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Abstract

Dichotomization of continuous variables to discriminate a dichotomous outcome is often useful in 

statistical applications. If a true threshold for a continuous variable exists, the challenge is 

identifying it. This paper examines common methods for dichotomization to identify which ones 

recover a true threshold. We provide mathematical and numeric proofs demonstrating that 

maximizing the odds ratio, Youden’s statistic, Gini Index, chi-square statistic, relative risk and 

kappa statistic all theoretically recover a true threshold. A simulation study evaluating the ability 

of these statistics to recover a threshold when sampling from a population indicates that 

maximizing the chi-square statistic and Gini Index have the smallest bias and variability when the 

probability of being larger than the threshold is small while maximizing Kappa or Youden’s 

statistics is best when this probability is larger. Maximizing odds ratio is the most variable and 

biased of the methods.

2 Introduction

Dichotomization of continuous variables is frequently used in medical applications to 

stratify patients according to risk, make determinations about the necessity of additional 

diagnostic testing, and to allocate physician resources according to patient need (Perkins and 

Schisterman, 2006; MacCallum et al., 2002; Kannel and McGee, 1979). For example, 

elevated low-density lipoprotein cholesterol (LDL-C) is a known cardiovascular disease risk 

factor. Determining a risk-benefit threshold LDL-C level of ≥ 190 mg/dL was instrumental 
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in the development of guidelines for initiating statin therapy for primary prevention of 

cardiovascular disease (Wilson et al., 1998; Ray et al., 2014). Additionally, in statistical 

modeling, dichotomizing continuous variables often results in a simpler interpretation, and 

some statistical models, such as decision tree methods, require that all variables be 

dichotomized prior to or during implementation (Ruczinski et al., 2003; Contal and 

O’Quigley, 1999; Mazumdar et al., 2003; Royston et al., 2000; Breiman et al., 1984; 

Hansen, 2000).

If a true threshold exists that discriminates between two groups, the challenge is identifying 

it. Many methods are available for dichotomizing continuous predictors to discriminate 

between two groups. Some of these methods are based on expert opinion and 

epidemiological studies, such as with cholesterol level (Wilson et al., 1998; Goodman et al., 

1988; Goodman, 1991). There are also many data-driven methods that select a threshold 

based on maximizing or minimizing a specific statistic. For example, the threshold could be 

chosen such that it maximizes the odds ratio between dichotomized predictor and the 

dichotomous outcome.

Although the primary purpose of all methods is to find a dichotomy that effectively 

discriminates between two groups, because the dichotomy is defined using a threshold, the 

problem reduces to effectively finding that threshold. This paper examines which of the most 

commonly used methods for dichotomization effectively recover a “true” threshold given 

that one exists. Section 2 of this paper defines the statistics to be maximized for 

dichotomization in terms of 2×2 contingency tables. Additionally, in this section, 

mathematical and numerical proofs regarding which of the methods recover the true 

threshold are also provided. Section 3 describes a simulation study that evaluates the impacts 

of location of the threshold, sample size, and strength of association between a continuous 

predictor and a dichotomous outcome on the ability to recover the true threshold to provide 

guidance on which statistics are most effective and when these statistics are likely to fail. 

Section 4 presents the results of the simulation study. Section 5 provides a discussion of the 

implication of the results and offers recommendations regarding the appropriateness of a 

method of dichotomization for different scenarios.

3 Criteria for Dichotomization

Methods that can be used for dichotomizing a continuous predictor to discriminate between 

two groups can be separated into three main categories. Methods in the first category are 

clinically motivated using prior knowledge or experience (Naggara et al., 2011; Schäfer, 

1989; Vermont et al., 1991; Gallop et al., 2003; Bortheiry et al., 1994; Hoffman et al., 2000; 

Alvarez-Garcıa et al., 2003) and are not supported by statistical theory. A second category of 

methods used for dichotomization is based on the prevalence of a condition in a population, 

such as observed prevalence which chooses a threshold, t, closest to the observed prevalence 

(i.e. t
maxt‖t − p‖  where p is the prevalence) (Manel et al., 2001; Kelly et al., 2008). Although 

methods based on prevalence are data-driven, the observed prevalence in the sample is 

dependent on the selected sample and may not reflect the population level disease 

prevalence. For example, in a 1:1 case-control scenario, the observed prevalence is 
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determined by the study design rather than the natural prevalence in the population, in which 

case these methods will fail (Lalkhen and McCluskey, 2008; Kelly et al., 2008). Thus, 

methods based on prevalence, such as mean prevalence, matching prevalence, and observed 

prevalence, are not considered in this paper. Methods in the third category, the main focus of 

this paper, are data driven algorithms where the choice of threshold is selected by 

maximizing or minimizing a statistic, specifically Youden’s statistic (Youden, 1950), odds 

ratio (Kraemer, 1992), ROC curve (Greiner et al., 2000; Boehning et al., 2011; Greiner, 

1995), relative risk (Greiner et al., 2000), Gini Index (Strobl et al., 2007), sensitivity and 

specificity (Lopez-Raton et al., 2014) among others (Aoki et al., 1997; Vermont et al., 1991; 

Hand, 1987; Breiman et al., 1984). Relative risk is only considered in the cohort study 

design where the sample is designed to mimic disease distribution in the population.

3.1 Numerical evaluation of the “best” threshold

This section provides an empirical examination of which of the common methods of 

dichotomization correctly identifies the true threshold, T. For the numerical investigation, 

the threshold, T, is specified such that for a continuous random variable X and a binary 

random variable Y, P(Y = 1|X ≥ T) > P(Y = 1|X < T). We set P(X > T) = 0.05, P(Y = 1) = 

0.1, and P(Y = 1|X > t) = 0.4. Then X is dichotomized for varying thresholds in a specified 

interval. For simplicity, we let X ~ N(0, 1) and consider the range of X from [−4, 4] in the 

increments of 0.001 with the true threshold included in the interval. Each value in [−4, 4] is 

considered as a possible threshold for dichotomizing X to discriminate values of Y. For each 

possible threshold, tx, there is a corresponding 2×2 contingency table between the 

dichotomized random variable X and Y with cell probabilities a, b, c, d as shown in Table 1. 

All statistics considered in this paper are defined in Table 2 using a, b, c, d and P(Y = 1). 

Using the 2×2 table, the statistics defined in Table 2 are calculated using the probabilities 

depicted in Figure 1. The cell probabilities for tx < T, tx = T, and tx > T are shown below.

1. tx < T

a = P(X ≥ T)P(Y = 1| X ≥ T) + (P(X < T) − P(X < tx))P(Y = 1| X < T)

b = P(X ≥ tx) − (P(X ≥ T)P(Y = 1| X ≥ T) − (P(X < T) − P(X < tx))P(Y = 1
| X < T))

(1)

c = (P(X < tx))P(Y = 1| X < T)

d = (P(X < tx)) − (P(X < tx))P(Y = 1| X < T)
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2. tx = T,

a = P(X ≥ T)P(Y = 1| X ≥ T)

b = P(X ≥ T) − P(X ≥ T)P(Y = 1| X ≥ T) (2)

c = P(X < T)P(Y = 1| X < T)

d = P(X < T) − P(X < T)P(Y = 1| X < T)

3. tx > T

a = P(X ≥ tx)P(Y = 1| X ≥ T)

b = P(X ≥ tx) − P(X ≥ tx)P(Y = 1| X ≥ T) (3)

c = P(X < T)P(Y = 1| X < T) + (P(X < tx) − P(X < T))P(Y = 1| X ≥ T)

d = (P(X < tx) − (P(X < T)P(Y = 1| X < T) − (P(X < tx) − P(X < T))P(Y = 1| X ≥ T))

The numerical values for the statistics in Table 2 calculated over the interval [−4, 4] are 

shown in Figure S1 in the Supplemental. Methods for which the maximum absolute value 

for the statistic occurs at the true threshold are considered successful. There are six statistics 

for which the maximum value occurs at T, namely chi-square, kappa, Youden’s, Gini Index, 

relative risk and odds ratio.

3.2 Theoretical confirmation

Based on the numerical evidence presented in section 2.1, the following theorem is 

conjectured for functions in the first 2 rows of Table 2 which include the six statistics for 

which the maximum occurs at the true threshold.

Theorem 1—For a continuous random variable X and dichotomous variable Y, given a 

prevalence of Y (P(Y = 1)), and a threshold T such that, P(Y = 1|X ≥ T) > P(Y = 1|X < T), 

the inequality g(t) < g(T) for all t ≠ T holds. Here g(t) is any one of the functions shown in 

the first two rows of Table 2. That is, if there exists a true threshold T, the maximum odds 

ratio, Youden’s statistic, chi-square statistic, Gini Index, kappa statistic, or relative risk will 

occur at T.
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Proof: We first consider the case where P(X > tx) > P(X ≥ T).

Consider the case where multiplying both sides of the condition P(Y = 1|X ≥ T) > P(Y = 1|X 
< T) by P(tx < X < T) yields,

P(tx < X < T)P(Y = 1| X ≥ T) > P(tx < X < T)P(Y = 1| X < T) .

Replacing P(tx < X < T) on the LHS with P(tx > X) − P(X > T) and adding P(X > T)P(Y = 1|

X ≥ T) to both sides yields,

P(tx > X)P(Y = 1| X ≥ T) > P(tx < X < T)P(Y = 1| X < T) + P(X > T)P(Y = 1| X ≥ T) .

Subtracting P(X > T)P(Y = 1|X ≥ T)2 + P(tx < X < T)P(Y = 1|X ≥ T)P(Y = 1|X < T) from 

both sides and factoring yields,

P(Y = 1| X ≥ T)(P(tx > X) − P(X > T)P(Y = 1| X ≥ T) − P(tx < X < T)P(Y = 1| X < T)) >
(1 − P(Y = 1| X ≥ T))(P(X > T)P(Y = 1| X ≥ T) + P(tx < X < T)P(Y = 1| X < T)) .

Dividing both sides by (P(tx > X) − P(X > T)P(Y = 1|X ≥ T) − P(tx < X < T)P(Y = 1|X < T)) 

and (1 − P(Y = 1|X ≥ T)) we have,

P(Y = 1| X ≥ T)
(1 − P(Y = 1| X ≥ T)) >

(P(X > T)P(Y = 1| X ≥ T) + P(tx < X < T)P(Y = 1| X < T))
(P(tx > X) − P(X > T)P(Y = 1| X ≥ T) − P(tx < X < T)P(Y = 1| X < T)) .

Multiplying both sides by (1 − P(Y = 1|X < T)) yields,

P(Y = 1| X ≥ T)(1 − P(Y = 1| X < T))
(1 − P(Y = 1| X ≥ T))

>
(P(X > T)P(Y = 1| X ≥ T) + P(tx < X < T)P(Y = 1| X < T))(1 − P(Y = 1| X < T))

(P(tx > X) − P(X > T)P(Y = 1| X ≥ T) − P(tx < X < T)P(Y = 1| X < T)) .

Finally, dividing both sides by P(Y = 1|X < T) yields,

P(Y = 1| X ≥ T)(1 − P(Y = 1| X < T))
(1 − P(Y = 1| X ≥ T))P(Y = 1| X < T)

>
(P(X > T)P(Y = 1| X ≥ T) + P(tx < X < T)P(Y = 1| X < T))(1 − P(Y = 1| X < T))

(P(tx > X) − P(X > T)P(Y = 1| X ≥ T) − P(tx < X < T)P(Y = 1| X < T))P(Y = 1| X < T)

which means 
aTdT
bTcT

>
atx

dtx
btx

ctx
 and ORtx = T > ORtx > T .

Now consider the case where multiplying both sides of the condition P(Y = 1|X ≥ T) > P(Y 
= 1|X < T) by P(X > tx) < P(X > T) yields the equation,
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(P(X > tx) − P(X ≥ T))·P(Y = 1| X ≥ T) > (P(X < T) − P(X < tx))P(Y = 1| X < T)

Distributing P(Y = 1|X ≥ T) on the LHS and adding P(X ≥ T)P(Y = 1|X ≥ T) to both sides 

yields,

P(X > tx)·P(Y = 1| X ≥ T) > P(X ≥ T)P(Y = 1| X ≥ T) + (P(X < T) − P(X < tx))P(Y = 1| X < T) .

Next, subtracting P(Y = 1|X ≥ T)(P(X ≥ T)P(Y = 1|X ≥ T)+(P(X < T)−P(X < tx))P(Y = 1|X 
< T)) from both sides and dividing by (1 − P(Y = 1|X ≥ T)) and (P(X ≥ T)P(Y = 1|X ≥ T) + 

(P(X < T) − P(X < tx)) yields,

P(Y = 1| X ≥ T)
(1 − P(Y = 1| X ≥ T)) >

(P(X ≥ T)P(Y = 1| X ≥ T) + (P(X < T) − P(X < tx))P(Y = 1| X < T))
(P(X > tx) − P(X ≥ T)P(Y = 1| X ≥ T) + (P(X < T) − P(X < tx))P(Y = 1| X < T)) .

Multiplying both sides by (1 − P(Y = 1| X < T))
P(Y = 1| X < T)  we have,

P(Y = 1| X ≥ T)·(1 − P(Y = 1| X < T))
(1 − P(Y = 1| X ≥ T))·P(Y = 1| X < T)

>
(P(X ≥ T)P(Y = 1| X ≥ T) + (P(X < T) − P(X < tx))P(Y = 1| X < T))·(1 − P(Y = 1| X < T))

(P(X > tx) − P(X ≥ T)P(Y = 1| X ≥ T) + (P(X < T) − P(X < tx))P(Y = 1| X < T))·(P(Y = 1| X < T)) .

Thus ORtx=T > ORtx<T. If the expression for ORtx=T is greater than the expression for 

ORtx<T and the expression for ORtx=T is greater than the expression for ORtx>T then it 

shows that the odds ratio is the highest when tx = T.

The proofs of this theorem for the other five statistics are provided in the Appendix here.

4 Simulations Study

In Section 2, six statistics that are maximized at the true threshold T, were identified. 

However, if a sample is drawn from a population, it is not clear which of these statistics will 

most accurately identify the true threshold. To evaluate the ability of the six statistics to 

recover the true threshold, a simulation study was performed. Sample data sets were 

generated by first generating a continuous normal random variable X ~ N(0, 1). A binary 

variable Y was then generated according to the relationship defined in Equation 4.

P(Y = 1) = P(X ≥ T)P(Y = 1| X ≥ T) + P(X < T)P(Y = 1| X < T) (4)

where P(Y = 1|X > T) > P(Y = 1|X < T) and T is the true threshold for dichotomizing X.

Simulations were performed under various scenarios arising from combinations of the 

parameters: the number of observations in the sample, N = 250, 500, or 1000, the overall 

prevalence of Y defined by P(Y = 1), the choice of threshold T for X, strength of association 
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between predictor X and response Y defined by an odds ratio, and case-control or cohort 

study designs. The probabilities P(Y = 1|X ≥ T) and P(Y = 1|X < T) were calculated based 

on the choice of T, the odds ratio, and the prevalence of Y. For cohort study scenarios, we 

generated N values of X and Y. For the 1:1 case:control scenarios, we generated 20,000 X 

and Y values and selected N
2  cases and N

2  controls. All simulation scenarios are described in 

Table 3. The true parameter values and simulation scenario for each method for n = 250 can 

be found in Supplemental Table S1.

For each simulation scenario and sample size, we generated 500 datasets. The choice of 

threshold for each method was estimated by calculating the probabilities of a,b,c, and d as 

described in Table 1 for all possible thresholds for X. These probabilities were converted 

into cell counts by multiplying by the sample size N. We then calculated the associated odds 

ratio, kappa statistic, chi-square statistic, Youden’s statistic, and Gini Index for the 2×2 table 

corresponding to each unique threshold for X in the observed data. Any threshold for X that 

resulted in a cell count of less than 1 was eliminated from consideration in order to minimize 

the influence of extreme values. Across simulation scenarios less than 6% of observations on 

average were eliminated from consideration in the cohort setting and less than 2% in the 

case-control setting. The thresholds that corresponded to the maximum value obtained for 

each statistic were selected as the “best” thresholds. Assessment of how well the maximum 

of each statistic recovered the true threshold, T, was determined by examining the mean 

squared error and the bias squared for the estimated threshold across all simulated datasets 

for all scenarios. All simulations were conducted in R v. 3.2.1 (R Core Team)

5 Simulation Results

Figure 2 shows the results from the simulation study for the case-control study design 

scenario. Each graph shows the mean squared error (MSE) by bias squared for all statistics 

described in Table 3 for the different combinations of P(X ≥ T) and strength of association 

with Y. The columns in Figure 2 show the impact of increasing values for P(X ≥ T) and the 

rows show the impact of increasing strength of association with Y. Three different sample 

sizes, 250, 500, and 1000, are represented by the different shapes, square, triangle, and 

circle, respectively and each statistic is represented by a different color. As the strength of 

association between X and Y increases (OR=1.5 to OR=6), all statistics exhibit smaller MSE 

and bias squared for the estimated threshold indicating that the estimate threshold based on 

each statistic becomes less variable and biased. As the probability of observing values of X 
above the true threshold increases, a majority of the methods show a reduction in bias 

squared and MSE of the estimated threshold as P(X ≥ T) increases from 0.05 to 0.5. The 

main exception is the odds ratio which does show a decrease in bias for weaker strength of 

association (OR = 1.5, Figure 2 a–c), but which has worse bias as P(X ≥ T) increases when 

the strength of association with Y is large (Figure 2 g–i). Additionally, the odds ratio also 

exhibits an increase in MSE as P(X ≥ T) increases with a stronger association between X 
and Y (Figure 2 d–i). As sample size increases, most of the methods show a reduction in 

MSE and bias2. The only exception occurs when the strength of association is the weakest 

and P(X ≥ T) is the smallest (Figure 2a). Figure 3 shows the results for P(X ≥ T)= 0.2 and 

P(X ≥ T) = 0.5 excluding the odds ratio as it is the least effective at recovering the true 
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threshold. When the strength of association is large and P(X ≥ T) is > 0.2, the chi-square 

statistics, Youden’s statistic, Gini Index, and kappa statistic all exhibit minimal MSE and 

bias2 (Figure 3 c–f).

Among the 5 statistics, the odds ratio statistic exhibits the largest MSE and often the largest 

bias2 across all simulation scenarios (Figure 2 a–i). The bias2 in the estimated threshold is 

largest for the odds ratio when the strength of association between X and Y is large (OR=6) 

and P(X ≥ T) ≥ 0.2 (Figure 2h and i). The Gini Index and chi-square statistic perform 

similarly to one another for all simulation scenarios. In general, both statistics perform well 

in comparison to the three other statistics when P(X ≥ T)=0.05 irrespective of the strength of 

association (OR=1.5, 3, or 6) with the exception of the weakest strength of association 

between X and Y (OR=1.5) where the kappa and Youden’s statistics perform slightly better 

(Figure 2a). The kappa and Youden’s statistics also perform similarly to one another across 

all simulation scenarios and their performance is better than chi-square and Gini Index when 

P(X ≥ T)=0.2 or 0.5 The chi-square statistic, Gini Index, Youden’s statistic, and kappa 

statistic all have a squared bias and MSE very near 0 when P(X ≥ T) ≥ 0.2 and the strength 

of association between X and Y is large (OR> 3).

We also investigated the direction of the bias. Across most of the simulation scenarios, the 

chi-square statistic, Gini Index, kappa statistic, and Youden’s statistic are negatively biased. 

The only exception is Youden’s statistic which has a small positive bias when P(X ≥ T) = 0.5 

and OR = 6.0. Bias is more variable for the odds ratio. The odds ratio is negatively biased at 

all sample sizes when the strength of association is small (OR = 1.5). Odds ratio also tends 

to exhibit negative bias when P(X ≥ T)=0.5, although this is inconsistent for n = 1000 as 

strength of association increases. Once P(X ≥ T) is at least 0.2, all methods exhibit 

negligible bias except for the odds ratio, which has a bias that varies between −0.94 and 

0.82.

Simulation scenarios assuming a cohort study design produced very similar results to the 

case-control scenarios. The relative risk, rather than the odds ratio, was evaluated in the 

cohort scenarios. Similar to the case-control scenario, the chi-square statistic, Youden’s 

statistics, Gini Index, and kappa statistic all exhibited a reduction in MSE and bias for the 

estimated threshold as P(X ≥ T) increase, strength of association between X and Y increase, 

and with increasing sample size (Supplemental Figures S2 and S3). Similar to what was 

observed for the odds ratio in the case-control scenario, the relative risk tended to have 

larger MSE and bias relative to the other four methods with the largest differences observed 

as strength of association and P(X ≥ T) increased. Also similar to the results in the case-

control scenario, the chi-square statistic, Gini Index, Youden’s statistic, and kappa statistic 

all have a bias and MSE very near 0 when P(X ≥ T) ≥ 0.2 and the strength of association 

between X and Y is large (OR≥ 3) (Figure S3 c–f). One notable difference between the case-

control and cohort scenarios is the performance of the kappa statistic. In the cohort scenarios 

the kappa statistic selects an estimated threshold with similar or smaller MSE relative to the 

other four statistics in all scenarios.
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5.1 Summary of Results

The simulation study examined the performance of the odds ratio, Youden’s statistic, chi-

square statistic, Gini Index, relative risk and kappa statistic to recover a true threshold, T, for 

continuous predictor X to discriminate a binary outcome Y. All of these statistics improve 

on average at finding the true threshold as sample size increases, strength of association 

between X and Y increases, and as P(X ≥ T) increases. The statistic with the most variability 

in all scenarios is the odds ratio. When the strength of association between X and Y is small, 

all methods exhibit a larger MSE and bias relative to the truth. When the population odds 

ratio increases to OR≥ 3, Youden’s statistic and kappa statistic exhibit the lowest MSE and 

bias relative to the odds ratio, chi-square statistic, and Gini Index. Study design had little 

effect on the performance of the methods.

6 Conclusions

Continuous variables are often dichotomized in medical applications to discriminate disease 

status of a patient population and thereby assist in directing the treatment of a patient. For 

example, a continuous laboratory value might be dichotomized in order to stratify patients in 

to disease risk categories in order to make a determination about medication a patient should 

receive. Additionally, dichotomization of a continuous predictor might be utilized in 

statistical modeling to simplify interpretation.

Numerous methods have been described in the literature for dichotomizing a continuous 

variable to discriminate a binary outcome. In this paper, we provided numerical evidence 

followed by mathematical proofs that maximizing the odds ratio, relative risk, Youden’s 

statistic, chi-square statistic, Gini Index, and kappa statistic theoretically recover a true 

threshold for a continuous random variable X, when one exists. In the simulation study, 

these six statistics exhibited lower MSE and bias as sample size, strength of association, and 

P(X ≥ T) increased. The odds ratio and relative risk statistics were the most variable and 

exhibited a higher MSE and bias relative to the other methods. If the event is rare (i.e P(X ≥ 

T)=0.05), chi-square statistic and Gini Index have the smallest MSE and Bias regardless of 

strength of association (OR=1.5, 3, or 6). But when P(X ≥ T) > 0.2, then kappa and 

Youden’s statistic has the smallest MSE and bias. Once there is both a large strength of 

association (OR=3 or 6) and a high probability for the event (P(X ≥ T)=0.2 or 0.5), all four 

are similar. It is our recommendation that odds ratio and relative risk should not be used as 

they provide the least optimal results and most variable.

We are not discounting the use of other statistics to dichotomize variables. Depending on the 

situation and type of variable, statistics other than the ones discussed in this paper may be 

appropriate. Sometimes, it is necessary to use a clinically defined threshold, especially if the 

focus is on developing a diagnostic test with high sensitivity.

The mixture of binomials for Y defined in equation 4 describes a scenario where there is a 

steep sigmoidal relationship between a continuous predictor X and dichotomous outcome Y. 

If the relationship between X and Y is sigmoidal over a large range of X, such as in the case 

where the probability that Y is 1 follows a logistic relationship with X, the threshold selected 
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by these methods occurs in the most steeply increasing portion of the logistic curve and we 

would expect greater variability in the selection of a threshold.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Graphical representation of possible thresholds for X presented in equations 1–3.
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Figure 2. 
Simulation results showing mean-squared error (MSE) by Bias2 under the case-control study 

design for the estimated threshold obtained by maximizing the statistics: odds ratio, 

Youden’s, chi-square, Gini Index, and kappa. Rows represent strength of association 

between X and Y and columns represent the probability that the independent variable X is 

greater than the true threshold T.
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Figure 3. 
Simulation results showing mean-squared error (MSE) by Bias2 under the case-control study 

design for the estimated threshold obtained by maximizing the statistics: Youden’s, chi-

square, Gini Index, and kappa, excluding P(X ≥ T)=0.05. Rows represent strength of 

association between X and Y and columns represent the probability that the independent 

variable X is greater than the true threshold T.
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Table 1

Probabilities for a 2×2 contingency table for a binary outcome Y and a continuous variable X thresholded at T

Y = 1 Y = 0

X ≥ T
a = P(Y = 1, X > T)

= P(X ≤ t)P(Y = 1| X ≥ T)
b = P(Y = 0, X > T)

= P(X ≥ T) − P(X ≥ T)P(Y = 1| X ≥ T)

P(X ≥ T)

X < T
c = P(Y = 1, X < T)

= (1 − P(X ≥ T))P(Y = 1| X < T)
d = P(Y = 0, X < T)

= (1 − P(X ≥ T)) − (1 − P(X ≥ T))P(Y = 1| X < T)

P(X < T)

P(Y = 1) 1 − P(Y = 1)
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Table 2

Formulas for statistics for selecting a threshold for a continuous variable X to discriminate a binary outcome Y 
based on the probabilities in Table 1

Odds Ratio Youden’s Statistic Chi-Square

ad
bc

a
a + c + d

b + d − 1 (ad − bc)2
(a + b)(c + d)(b + d)(a + c)

Kappa Statistic Relative Risk* Gini Index

(a + d) − ((a + b)(a + c) + (c + d)(b + d))
1 − ((a + b)(a + c) + (c + d)(b + d))

a/(a + b)
c/(c + d) (Py(1 − Py)) − ( ab

a + b + cd
c + d )

Specificity Misclassification Sensitivity

d
b + d 1 − a + d

N
a

a + c

Accuracy Area Minimax Minimum ROC**

a
a + c · d

b + d

max (b, c)

(1 − a
a + c )

2
+ (1 − d

b + d )
2

*
For cohort study

**
Measures the distance from the ROC curve to the point (0,1)
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Table 3

Simulation Scenarios

OR P(X ≥ T) P(Y = 1) P(Y = 1|X ≥ T) Scenario

1.5

0.05
0.2 0.268 1

0.4 0.495 2

0.2
0.2 0.255 3

0.4 0.479 4

0.5
0.2 0.232 5

0.4 0.448 6

3

0.05
0.2 0.411 7

0.4 0.654 8

0.2
0.2 0.363 9

0.4 0.614 10

0.5
0.2 0.283 11

0.4 0.528 12

6

0.05
0.2 0.569 13

0.4 0.786 14

0.2
0.2 0.475 15

0.4 0.735 16

0.5
0.2 0.326 17

0.4 0.6 18
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