely in memory for
the duration of the queries. This is the faster alternative but
requires >300 Mb of memory to hold mouse tissue information.

The approach we discuss here is suitable for the high-
throughput identification of tissue information. We generated
TissueInfo records for the NIA 15K Mouse cDNA Clone Set
(24) in 8 h on one SGI R10000 processor with 512 Mb of
memory. The query included about 150 TissueInfo calculations
for each of the 14 400 clones that had at least one hit in dbEST.
The total number of hits in dbEST was 588 491.

RESULTS AND DISCUSSION

Method evaluation

In order to evaluate the accuracy of TissueInfo in identifying
the tissue distribution of genes, we compared calculated tissue
expression profiles to information extracted from SWISS-PROT
and the literature.

Test set construction. A subset of SWISS-PROT entries have a
Tissue field, which indicates the tissues from which the
researchers cloned their sequence (in the References section),
and includes a Tissue Specificity field in the Comments
section. To evaluate the accuracy of our method, we assembled
a test set of 116 proteins from four tissues (brain, liver, kidney
and pancreas). These were extracted from SWISS-PROT
release 39.14 according to the following criteria: the SWISS-
PROT entry included a Tissue field in the reference section and
a Tissue Specificity field in the Comments section. Both the
Tissue field and the Tissue Specificity field had to contain one
of the tissues under analysis. This selection process generated
a set of proteins likely to be tissue specific to brain, liver,
kidney or pancreas.

Identification parameters. The set of proteins was processed
with tisearch and tiquery with raw data obtained from dbEST,

Table 1. Calculations supported by TissueInfo

The α parameter controls the stringency of the calculations. For example, if α = 0.95, then isSpecificTo(brain) is TRUE only when the tissue information for the
query sequence contains at least 95% of curated tissues that contain brain.

Calculation Algorithm

numTotalHits() Total number of ESTs that match the query sequence.

numAll() Total number of ESTs that are labeled as coming from the special tissue ‘all’.

tissueSummary() Gives a set of all the tissues that the query sequence is shown to be expressed in. Card(tissueSummary()) is the number of
elements of the set.

numExpressedIn(tissue) The number of ESTs that match the query sequence which are expressed in tissue. An EST is labeled as being expressed in tissue
if the library that the EST derives from is, or is a subset of, tissue as defined by the Tissue Hierarchy.

isExpressedIn(tissue) Tests if the query sequence is expressed in tissue. If numExpressedIn(tissue) > 0 then TRUE, else FALSE.

mostExpressedIn() Gives the tissue type in which the query sequence is predominantly expressed. If the query sequence is equally expressed in two
or more tissues, the first one is returned.

isSpecificTo(tissue) Tests if the query sequence is expressed predominantly in tissue. If numExpressedIn(tissue)/numTotalHits() > α then TRUE, else
FALSE.

isTissueSpecific() Tests if the query sequence is tissue specific in its expression. A query sequence is assumed to be tissue specific if it is expressed
in no more than two tissues, and no more than [100 × (1 – α)]% of the tissues in its tissue information are labeled as ‘all’. If
(numAll()/numTotalHits() > (1 – α) or card(tissueSummary()) > 2 then FALSE, else TRUE.

nullCount() Gives the number of hits for the query sequence that do not have organism and tissue information.

numPlant() Gives the number of hits for the query sequence that come from plant tissue.
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as available from the NCBI web site on March 26, 2001.
Parameters for tisearch were set as follows: min_length = 50,
sequencing_error = 5%. The α parameter for tiquery was set to
0.95.

Evaluation criteria. The tissue profiles thus generated were
compared with the information given in the Tissue Specificity
field of each SWISS-PROT entry analyzed. The abstracts for
every paper mentioned in SWISS-PROT for that protein entry
were also read. The specificity of the prediction was marked
‘correct’ if our prediction matched either the literature or
SWISS-PROT (L/SW) annotation (with the literature review
taking precedence) or if neither the L/SW nor our prediction
was tissue specific. The prediction was marked ‘agree’ if the L/
SW was tissue specific and our prediction was not, but the
tissue in which the query sequence was predicted to be most
expressed was consistent with that tissue specificity. Finally, it
was marked ‘wrong’ if (i) both L/SW and our prediction were
tissue specific but the tissues were different; or (ii) if L/SW
was tissue specific and our prediction was not and the tissue in
which the protein was most expressed did not match the L/SW
tissue specificity; or (iii) if the EST matches were all ‘null’.
The expression of a protein was marked as: ‘correct’ if the
prediction had most of the tissues mentioned by L/SW or if
neither L/SW nor our prediction were tissue specific (but not
necessarily identical); ‘wrong’ if L/SW was tissue specific but
our prediction was not or if most of the L/SW tissues were not
mentioned in the prediction. Any proteins that had no hits in
dbEST are marked ‘no hits’.

Evaluation results. Evaluation results are summarized in Table 2.
The complete results, including the annotations from SWISS-
PROT and the literature, can be accessed at http://icb.mssm.edu/
tissueinfo. When the proteins labeled ‘no hits’ are not taken
into account, TissueInfo finds the ‘correct’ or ‘agree’ tissue
specificity in 69% of cases. When expression is assessed the
accuracy reaches 80%.

Furthermore, as shown in Figure 2, the accuracy of the
identification of the tissue expression profile for a particular
query sequence correlates with the amount of information
available in TissueInfo. Calculations made for proteins found
to have less than three hits with information in TissueInfo are
unreliable. These calculations represent 20% of the data set.
Therefore, when these are removed and the method is re-evaluated
at 80% coverage the accuracy reaches 76% for specificity and
89% for expression.

It should be noted that this evaluation was carried out with
protein sequences, which are less likely to match ESTs that
overlap the 3′-UTR of the gene than mRNAs. Since UTR
regions of the gene are less conserved than the coding
sequence, searches with mRNA will probably generate more
hits than the numbers reported here.

Most common pitfalls. An analysis of the incorrect results
revealed that TissueInfo is least successful in those cases
where highly homologous proteins have different tissue
specificities. In these cases, it is not possible to assign one gene
unambiguously to a set of ESTs because sequencing errors are
of the order of magnitude of sequence variations found among

Table 2. Summary of evaluation results

Spec and Exp indicate the number of agreements between the TissueInfo predictions and the literature search for tissue specificity
and tissue expression, respectively. See text for the construction of this test set and at http://icb.mssm.edu/tissueinfo for the
evaluation criteria.

Tissue Correct Agree Wrong No hits Total

Spec Exp Spec Exp Spec Exp

Brain 22 44 17 0 18 13 5 62

Liver 9 28 15 0 6 2 0 30

Kidney 2 6 2 0 5 3 3 11

Pancreas 4 7 2 0 4 3 2 12

Total 37 85 36 0 33 21 10 116

Percent total 32 73 31 0 28 18 9 100

Percent without no hits 35 80 34 0 31 20 100

Figure 2. Reliability of predictions. A summary of the number of times the ‘correct’ or ‘agree’ tissue specificity or tissue expression is found when predictions are
compared to SWISS-PROT and the literature. First line, accuracy of specificity prediction. Second line, accuracy of expression prediction. Each column represents
a protein, an X indicates an incorrect prediction and a period represents a ‘correct’ or ‘agree’ prediction. (See text for evaluation details.) Third and following lines,
adjusted number of hits, i.e. number of hits for which information is available in TissueInfo. The adjusted number of hits is given reading downwards at every point.
Predictions are sorted according to increasing adjusted hit number.



e102 Nucleic Acids Research, 2001, Vol. 29, No. 21 PAGE 6 OF 8

close homologs. Therefore, ESTs for several closely homologous
genes can contribute to the calculated tissue distribution of the
query sequence and cause errors. The finding of Vasmatzis
et al. (20) that some supposedly prostate-specific genes were
found expressed in other libraries could be a consequence of
the close homolog problem.

Tissue-dependent splice forms of the same gene, used as
independent query sequences, are likely to result in the same
tissue information prediction, unless ESTs can be matched to
the sequence in the regions that are spliced out of some
variants. Because this is unlikely, we do not expect TissueInfo
to differentiate very well between splice forms.

TissueInfo belongs to the category of knowledge-based
prediction methods and exhibits the usual problems associated
with this class of methods. In practical terms, the most important
problem is that some genes are expressed at low levels in any
tissue and therefore are not represented in dbEST. For these
genes, prediction records simply list no match. As the number
of normalized libraries grows, this problem will be alleviated
for some tissues, but other tissues or cell lines will be likely to
remain under-represented in dbEST (for example, human taste
buds).

TissueInfo can complement curated databases. In the process
of our evaluation, we found SWISS-PROT to be misleading,
inaccurate or inconsistent with the literature in its annotation of
22% of the proteins considered. (Details for these 25 cases are
provided at http://icb.mssm.edu/tissueinfo.) Given this
substantial number of curation issues and considering that
SWISS-PROT represents tissue information as a text field
difficult to parse automatically, TissueInfo appears to be a
useful complement to the information that can be extracted
from today’s curated databases.

Referring to the primary literature was sometimes necessary
to provide an objective benchmark for TissueInfo. This source
of information also has drawbacks. (i) Tissue information
about one gene is scattered in several papers. These articles are
difficult to identify. Genes are often named inconsistently from
one article to another and the gene accession codes are of
limited use in identifying articles. Retrieval of the information
in the primary literature is therefore a manual task that does not
scale well for large numbers of genes. (ii) Experimental
evidence for tissue expression profiles is provided by northern
blot analysis or dot blots. Each article usually reports blots
made with a collection of about 10 tissues. This set represents
only a fraction of the tissues in which the gene is potentially
expressed. The primary literature is therefore an incomplete
source of information about tissue expression and specificity.

Large-scale analysis of tissue information. TissueInfo can be
used to identify the tissue expression profiles and specificities
of thousands of genes or ESTs at once. Analysis of such
amounts of data is greatly facilitated by the careful organization of
the calculated records. Thus, we store all calculation results in
a tabular format. Each query sequence is represented as a row
in the output and the results of TissueInfo calculations
requested by the user are stored in columns. Table 3 shows the
records for three proteins and seven calculations.

We have used the SGI Mineset data mining environment to
analyze these records. Operations such as filtering can be
performed interactively to select genes that are expressed in a
combination of tissues, are specific to others, are expressed in
plants, etc. The record format is also ideally suited for transfer
to a relational database and the selection of subsets of genes
using SQL queries.

Finally, TissueInfo can also produce textual reports that
output the original dbEST information so that any user who
wishes to investigate small sets of genes selected during the
data mining process can follow up on them, verify the accuracy
of TissueInfo records or investigate ‘null’ hits. The reports
therefore link tissue expression calculations to the raw data.

Relation to other tissue information resources. TissueInfo is
unique in its ability to process any query sequence to identify
its tissue expression profile, if it finds any matching ESTs in
dbEST. We also introduce the notion of tissue information
calculations and evaluate the accuracy of our calculations.
Several other groups have developed resources designed to
organize expression data and enhance the information content
of the raw data provided by dbEST.

The TIGR Gene Indices (25) are assemblies of ESTs (and
annotated genes from GenBank) into clusters called Tentative
Consensus sequences (TCs). Each TC references ESTs used
for its construction together with the raw tissue data provided
by dbEST. This makes possible query of the TIGR Gene
Indices to extract TCs found to be expressed in a given tissue.
STACK (26,27) provides another collection of EST assemblies,
which can be queried with a tissue hierarchy (similar but less
extensive than the one offered in TissueInfo). The Unigene
system (2) also provides assemblies (but not consensus
sequences) that include both gene and EST sequences, and
uses the information from the ESTs to determine the tissues in
which that gene is expressed. EST library names are not
curated. BodyMap (12) takes a different approach. All the
BodyMap data are locally produced, from non-normalized
libraries, so that the abundance of clones from each library are
representative of the abundance of the expressed mRNA

Table 3. Sample records for three proteins

Seven calculations have been performed on each protein. Details of the algorithms behind these calculations are described in Table 1. Note that the third protein
has no hit in dbEST.

AC No. of hits specificTo(hypothalamus) specificTo(brain) specificTo(muscle) specificTo(liver) mostExpressedIn tissueSpecific

P1223 12 TRUE TRUE FALSE FALSE hypothalamus TRUE

P3483 50 FALSE FALSE FALSE FALSE kidney FALSE

P9273 0 FALSE FALSE FALSE FALSE FALSE
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transcripts (28). This makes BodyMap ideally suited for quantita-
tive analysis, where differential expression in different tissues
or disease states can be detected by the variation in the
numbers of mRNAs (29). BodyMap therefore makes possible
quantitative analyses of expression profiles that are not possible
with dbEST (or consequently with TissueInfo), but is limited
to a somewhat smaller collection of ESTs (18 998 gene
sequences for human, 16 772 GS for mouse). BodyMap is also
the only resource that can specify tissues where genes are not
expressed.

TissueInfo is similar in concept to the Serial Analysis of
Gene Expression (SAGE) method (30). In contrast to SAGE,
which relies on tags of 9–12 bp from the 3′-UTR to uniquely
identify a gene, TissueInfo can use any part of the full-length
sequence of a gene or protein to determine its expression
profile. For instance, TissueInfo can identify the expression
profiles of proteins, as shown by SWISS-PROT, whereas
SAGE requires the sequence of the 3′-UTR of the gene. Using
full-length ESTs as tags helps lessen ambiguity problems
encountered with SAGE when one given tag matches several
genes. SAGE analysis is usually performed on non-normalized
libraries and therefore allows quantitative analysis.

Several problems with the data, identified in the current
work, include typographical errors, the presence of synonyms
and the need for Background Knowledge. These have not been
addressed by TIGR, which also does not curate raw tissue
information. It is therefore difficult to compare TissueInfo with
TIGR. STACK uses Background Knowledge to a more limited
extent than TissueInfo to enhance tissue information queries,
but tissue specificity cannot be determined. TIGR, STACK
and BodyMap allow the user to search the databases with their
own sequence, but if the query sequence is not an exact match
to any ‘contig’ in their databases (allowing for sequencing
error), it is impossible to make any tissue expression profile
predictions for that query sequence.

CONCLUSION

We have designed a computational approach to automate the
identification of tissue information. In contrast to previous
approaches, TissueInfo makes possible (i) the calculation of
this information for large numbers of genes, proteins or
expressed sequence tags, and (ii) analysis of the resulting data
to identify genes that exhibit specific expression patterns.

Evaluation of the accuracy of this identification method is
limited by the amount of experimentally verified information
directly available for computational comparisons. Today’s
databases rarely describe the tissue expression or tissue
specificity of genes. SWISS-PROT is an exception but was
found to reveal two major problems. First, the tissue specificity
information contained in SWISS-PROT is represented as text.
This complicates the automatic extraction of sets of proteins
experimentally shown to be specific to a given tissue. Second,
some entries were found to disagree with the primary literature
referenced by the SWISS-PROT entry. When compared to the
primary literature, TissueInfo correctly identifies the tissue
specificity of 69% of the genes in the test set, and 80% when
expression is considered (excluding genes with no matches in
dbEST). Accuracy can be raised to 76% (specificity) and 89%

(expression) at a coverage level of 80%. The TissueInfo
approach should therefore be most useful in performing the
following high-throughput tasks.

Selection of clones for cDNA microarrays

The selection of clones specific to a given tissue is the first step
in the design of custom microarray chips. Custom microarrays
can be cheaper to produce than general purpose arrays and
show a better signal-to-noise ratio. As illustrated by Rockett
et al. (31), the traditional selection of genes for a single, tissue-
focused microarray is a lengthy process. TissueInfo can be
applied routinely to filter collections of cDNA clones for a
given tissue.

Ab initio prediction of tissue information

Tissue-specific gene expression is controlled by regulatory
sequences. Many regulatory sequences are still unknown, but
should in principle be identifiable with ab initio methods (32).
Ab initio methods are required to decipher expression patterns
of genes with low expression. Development of such methods
has probably been hindered by the lack of training and test data
sets. We expect that TissueInfo can be used to generate such
data sets by grouping genes according to their expression
profiles and to foster the development of ab initio prediction
methods.

Gene discovery

TissueInfo can be integrated into gene discovery pipelines to
supplement them with the ability to calculate tissue expression
profiles and specificity for candidate genes. As shown in our
recent identification of the Sac sensory receptor gene candidate
(33), prediction of restricted tissue expression or other specific
expression profiles can contribute to the identification of a
gene candidate.

Genome-wide predictions

The performance of our algorithms and implementations
makes possible the calculation of tissue expression profiles for
whole genomes. This can produce a very valuable resource for
identification of tissue-specific gene candidates and can
complement experimental approaches recently developed for
such a purpose (34). Similarly, when quantities of tissue
information at the scale of a genome become available, statistical
estimates of the gene expression of tissues can be obtained.
Analysis of these data should produce important insights into
the mechanisms of cell differentiation and tissue development.

ACKNOWLEDGEMENTS

We thank Harel Weinstein for reviewing the manuscript and
continuous support during the development of this work. Our
special thanks go to Marianna Max and Charles Mobbs for
introducing us to the biological problems that motivated this
work. We thank Dr Sherman Kupfer for his help with the
physiological aspects of Tissue Hierarchy and TogetherSoft
for free academic access to their Together software design and
development platform. This work was supported by the Institute
for Computational Biomedicine of the Mount Sinai School of
Medicine.



e102 Nucleic Acids Research, 2001, Vol. 29, No. 21 PAGE 8 OF 8

REFERENCES

1 Wolfsberg,T.G. and Landsman,D. (1997) A comparison of expressed
sequence tags (ESTs) to human genomic sequences. Nucleic Acids Res.,
25, 1626–1632.

2. Schuler,G.D. (1997) Pieces of the puzzle: expressed sequence tags and the
catalog of human genes. J. Mol. Med., 75, 694–698.

3. Marra,M.A., Hillier,L. and Waterston,R.H. (1998) Expressed sequence
tags—ESTablishing bridges between genomes. Trends Genet., 14, 4–7.

4. Putney,S.D., Herlihy,W.C. and Schimmel,P. (1983) A new troponin T and
cDNA clones for 13 different muscle proteins, found by shotgun
sequencing. Nature, 302, 718–721.

5. Boguski,M.S., Lowe,T.M. and Tolstoshev,C.M. (1993) dbEST—database
for ‘expressed sequence tags’. Nature Genet., 4, 332–333.

6. Hillier,L.D., Lennon,G., Becker,M., Bonaldo,M.F., Chiapelli,B.,
Chissoe,S., Dietrich,N., DuBuque,T., Favello,A., Gish,W., Hawkins,M.,
Hultman,M., Kucaba,T., Lacy,M., Le,M., Le,N., Mardis,E., Moore,B.,
Morris,M., Parsons,J., Prange,C., Rifkin,L., Rohlfing,T., Schellenberg,K.,
Marra,M. et al. (1996) Generation and analysis of 280,000 human
expressed sequence tags. Genome Res., 6, 807–828.

7. Marra,M., Hillier,L., Kucaba,T., Allen,M., Barstead,R., Beck,C.,
Blistain,A., Bonaldo,M., Bowers,Y., Bowles,L., Cardenas,M.,
Chamberlain,A., Chappell,J., Clifton,S., Favello,A., Geisel,S.,
Gibbons,M., Harvey,N., Hill,F., Jackson,Y., Kohn,S., Lennon,G.,
Mardis,E., Martin,J., Waterston,R. et al. (1999) An encyclopedia of
mouse genes. Nature Genet., 21, 191–194.

8. Parsons,J.D. and Rodriguez-Tomé,P. (2000) JESAM: CORBA software
components to create and publish EST alignments and clusters.
Bioinformatics, 16, 313–325.

9. Gerhold,D. and Caskey,C.T. (1996) It’s the genes! EST access to human
genome content. Bioessays, 18, 973–981.

10. Schultz,J., Doerks,T., Ponting,C.P., Copley,R.R. and Bork,P. (2000)
More than 1,000 putative new human signalling proteins revealed by EST
data mining. Nature Genet., 25, 201–204.

11. Gill,R.W. and Sanseau,P. (2000) Rapid in silico cloning of genes using
expressed sequence tags (ESTs). Biotechnol. Annu. Rev., 5, 25–44.

12. Okubo,K. and Matsubara,K. (1997) Complementary DNA sequence
(EST) collections and the expression information of the human genome.
FEBS Lett., 403, 225–229.

13. Colantuoni,C., Purcell,A.E., Bouton,C.M. and Pevsner,J. (2000) High
throughput analysis of gene expression in the human brain. J. Neurosci.
Res., 59, 1–10.

14. Carulli,J.P., Artinger,M., Swain,P.M., Root,C.D., Chee,L., Tulig,C.,
Guerin,J., Osborne,M., Stein,G., Lian,J. and Lomedico,P.T. (1998) High
throughput analysis of differential gene expression. J. Cell. Biochem.
Suppl., 31, 286–296.

15. Khan,J., Saal,L.H., Bittner,M.L., Chen,Y., Trent,J.M. and Meltzer,P.S.
(1999) Expression profiling in cancer using cDNA microarrays.
Electrophoresis, 20, 223–229.

16. Bonaldo,M.F., Lennon,G. and Soares,M.B. (1996) Normalization and
subtraction: two approaches to facilitate gene discovery. Genome Res., 6,
791–806.

17. Soares,M.B., Bonaldo,M.F., Jelene,P., Su,L., Lawton,L. and
Efstratiadis,A. (1994) Construction and characterization of a normalized
cDNA library. Proc. Natl Acad. Sci. USA, 91, 9228–9232.

18. Suzuki,Y., Yoshitomo-Nakagawa,K., Maruyama,K., Suyama,A. and
Sugano,S. (1997) Construction and characterization of a full length-
enriched and a 5′-end-enriched cDNA library. Gene, 200, 149–156.

19. Bains,W. (1996) Virtually sequenced: the next genomic generation.
Nature Biotechnol., 14, 711–713.

20. Vasmatzis,G., Essand,M., Brinkmann,U., Lee,B. and Pastan,I. (1998)
Discovery of three genes specifically expressed in human prostate by
expressed sequence tag database analysis. Proc. Natl Acad. Sci. USA, 95,
300–304.

21. Bairoch,A. and Apweiler,R. (2000) The SWISS-PROT protein sequence
database and its supplement TrEMBL in 2000. Nucleic Acids Res., 28, 45–48.

22. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J. (1990)
Basic local alignment search tool. J. Mol. Biol., 215, 403–410.

23. Zhang,Z., Schwartz,S., Wagner,L. and Miller,W. (2000) A greedy
algorithm for aligning DNA sequences. J. Comput. Biol., 7, 203–214.

24. Kargul,G., Dudekula,D., Qian,Y., Lim,M., Jaradat,S., Tanaka,T.,
Carter,M. and Ko,M. (2001) Verification and initial annotation of the NIA
mouse 15K cDNA clone set. Nature Genet., 28, 17–18.

25. Quackenbush,J., Cho,J., Lee,D., Liang,F., Holt,I., Karamycheva,S.,
Parvizi,B., Pertea,G., Sultana,R. and White,J. (2001) The TIGR Gene
Indices: analysis of gene transcript sequences in highly sampled
eukaryotic species. Nucleic Acids Res., 29, 159–164.

26. Christoffels,A., van Gelder,A., Greyling,G., Miller,R., Hide,T. and
Hide,W. (2001) STACK: Sequence Tag Alignment and Consensus
Knowledgebase. Nucleic Acids Res., 29, 234–238.

27. Miller,R.T., Christoffels,A.G., Gopalakrishnan,C., Burke,J., Ptitsyn,A.A.,
Broveak,T.R. and Hide,W.A. (1999) A comprehensive approach to
clustering of expressed human gene sequence: the sequence tag alignment
and consensus knowledge base. Genome Res., 9, 1143–1155.

28. Okubo,K., Hori,N., Matoba,R., Niiyama,T., Fukushima,A., Kojima,Y.
and Matsubara,K. (1992) Large scale cDNA sequencing for analysis of
quantitative and qualitative aspects of gene expression. Nature Genet., 2,
173–179.

29. Audic,S. and Claverie,J.M. (1997) The significance of digital gene
expression profiles. Genome Res., 7, 986–995.

30. Velculescu,V.E., Zhang,L., Vogelstein,B. and Kinzler,K.W. (1995) Serial
analysis of gene expression. Science, 270, 484–487.

31. Rockett,J.C., Luft,J.C., Garges,J.B., Krawetz,S.A., Hughes,M.R.,
Kirn,K.H., Oudes,A.J. and Dix,D.J. (2001) Development of a 950-gene
DNA array for examining gene expression patterns in mouse testis.
Genome Biol., 2.

32. Editorial. (2001) The human genome: what next? Nature Neurosci., 4,
217.

33. Max,M., Shanker,Y.G., Huang,L., Rong,M., Liu,Z., Campagne,F.,
Weinstein,H., Damak,S. and Margolskee,R.F. (2001) Tas1r3, encoding a
new candidate taste receptor, is allelic to the sweet responsiveness locus
Sac. Nature Genet., 28, 58–63.

34. Shoemaker,D.D., Schadt,E.E., Armour,C.D., He,Y.D., Garrett-Engele,P.,
McDonagh,P.D., Loerch,P.M., Leonardson,A., Lum,P.Y., Cavet,G.,
Wu,L.F., Altschuler,S.J., Edwards,S., King,J., Tsang,J.S., Schimmack,G.,
Schelter,J.M., Koch,J., Ziman,M., Marton,M.J., Li,B., Cundiff,P.,
Ward,T., Castle,J., Krolewski,M., Meyer,M.R., Mao,M., Burchard,J.,
Kidd,M.J., Dai,H., Phillips,J.W., Linsley,P.S., Stoughton,R., Scherer,S.
and Boguski,M.S. (2001) Experimental annotation of the human genome
using microarray technology. Nature, 409, 922–927.


