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Nanobioconjugates using carbon nanotubes (CNTs) are attractive and promising hybrid materials. Various biological applications
using the CNT nanobioconjugates, for example, drug delivery systems and nanobiosensors, have been proposed by many authors.
Scanning techniques such as scanning electron microscopy (SEM) and scanning probe microscopy (SPM) have advantages to
characterize the CNT nanobioconjugates under various conditions, for example, isolated conjugates, conjugates in thin films,
and conjugates in living cells. In this review article, almost 300 papers are categorized based on types of CNT applications, and
various scanning data are introduced to illuminate merits of scanning techniques.

1. Introduction

1.1. Nanobioconjugate Applications of Carbon Nanotubes.
Carbon nanotubes (CNTs) are promising nanomaterials that
have extraordinary structures and properties [1–7]. The
robust and flexible structures of CNTs may allow the fabrica-
tion of various nanoarchitectures. Furthermore, the unique
electrical and optical properties of CNTs may permit their
use in various applications, such as nanosensors.

One of the important technical milestones for CNT
nanotechnology is the separation of CNTs. CNTs synthe-
sized from amorphous carbon have various lengths, diame-
ters, and number of layers. The latter include single-walled
CNTs (SWNTs), double-walled CNTs (DWNTs), and multi-
walled CNTs (MWNTs). Furthermore, CNTs with various
chiralities can be produced. Since the physicochemical prop-
erties of CNTs vary according to these factors, methods of
isolating single-chirality CNTs have been proposed [8–13].

Among the diverse possible applications of CNTs,
biological applications are important [14–35]. Biological
applications require soluble CNTs; they often involve aqueous
solutions. “Wrapping” techniques are popular approaches to
solubilize CNTs [23, 26, 36–52]. When CNT powder is added

to a surfactant solution followed by sonication, CNT bundles
form and each bundle will become wrapped with surfactant
molecules. In addition to surfactants, which were used to first
demonstrate the feasibility of wrapping, various other organic
molecules including DNA and protein molecules have also
been successfully used to wrap CNTs [53–67]. Advantages
of the use of DNA molecules have been described by several
authors. For example, DNA and SWNTs are specifically
related to DNA sequence and CNT chirality [66]. The authors
suggested that (TCC)10, (TGA)10, and (CCA)10 have an avid
affinity for (9, 1) SWNTs.

Scanning techniques are a powerful means to character-
ize the structures and physicochemical properties of CNTs
and nanobioconjugates of CNTs, such as hybrids of DNA
and CNTs (DNA-CNT hybrids). In this paper, various scan-
ning studies of DNA-CNT and other nanobioconjugates of
CNTs are categorized based on the types of biological appli-
cations. We previously published a review article summariz-
ing scanning probe microscopy (SPM) studies of DNA-CNT
hybrids [68]. In that paper, we categorized references based
on the types of SPMs. In the present review, the references
are categorized based on research targets. This review also
includes scanning electron microscopy (SEM) to provide a
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comprehensive overview of research scanning techniques.
The advantages of the scanning techniques in each CNT
application are highlighted.

2. Advantages of Scanning Techniques in
Studying Nanobioconjugates of CNTs

SPM and SEM are reasonable approaches to characterize
nanobioconjugates with CNTs, as is transmission electron
microscopy (TEM). Among the SPM techniques, atomic force
microscopy (AFM) is frequently employed to obtain topo-
graphical information of CNT nanobioconjugates. Figure 1
provides example AFM topographs of DNA-SWNTs hybrids
in aqueous solution [69]. AFM imaging can clearly reveal rod-
like structures of CNTs without complicated sample prepara-
tions. The authors found that the heights of the observed
hybrids fluctuated according to environmental conditions.

Figure 2 shows SEM images of SWNTs and DNA-SWNT
conjugates reported by Nepal et al. [70]. Bare SWNTs were
observed as bundled structures (Figure 2(a)), but individual
bundles were clearly resolved. In the case of DNA-SWNT
conjugates, monodispersed SWNTs were also clearly evident.
Furthermore, MWNTs were also observed by SEM and
compared with SWNTs. A length distribution analysis deter-
mined that sample preparation procedures affected CNT
length. TEM has also been used to visualize CNT nanobio-
conjugates. One study incorporated TEM along with AFM
and SEM for similar samples [71].

Thin or thick films containing CNT nanobioconju-
gates are popular samples as well as isolated conjugates.
Their surface morphologies have been mainly studied by
SEM [25, 70, 72–82]). Scanning techniques have also
been used to examine other various structures of CNT
nanobioconjugates [83–91]. CNT nanobioconjugates have
also been verified using energy dispersive X-ray spectrometry
(EDS) [25, 91–95].

General characterization, which includes the use of
scanning techniques, is a fundamental and crucial aspect of
CNT-related studies. When bioconjugates of CNTs are iso-
lated on a flat surface, the excellent high resolution afforded
by SPM is a big advantage. When bioconjugates of CNTs
are prepared as films, SEM and SPM can be selectively
employed according to the roughness of the films.

3. CNT Nanobioconjugates for DNA Sensors

While one of the purposes of the aforementioned wrapping
techniques is to solubilize CNTs, the wrapped structures also
have potential value as nanobiodevices. This section described
some notable scanning studies involving DNA wrapping.

An important application of CNTs for DNA studies is
mismatch detection in the hybridization of DNA mole-
cules [96–99]. One study reported on the fabrication of
conjugates of MWNTs, gold nanoparticles (Au NPs), and
poly(p-aminobenzoic acid) (PABA). After depositing the
conjugates on a glassy carbon electrode (GCE) surface,
single-strandedDNA (ssDNA)was attached to the conjugates
by goldmonosulfide bonding [98]. Hybridization between the
attached ssDNA and a complementary ssDNA was detected
by differential pulse voltammetry. The authors succeeded in
detecting three-based mismatched ssDNA. Another study
from the same research group expanded the method combin-
ing zinc oxide nanowires (ZnONWs) with gold nanoparticles
and MWNTs and succeeded in detecting single-mismatched
ssDNA [97]. SEMwas employed to characterize the function-
alized GCE surfaces. Figures 3(a)–3(c) show SEM images of
MWNTs/GCE, PABA/MWNTs/GCE, and Au NPs/PABA/
MWNTs/GCE, respectively [98]. Although the surface condi-
tions were different among the three samples, surface struc-
tures were well characterized by SEM. In particular,
distribution of Au NPs on the GCE was clearly visualized.
SEM proved advantageous for these samples because of the
large depth of field.

500.0 nm
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Figure 1: AFM images reported by Hayashida and Umemura. (a) Hybrids of ssDNA and SWNTs. (b) Hybrids of dsDNA and SWNTs.
Observation was carried out in a buffer solution (reprinted from Hayashida and Umemura [69] with permission).
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Mismatch detection on GCE has also been accomplished
by combining DNA, MWNTs, and [Fe(CN)6]

3−/4− [96]. The
authors used AFM to characterize the functionalized GCE
surfaces (Figure 4).

It is simple to attach DNA molecules to CNT surfaces.
Thus, CNTs could potentially be used as DNA sensors. When
DNA hybridization is detected electrically, CNT nanobio-
conjugates for DNA detection are deposited on electrode sur-
faces. Electrode surfaces are not transparent in many cases.
Thus, scanning techniques have obvious advantages over
TEM and usual optical microscopes. Compared with SEM
images, AFM has the advantage of enabling quantitative
information concerning height. In contrast, when electrode
surfaces are very rough, SEM is preferred.

Other studies have optically detected DNA hybridization
using CNT nanobioconjugates. In this case, isolated DNA-
CNT in suspension was used, rather than films on solid elec-
trode surfaces [100–107]. Single-mismatch detection can also
be done optically. Optical responses of CNTs, such as absorp-
tion and generation of photoluminescence spectra, can be
used to detect DNA hybridization. Suspended DNA-CNT
conjugates can be deposited on flat surfaces such as a cleaved
mica surface for AFM observation.

In the future, direct detection of DNA associated with
CNTs could be possible using scanning tunnelingmicroscopy

(STM). STM is a SPM-related technique that detects minute
electrical signals, such as tunneling currents, between a con-
ductive probe and a sample surface, as does AFM detects
forces between a probe and a sample [108, 109]. In these elec-
trical and optical detection techniques, plentiful CNTs are
necessary for DNA detection. However, if STM could be
adapted for this purpose, a single CNT might be sufficient
to detect a single DNA molecule. Detection of DNA reaction
with single DNA pairs with a single CNT is the dream of a
single-molecule DNA sensor.

4. CNT Nanobioconjugates as
Molecular Sensors

In addition to the detection of DNA hybridization, CNT can
detect various biological reactions [94, 96–99, 110–133]).
One study described the fabrication of an immunosensor
using CNTs (Figure 5) [127]. The authors immobilized
MWNTs dispersed with poly(diallydimethlammonium chlo-
ride) (PDDA) on an Au nanofilm that had been electrochem-
ically deposited on GCE. DNA and thionine were attached to
the functionalized GCE. After depositing Au NPs on the thio-
nine surface, alpha-fetoprotein (AFP) antibody was immobi-
lized on the NPs. The fabricated GCE was available to
electrochemically detect AFP using an immunoreaction
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Figure 2: SEM images reported by Nepal et al. (a) An SEM image of SWNTs. (b and c) An SEM image of DNA-SWNTs. (d) Length
distribution of DNA-SWNTs (reprinted from Nepal et al. [70] with permission).
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between the AFP and AFP antibody. SEM observation of the
GCE surfaces at each functionalization step was effective to
verify their samples.

In another study, a lactate biosensor was created by com-
bining a conductive polymer (poly-5,2′-5′,2″-ter-thiophene-
3′-carboxylic acid; pTTCA) and MWNTs Rahman et al.
[126]. After depositing pTTCA/MWNT films on a gold elec-
trode, lactate dehydrogenase and the oxidized form of nico-
tinamide adenine dinucleotide (NAD+) were immobilized
on the film. SEM was used to characterize the functionalized
surfaces. Another recent study from the same laboratory
demonstrated uric acid detection by this functionalized
electrode [94].

A unique new method for sensor applications has been
proposed [80, 124]. The authors deposited DNA-CNT
conjugates between two Au electrodes. Since DNA bases
have specific affinity with ions, such as Hg(II), Cd(II), and
Pb(II), the nanodevice could be utilized as an ionic sensor.
SEM was a reasonable method to characterize structures of
their nanodevices.

The mechanisms of the electrical and optical responses of
CNTs are not fully understood. Experimental data from
various biomolecules are important to establish CNT biosen-
sor applications. In this context, sample verification by
scanning techniques is obviously important and systematic

accumulation of data under similar experimental conditions
is expected. The current reality is that studies are conducted
using various CNT powders. Furthermore, CNTs with the
same product number purchased from the same company
can display differences in composition between lots. Hybrid-
ization of CNTs and biomolecules can also vary among
researchers. Thus, the direct comparison of data obtained
by different research groups is difficult.

5. Nanobioconjugates for Cell Researches

The use of CNT nanobioconjugates to study living cells is
growing in popularity ([134–139] [28, 85, 140–167]).
Scanning techniques are important and powerful tools in
verifying samples.

One of the important applications is CNT-mediated drug
delivery [155, 161, 168–189]. The fabrication of bio/nanoin-
terfaces of Escherichia coli and MWNTs has been described
Suehiro et al. [157]. In the unique approach, a mixture of
E. coli and solubilized MWNTs was deposited between two
microelectrodes. E. coli was trapped by the MWNTs by
dielectrophoresis force. SEM images clearly visualized the
bacteria trapped between the electrodes (Figure 6).

For use in drug delivery, it is crucial to demonstrate
that CNTs are not toxic. Many studies that did not
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Figure 3: SEM images reported by Wang et al. (a) MWNTs/GCE. (b) PAbA/MWNTs/GCE. (c) Au nanoparticles/PABA/MWNTs/GCE
(reprinted from Wang et al. [97] with permission).
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utilize scanning techniques have intensively studied the
toxicity of CNTs ([135, 169, 190–215]. The use of scanning
techniques has proven advantageous for toxicity studies
[85, 214, 216–219]. As one example, the effects of MWNTs
on human lung epithelial cells evaluated using SEM and

other assessments revealed MWNT-mediated cytotoxicity
and genotoxicity [135].

In another study, a three-dimensional (3D) scaffold for
bone recognition was fabricated using MWNTs [159].
MWNT networks were prepared with polyacrylonitrile
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Figure 5: Schematic view of the fabrication process of an immunosensor reported by Ran et al. (A) Deposition of Au nanoparticles. (B)
Coating of MWNTs-PDDA layer. (C) Immobilization of DNA film. (D) Formation of thionine layer. (E) Assembly of gold nanoparticles.
(F) Anti-AFP loading. (G) BSA blocking (reprinted from Ran et al. [127] with permission).
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Figure 4: AFM images of functionalized GCE surfaces for DNA mismatch detection. (a) Oxidized bare GCE. (b and d) DNA/oxidized
GCE. (c) MWNTs/DNA/oxidized GCE. Scan sizes: 5× 5μm in (a), (b), and (c). 1× 1 μm in (d) (reprinted from Shahrokhian et al. [96]
with permission).

5Scanning



(PAN) followed by the addition and mixing of polymethyl-
methacrylate (PMMA) microspheres to fabricate micropo-
rous structures of PMAA, PAN, andMWNTs. Figure 7 shows
SEM and fluorescent microscope images of MC3T3-E1 cells
that had spread on the fabricated structures. Figures 7(a),
7(c), and 7(e) are images of IP-CHA, an established commer-
cial product used as the control. Figures 7(b), 7(d), and 7(f)
depict the results from similar experiments with the afore-
mentioned CNTp nanoporous scaffolds. SEM clearly revealed
the adherence of cells to both scaffold surfaces. The authors
described the advantages of CNTp scaffolds based on various
characterization experiments.

In cell studies, microscale elevation changes are expected.
In particular, when cells are mixed with CNT nanobioconju-
gates, the heights of the hybridized objects can exceed 20
microns. SEM has proved useful to discern this topography.
However, SEM observation of the behavior of living cells
with CNTs is difficult since the examination is typically
carried out in vacuum. Although environmental and atmo-
spheric pressure SEMs are available, there are various con-
straints to their use. It is anticipated that SPM will soon be
amenable for the time-lapse observation of living cells with
CNT nanobioconjugates. Then, optical microscopes will
truly be competitive observation tools.

6. CNT Nanobioconjugates as Sharp Probes

The small diameters of CNTs could be well suited to their use
as sharp probes. The use of CNTs as SPM probes is one of the
important scanning applications [136, 220–230].

Improvement of AFM resolution using a CNT tip is the
most typical approach. In many applications, a single CNT

is attached to the top of the usual AFM tip. In one study,
an MWNT tip was used for AFM as well as scanning tunnel-
ing microscopy (STM) [220]. Hafner et al. demonstrated the
direct growth of MWNT on an SPM tip [221]. Stevens et al.
applied an MWNT AFM tip to observe 2 nm diameter irid-
ium particles on mica surfaces in aqueous solutions [225].

Another important application is the use of CNTs as
an “injector” for living cells. The attachment of cargo for
drug delivery via disulfide bonding has been proposed
[136]. The authors fabricated an AFM tip with an MWNT
using SEM with a manipulator. Then, hybrids of quantum
dot (QD) and streptavidin were attached on the MWNT
surfaces using a crosslinker containing disulfide bonding.
The functionalized AFM tip was injected into HeLa cells
under AFM guidance, and QD was spontaneously released.

Various uses of CNTs as a sharp SPM probe can be envi-
sioned. Single-cell surgery using drug delivery CNT probes is
of one use. If induced pluripotent stem cells could be man-
aged using this approach, it would be a fundamentally impor-
tant advancement in medicine. Such applications demand
the establishment of means of mass production of SPM
probes with a CNT tip. CNT tips are currently handmade.
Thus, for now, the accumulation of huge experimental data
is difficult.

7. Characterization of CNT
Nanobioconjugates by Scanning Techniques

Electrical properties of CNTs are defined due to their chi-
rality. STM is a powerful tool to investigate the electrical
properties of individual CNTs [231–234]. In one study,
hybrids of DNA and MWNTs were observed by STM
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Figure 6: SEM images of trapped E. coli cells and MWNTs between two microelectrodes by DEP force. (a) Trapped cells. (b) Trapped
MWNTs. (c) Trapped cells and MWNTs. (d) Cells trapped at the tip of MWNTs (reprinted from Suehiro et al. [157] with permission).
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and scanning tunneling spectroscopy (STS) profiles were
affected by the attachment of DNA molecules to MWNTs
[231]. STS of SWNTs wrapped with ssDNA can be
affected by DNA sequences [234]. A theoretical model
has been proposed to explain the experimental STM and
STS results [233].

Another scanning technique to investigate electrical
properties of CNT nanobioconjugates is conductive AFM
[235–237]. In one study, molecular transport junctions
(MTJs) were fabricated. Two metallic SWNTs wrapped with
DNA molecules were connected with p-phenylenediamine
(PPD), and the resistance of the MTJs was measured by
conductive AFM (Figure 8) [237].

The electrical properties of CNTs can be studied using
two approaches. The precise assessment of the electrical
properties of CNTs can be done in vacuum. Conversely, for
biological applications, experiments should be carried out

in liquids or in air/gas. In these cases, water and other mole-
cules strongly affect the data. Several researchers focused on
the effects of water molecules on physicochemical properties
of CNTs [238–240]. If the samples include ions and other
chemicals, which are commonly used for biological experi-
ments, the effects can be markedly more complex.

8. Structures and Mechanical Properties
Studied by AFM

AFM is the most convenient SPM for the standard character-
ization of CNT nanobioconjugates. Many researchers
observed 3D structures of CNTs by AFM, and diverse lengths
and widths of various types of CNT nanobioconjugates have
been reported [69, 241–252]. Biochemical reactions, such as
the interaction between protein and DNA molecules on

(a) (b)

(c) (d)

(e) (f)

20�휇m 20�휇m

Figure 7: SEM and fluorescencemicroscope images ofMC3T3-E1 cells on IP-CHA and CNTp scaffolds. (a, c, and e) On IP-CHA. (b, d, and f)
OnCNTp. (a, b, c, and d) IP-CHA and (b and d) CNTp.Magnification: 2000x for (a and c), 20,000x for (c and d). (e and f) Cells were labeled for
actin filaments (red) and nucleus (blue) (reprinted from Tanaka et al. [159] with permission).
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CNT surfaces, were studied by AFM and other scanning
techniques [232, 245, 253–264].

An impressive structural study using AFM described var-
ious ssDNA molecules on CNT surfaces [264]. Using the
phase imaging mode, the authors found that the helical pitch
of d(GT)30 was approximately 18 nm.

In another study, a peptide nucleic acid (PNA, NH2-Glu-
GTGCTCATGGTG-CONH2) was fabricated and attached to
the PNA at the ends of individual SWNTs. When ssDNA
molecules having complementary sequences with DNA por-
tions of PNA were reacted, the complementary DNA mole-
cules avidly recognized the DNA regions. The hybridization
was clearly confirmed by AFM observation (Figure 9) [263].

Force spectroscopy using AFM is a unique method to
directly measure interactions between organic molecules
and CNTs [232, 265, 266]. In one study, a DNA molecule
was inserted into the the smooth inner pores of CNTs and
then retracted to measure the frictional force between the
DNA and the CNT [265]. DNA extraction from CNT pores
occurred at a nearly constant force. In another study, a DNA
molecule was peeled from an SWNT surface [232]. The peel-
ing force of ssDNA from SWNTs was much greater than
that from flat graphite. A recent study provided dynamic
observations of CNT nanobioconjugates using high-speed
AFM [267].

Although there are numerous SPM studies that have
provided routine AFM pictures of CNT nanobioconjugates,
the use of specific functions of SPMs, such as force measure-
ments, has been very limited. Future studies will hopefully
utilize the full SPM functional repertoire to study CNT nano-
bioconjugates. For example, various types of forces, including
friction, electrostatic, acoustic, and magnetic forces, can be

measured by specific AFM options. Typical SPM options
include scanning near-field optical microscopy, scanning
thermal microscopy, scanning electrochemical microscopy,
scanning Kelvin probe force microscopy, scanning chemical
potential microscopy, scanning ion conductance microscopy,
and scanning capacitance microscopy.

9. Manipulation of CNT Nanobioconjugates by
Scanning Techniques

Manipulation of CNTs by SEM is a popular tool. Attach-
ment of CNTs on SPM probes is usually carried out this
way [136, 220–222, 224–230]. In one study, single CNT was
attached between two AFM probes under SEM observation
[230]. Then, the two AFM tips were separated to directly
measure the breaking force of the CNT. The authors esti-
mated that the breaking force was 1.3μN.

AFM is advantageous to manipulate CNT nanobioconju-
gates in air or liquids. “Dragging” CNTs by an AFM tip was
described. The CNTs were distorted and digested by manip-
ulation with an AFM tip [268]. Other authors proposed DNA
carriers using CNTs based on molecular dynamics calcula-
tion [269]. In their proposal, DNA molecules that are
inserted into the inner pores of CNTs can be moved by
CNT manipulation using an AFM tip.

The potential of single-cell surgery was mentioned ear-
lier. Similarly, single-molecule surgery of nanobioconjugates
with CNTs using the manipulation technique is also a chal-
lenging research target. Single-molecule surgery of CNT
nanobioconjugates might be realized with a single SPM
probe of CNT nanobioconjugates.
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Figure 8: Representative conductive AFM image of a MTJ formed using PPD as the molecular linker and interfaced to a macroscopic metal
electrode. (b) Representative I–V curves recorded at selected points across the MTJ: red line for measurements in close proximity to
the macroscopic electrode and blue line for measurements at the far end from the macroscopic electrode. (c) Phase AFM image of the
MTJ shown in (a). (d) Schematic representation of the conductive AFM measurements on the MTJs (reprinted from Zhu et al. [237]
with permission).
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10. Approaches Using Mapping Methods
Related Scanning Technique

One of the unique optical properties of CNTs is photolumi-
nescence (PL) from CNTs. For example, Ito et al. combined
PL measurements and SEM observation [270]. When (9, 4)
SWNTs are excited with a laser wavelength of 730nm, the
SWNTs photoluminesce at 1130 nm. Excitation and emis-
sion wavelengths vary among CNTs with different chiralities.
Furthermore, the emission wavelength and PL intensity fluc-
tuate in a sensitive response to oxidation/reduction and
other factors. By using PL measurements, various applica-
tions of CNT nanobioconjugates, such as nanobiosensors,
are available. For PL measurements, a “PL map” can be
obtained. Usually, the x- and y-axis of a PL map is the emis-
sion and excitation wavelength, respectively. Although SEM
and SPM spatially scan the sample surface, PL reveals wave-
length scanning. PL measurements by a variety of scanning
techniques would provide rich information about CNT
nanobioconjugates.

In a recent study, AFM infrared spectroscopy was used to
study the morphological and optical properties of CNTs
[271]. This new scanning technique provides spatial infor-
mation of CNT nanobioconjugates.

Mapping techniques, such as PL mapping, and scanning
techniques, such as SPM and SEM, have been independently

used in various research fields. However, for the study of
CNT nanobioconjugates, we believe that the combined use
of the two techniques will be a boon to discovery. In particu-
lar, to understand the mechanisms of several unique
responses of CNTs, the combined structural and physico-
chemical information would be valuable.

11. Conclusion

In this paper, the contributions of scanning techniques to
studies of CNT nanobioconjugates have been summarized
and future prospects discussed. Research subjects are catego-
rized based on CNT applications not on the types of scan-
ning methods. In addition, the possibility of a combination
of mapping techniques and scanning techniques is also
described. We hope that this review article informs future
studies in this field.
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