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Abstract

Confounding between the child’s restraint use and driver behavior can bias restraint effectiveness 

estimates away from the null if survivable crashes are more common in certain restraint types. 

Analyzing only fatal crashes may introduce selection bias toward the null because any protective 

effects of a restraint type will underrepresent children in that restraint. A marginal-structural-

model-type estimator suggests a 17% reduction in fatality risk for children aged 2 through 6 in 

child restraint systems relative to seat belts. This reduction is estimated at 22% when severe 

misuse of the restraint is excluded.
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1. INTRODUCTION

Vehicle safety policy is largely driven by estimates of relative effectiveness among options 

for protection. For example, regulatory requirements for airbags (Federal Motor Vehicle 

Safety Standard 208, Occupant Crash Protection [49 CFR 571.208]) were supported by 

estimates of the supplemental protection afforded by airbags over seat belts alone. Similarly, 

state laws requiring the use of child restraints for children have relied on evidence 

(Arborgast et al. 2004, Durbin et al. 2003) demonstrating that child restraint effectiveness 

was greater than that of seat belts in protecting children in crashes. Arbogast et al. showed 
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that children 12–47 months of age had a 78% reduction in injury risk when seated in 

forward-facing child restraints versus seat belts; Durbin et al. found that children aged 4 

through 7 years had a 59% reduction in injury risk when seated in belt-positioning booster 

seats versus seat belts. Restraint effectiveness has often been described in terms of mortality 

reduction, but conflicting conclusions can result based on the analytical methods chosen for 

effectiveness estimation. For example, in a previous analysis of the effectiveness of child 

restraint seats (CRSs) relative to seat belts, Levitt (2005) used FARS data from 1975 to 2003 

and, by various methods, directly compared the mortality rates for child restraints and for 

seat belts for children ages 2 to 6 and could not demonstrate a difference in effectiveness 

relative to no restraint. This analysis received considerable attention in the popular press. In 

a New York Times article Dubner and Levitt (2005) declared that money spent on child 

restraint systems would be better spent on back-seat DVD players to force children to sit still 

in the back seat. ABC News’ Prime Time (http://a.abcnews.com/Primetime/Story?

id=1842987&page=1) and PBS’s Travis Smiley show (http://www.pbs.org/kcet/tavissmiley/

archive/200508/20050802_levitt.html) also aired stories promoting Levitt’s research. 

However, the studies of Durbin et al. (2003) and Levitt (2005) may have such startlingly 

different conclusions because of differing study methodologies. No study to date has 

compared estimation methods in order to assess which provides the least biased estimate. 

We will explore the issue of bias in estimating the relative effectiveness of child restraint 

systems over seat belt restraint for young children.

Child restraint systems (CRS), as distinct from seat belts, include child safety seats and 

boosters seats and are designed to address the biomechanical and size safety needs of 

children as seat belt fit is poor for children under 4 feet 9 inches tall (nearly all children 

under age 8 years). Unfortunately, the derivation of restraint effectiveness estimates based on 

laboratory testing is limited by the inadequate biofidelity of the anthropomorphic dummy 

used in testing, by the lack of measurement of or inaccurate measurement of injury risk in 

the dummy, and by the relative simplicity of the laboratory test configuration as compared 

with real-world crashes and restraint system use. Consequently, comparisons of effectiveness 

between child restraints and seat belts are largely relegated to statistical analysis of real 

world crash databases.

Estimating effectiveness of child restraint systems through analysis of crash databases is 

problematic due to the association between how passengers are restrained in a given crash 

and whether that crash will be in the given database. The primary sources of US-level data 

available for assessing mortality associated with restraint type include the Fatality Analysis 

Reporting System (FARS) (National Highway Traffic Safety Administration, 2005), the 

National Automotive Sampling System General Estimates System (NASS GES) (National 

Highway Traffic Safety Administration, 2000), and the National Automotive Sampling 

System Crashworthiness Data System (NASS CDS) (National Highway Traffic Safety 

Administration, 1997). FARS is a census of vehicular crashes in the US in which at least one 

person died (not necessarily the child passenger) within the 50 States, the District of 

Columbia, and Puerto Rico. FARS has a sufficient number of outcomes of fatal child injuries 

for analysis but has a biased selection of crashes in that inclusion of crashes is associated 

with the outcome of interest, mortality. NASS GES and NASS CDS compile data from a 

nationally-representative sample of police-reported crashes (restricted to crashes in which at 
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least one vehicle was non-drivable in the case of NASS CDS). While both FARS and NASS 

GES rely on police reports as the primary source of data, NASS CDS includes data from 

detailed crash investigations by trained investigators supplemented by review of medical 

records. Thus the methodology of NASS CDS as compared to NASS GES results in more 

detailed and reliable data regarding restraint status and crash circumstances and, therefore, is 

the more scientifically rigorous of the two regarding restraint. However, while NASS CDS 

contains information on children in fatal crashes, it is a probability sample with a relatively 

small sampling fraction. Despite oversampling of more severe crashes, only about 1–3% of 

fatal crashes involving children are included in NASS CDS, compared with 100% in FARS. 

Including FARS adds enormously to power to detect effects of restraint type on risk of 

death, since a substantial fraction of FARS crashes belong to the relevant set of potentially-

fatal crashes. In the following, we will demonstrate the biases associated with use of these 

databases individually in deriving effectiveness estimates and will present a more robust 

estimation procedure that depends upon the use of both databases.

1.1 Selection bias and confounding in restraint effectiveness estimation

To understand the nature of the problem of bias introduced by database selection, we turn to 

the potential outcomes paradigm (Rubin, 1974; Rubin 1978). Following the concepts of the 

Rubin Causal Model (Holland, 1988), we want to compare the risk of death for a child 

restrained in a CRS with the risk of death for a child restrained in a belt among the subset of 
crashes which would have resulted in death in at least one of the restraint types. Failure to 

condition on these “potentially fatal” crashes means that any association between CRS use 

and fatality may be confounded with driver behavior. That is, a population-based 

denominator for the CRS users to estimate CRS risk will contain a disproportionate number 

of crashes in which the child would have survived in either restraint type. A natural 

alternative is to restrict analyses to crashes in which fatalities occurred, since they clearly are 

all “potentially fatal” crashes. However, using data from crashes in which at least one fatality 

occurred will remove from the CRS denominator all crashes for which the CRS would have 

been protective, unless someone else died in the crash.

Table 1 illustrates the issue, under the simplifying assumption that CRS are never harmful. 

Let Y represent whether or not a restrained child dies(=1) or survives(=0) in a crash, and T 
represent whether or not the child is restrained in a CRS(=1) or a seat belt(=0). We also 

define W to be an indicator of whether there was a fatality other than the index child in the 

crash, either in the child’s vehicle or another vehicle in the crash. Next, let Y (T) represent 

the two potential outcomes that a child would have had in the crash: Y (1) indicates whether 

or not s/he would have died in the crash had s/he been in a CRS, and Y (0) indicates whether 

or not s/he would have died in the crash had s/he been in a belt. We thus classify six types of 

crashes: “always fatal,” “fatal in belt only,” and “always survivable,” by whether or not 

someone in another vehicle dies. If crash type is independent of restraint type use, i.e., if 

crash severity is “randomized” with respect to restraint type (column A in Table 1), then a 

population-based cohort analysis using randomly sampled crashes from the entire population 

provides consistent estimates of the true protective effect for the CRS. A FARS-only 

analysis will typically be approximately unbiased as well, although a slight bias toward the 

null will occur to the degree that child-only deaths are common relative to child fatalities 
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where at least one other person in the crash dies. However, we cannot assume that restraint 

use is randomized. If crashes in which someone else dies beside the child are less common 

in CRS-restrained children (column B in Table 1), a FARS-only analysis will be biased 

toward the null, whereas a population-based cohort analysis will be biased away from the 

null. If the association between restraint use and crash severity is reversed, (column C in 

Table 1), the direction of the bias switches in a FARS-only and a population-based cohort 

analysis. We anticipate that children restrained in CRS are less likely to be in more severe 

crashes (the Table 1, column B scenario), suggesting that a FARS-only analysis might 

underestimate the effectiveness of CRS relative to belts, whereas a standard cohort analysis 

might overestimate the effectiveness.

To overcome these complementary problems, we combine 1998–2003 data from both the 

FARS and the National Automotive Sampling System (NASS) to obtain a full population 

cohort of children in towaway crashes. We then propose a method using a propensity score 

to obtain estimates of restraint effectiveness that should be protective against both sources of 

bias. Typically the covariates used to estimate the propensity scores can be included in a 

regression model to yield similar adjusted estimates; however, by treating the potential 

outcomes cells as coarsened cells in a contingency table stratified by crash fatality status, we 

obtain a simple estimator of CRS effectiveness that incorporates data from non-fatal crashes 

but is more robust than a standard adjusted relative risk estimator that pools across crash 

fatality status. We compare our method with a standard cohort analysis using both the FARS/

NASS data combined and a FARS-only analysis; for the latter we also consider alternative 

methods proposed by Evans (1986) and Levitt and Porter (2001) to reduce selection bias in a 

FARS-only analysis. Because all state laws require child restraints for children under age 2, 

but some states still allow seat belt restraints for children over 2, this study was limited to 

children between the ages of 2 and 6. This population is also the same for which controversy 

has developed regarding CRS effectiveness.

2. A ROBUST CAUSAL ESTIMATOR OF RESTRAINT EFFECTIVENESS

In this section, we describe a robust causal estimator of restraint effectiveness. We use the 

term “causal” to denote that, under the assumption of “no unobserved confounders,” it is a 

consistent estimator of the relative risk of death for a child in a CRS versus a child in a seat 

belt if restraint use type were assigned randomly to children in the population. Our method 

uses propensity scores to combine adjusted analyses across the strata of otherwise fatal and 

otherwise non-fatal crashes without having to explicitly model the adjustment covariates, 

similar to the recently popularized marginal structural models (Joffe et al. 2004; Robins, 

1999; Robins et al. 2000) which use propensity to comply to treatment to create artificial 

populations of subjects randomized to different treatment arms in order to make regression-

adjusted estimates of treatment effects without directly adjusting for confounders with 

treatment assignment in the mean regression model. An advantage of the propensity score 

approach is that it does not rely on the linearity assumption of a standard linear or logistic 

regression model; hence it allows for more flexible constructions. In particular, we can 

model propensities separately within fatality strata, allowing for differing “assignment 

mechanisms” in fatal vs. non-fatal crashes, and then average the results across the strata for a 

population-level effect. In addition, subjects at a given exposure level with extremely low or 

Elliott et al. Page 4

Stat Interface. Author manuscript; available in PMC 2018 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



extremely high probabilities of assignment for whom there are no comparable subjects with 

different exposure levels are dropped from the analysis, since we only want to compare 

subjects who have a chance of having either exposure (Leon et al. 2001).

Injury epidemiology would likely benefit from increased use of propensity score 

methodology. Injuries by their nature are sporadic and difficult to predict, and usually rare in 

most populations. Randomized trials with sufficient power to detect treatment effects are 

thus very expensive to mount. Methods which better accommodate the limitations of 

observational data are thus of great value in injury epidemiology.

2.1 Relative risk estimation with potential outcomes

All restrained children in a crash could be assigned to one of 4 outcomes: “unsurvivable” 

crashes in which they would die regardless of whether they were in a belt or a CRS (Y (1) = 

Y (0) = 1), “CRS-survivable” crashes in which they would only die if they were in a belt (Y 
(1) = 0, Y (0) = 1), “belt-survivable” crashes in which they would die only if they were in a 

CRS (Y (1) = 1, Y (0) = 0), and “survivable” crashes in which they would not die in either 

restraint type (Y (1) = Y (0) = 0). Denote P (Y (1) = j, Y (0) = k) = πjk, Σj Σk πjk = 1; a 

“potentially fatal” crash implies Y (1) + Y (0) ≥ 1, P (Y (1) + Y (0) ≥ 1) = 1 – π00. If we 

could observe the joint potential outcomes for each subject, we would estimate the relative 

risk of death in a CRS versus a belt by

RR1 = P Y 1 = 1 Y 1 + Y 0 ≥ 1
P Y 0 = 1 Y 1 + Y 0 ≥ 1 =

π11 + π10 / 1 − π00
π11 + π01 / 1 − π00

=
π11 + π10
π11 + π01

. (1)

2.2 Propensity scores

Of course, it is unreasonable to assume that restraint assignment is fully randomized. A 

more reasonable assumption is “no unobserved confounders”: that, conditional on covariates 

X, such an assignment is random; i.e., independent of (Y (1), Y (0)):

P Y 1 , Y 0 , T = 1 X = P Y 1 , Y 0 X P T = 1 X (2)

This is the “balancing property”: if (2) holds, then Rosenbaum and Rubin (1983) show that

P Y 1 , Y 0 , T = 1 Z X = P Y 1 , Y 0 Z X P T = 1 Z X (3)

where Z(X) = P (T = 1|X), the probability that a child is restrained in type T given covariates 

X. Once these propensity scores have been estimated, the data are stratified into propensity 

percentiles (typically quintiles), denoted by Z. Letting PF be an indicator for the condition Y 
(1) + Y (0) ≥ 1 (i.e., being in a potentially fatal crash), we then have

Elliott et al. Page 5

Stat Interface. Author manuscript; available in PMC 2018 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RR1z = P Y 1 = 1 PF = 1, Z = z
P Y 0 = 1 PF = 1, Z = z

= P Y 1 = 1 PF = 1, Z = z, T = 1
P Y 0 = 1 PF = 1, Z = z, T = 0

= P Y 1 = 1 Z = z, T = 1 / 1 − P PF = 0 Z = z, T = 1
P Y 0 = 1 Z = z, T = 0 / 1 − P PF = 0 Z = z, T = 0

=
P Yobs = 1 Z = z, T = 1 / 1 − P PF = 0 Z = z

P Yobs = 1 Z = z, T = 0 / 1 − P PF = 0 Z = z

=
P Yobs = 1 Z = z, T = 1
P Yobs = 1 Z = z, T = 0

(4)

where the first equality defines our causal estimator (1) stratified by propensity score, the 

second equality follows from the balancing property (2) of the propensity score, the third 

equality from the definition of a conditional distribution, and the fourth equality from the 

definition of our potential outcome. Thus, within the strata defined by Z, the observed death 

rates within each restraint type are consistent estimators of the numerators and denominator 

of (1). An overall estimate of relative risk can then be obtained as

RR1 = ∑
z

RR1zP Z = z

which is the mean of these relative risks, Σz RR1z/5 if the quintile cutoffs are exact. 

Alternatively, the values of RR1z can be considered to determine if there is effect 

modification with respect to restraint use. It is important to note at this point that the relative 

risk estimate obtained in this manner will be asymptotically equivalent to those obtained 

under a standard multivariate Poisson regression model adjusted for covariates X if the linear 

model is correct; Section 2.4 develops an alternative “robust” estimator that assumes 

randomization holds only within the “other fatality” (W) strata.

The propensity or “balancing” score approach depends on correct modeling of Z(X) = P (T 
= 1|X). In our manuscript we assume a logistic regression model:

P T = 1 X = exp α + X′β
1 + exp α + X′β (5)

where α and β are estimated from the data and the covariates used in X are chosen by 

stepwise regression. If the model is approximately correct, the stratified relative risk 

measures should differ little after adjustment for X. It is important that only “pre-treatment” 

covariates be used in estimating the propensity score, in order to avoid absorbing the 

treatment effect into factors that are on the causal pathway to the outcome; hence factors 

such as crash severity should not be included in X.
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2.3 A robust relative risk estimator

A more robust alternative to (4) assumes that the balancing property (2) of the propensity 

score Z only holds within fatality strata W:

P Y 1 , Y 0 , T = 1 X, W = P Y 1 , Y 0 X, W P T = 1 X, W

This is akin to columns (B) and (C) in Table 1, where the distribution of potential outcomes 

is equal only within fatality strata, not across them as in column (A). Under this constraint, 

the relative risk estimator is given by:

RR2 = P Y 1 = 1 PF = 1
P Y 0 = 1 PF = 1 = ∑

z

∑w = 0
1 P Yobs = 1 W = w, Z = z, T = 1 P W = w Z = z

∑w = 0
1 P Yobs = 1 W = w, Z = z, T = 0 P W = w Z = z

P Z = z .

The derivation of RR2 is as follows. From the law of total probability we have:

RR2 = P Y 1 = 1 PF = 1
P Y 0 = 1 PF = 1

= P Y 1 = 1 PF = 1, W = 1 P W = 1 PF = 1 + P Y 1 = 1 PF = 1, W = 0 P W = 0 PF = 1
P Y 0 = 1 PF = 1, W = 1 P W = 1 PF = 1 + P Y 0 = 1 PF = 1, W = 0 P W = 0 PF = 1

= ∑
z

P Y 1 = 1 PF = 1, W = 1, Z = z P W = 1 PF = 1, Z = z + P Y 1 = 1 PF = 1, W = 0, Z = z P W = 0 PF = 1, Z = z
P Y 0 = 1 PF = 1, W = 1, Z = z P W = 1 PF = 1, Z = z + P Y 0 = 1 PF = 1, W = 0, Z = z P W = 0 PF = 1, Z = z

× P Z = z

From balancing property of the propensity score within stratum W we have:

∑
z

P Y 1 = 1 PF = 1, W = 1, Z = z P W = 1 PF = 1, Z = z + P Y 1 = 1 PF = 1, W = 0, Z = z P W = 0 PF = 1, Z = z
P Y 0 = 1 PF = 1, W = 1, Z = z P W = 1 PF = 1, Z = z + P Y 0 = 1 PF = 1, W = 0, Z = z P W = 0 PF = 1, Z = z P

Z = z

= ∑
z

P Y 1 = 1 PF = 1, W = 1, Z = z, T = 1 P W = 1 PF = 1, Z = z + P Y 1 = 1 PF = 1, W = 0, Z = z, T = 1 P W = 0 PF = 1, Z = z
P Y 0 = 1 PF = 1, W = 1, Z = z, T = 0 P W = 1 PF = 1, Z = z + P Y 0 = 1 PF = 1, W = 0, Z = z, T = 0 P W = 0 PF = 1, Z = z

× P Z = z

Finally, from the definition of the potential outcome and Bayes’ Theorem we have
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∑
z

P Y 1 = 1 PF = 1, W = 1, Z = z, T = 1 P W = 1 PF = 1, Z = z + P Y 1 = 1 PF = 1, W = 0, Z = z, T = 1 P W = 0 PF = 1, Z = z
P Y 0 = 1 PF = 1, W = 1, Z = z, T = 0 P W = 1 PF = 1, Z = z + P Y 0 = 1 PF = 1, W = 0, Z = z, T = 0 P W = 0 PF = 1, Z = z P

Z = z

= ∑
z

P Yobs = 1 W = 1, Z = z, T = 1
P PF = 1 W = 1, Z = z P PF = 1 W = 1, Z = z P W = 1 Z = z

P PF = 1 Z = z +
P Yobs = 1, W = 0, Z = z, T = 1

P PF = 1 W = 0, Z = z P PF = 1 W = 0, Z = z P W = 0 Z = z
P PF = 1 Z = z

P Yobs = 1 W = 1, Z = z, T = 0
P PF = 1 W = 1, Z = z P PF = 1 W = 1, Z = z P W = 1 Z = z

P PF = 1 Z = z +
P Yobs = 1, W = 0, Z = z, T = 0

P PF = 1 W = 0, Z = z P PF = 1 W = 0, Z = z P W = 0 Z = z
P PF = 1 Z = z

P

Z = z

∑
z

∑w = 0
1 P Yobs = 1 W = w, Z = Z, T = 1 P W = w Z = z

∑w = 0
1 P Yobs = 1 W = w, Z = Z, T = 0 P W = w Z = z

P Z = z

where the third equality follows from algebraic cancellations.

2.4 Estimation and inference

Estimators utilize case weights to reflect unequal probabilities of selection in the NASS-

CDS dataset; case weights for the FARS cases are set to 1 to reflect their certainty sampling. 

Confidence intervals for the relative risk estimates are obtained via a bootstrapping 

procedure. Resampling is done at the cluster (crash) level, within each of the propensity 

score strata: this accommodates 1) the case weights in the NASS sample, 2) the clustering of 

the FARS sample by crash and the NASS sample by primary sampling unit, and 3) the need 

to treat the propensity scores as ancillary statistics (Rubin, 1979; Rubin and Thomas 1996). 

(The FARS data are a census of all crashes, and thus do not have sampling variability from a 

finite population sampling perspective. However, we consider the FARS crashes drawn from 

a hypothetical infinite superpopulation of fatal crashes, and thus resample both FARS and 

NASS crashes for inference.)
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2.5 Alternative methods

We compare our results with three existing methods that have been used to estimate the 

relative effectiveness of restraints in reducing risk of fatality in passenger vehicle crashes: a 

cohort analysis, the restricted sample method of Levitt and Porter (2001), and a matched 

case-control analysis. We created a complete cohort sample of children in the US who were 

in towaway crashes by combining NASS dataset and the FARS dataset (Elliott et al. 2006). 

To reduce confounding between “potentially fatal” crashes and observed restraint use, our 

cohort analysis adjusted for child age, driver age, seat row, vehicle type, and vehicle model 

year.

We reproduced the “restricted sample” method of Levitt and Porter, a method proposed by 

them to eliminate selection bias in the FARS data by restricting the analytic set to the subset 

of FARS crashes which are a) two-vehicle crashes where b) someone in the other vehicle 

died. This restriction relies on two assumptions: 1) the potential outcomes and safety device 

usage (restraint usage) are independent conditional on observed covariates, equivalent to the 

“conditional randomization” assumption in propensity score analysis, and 2) the survival 

status of subjects in other vehicles is independent of safety device usage of children, again 

conditional on the potential outcome and observed covariates. This second assumption may 

fail if drivers of vehicles who cause fatalities in other vehicles are also less likely to restrain 

young children correctly, which is a plausible scenario.

Finally, we conducted a matched case-control or conditional logistic regression analysis, 

which utilizes the subset of restrained children in which two or more children were present 

and at least one child died and one child survived. In this setting, the matched case-control 

analysis treats the vehicle-level risk of death as a nuisance parameter and computes a 

semiparametric likelihood that effectively conditions on the crash circumstances and avoids 

the need to make the assumptions underlying the Levitt and Porter approach. While in 

principle it allows adjustment for potential confounding by other factors that may 

systematically differ between children restrained in belts and children restrained in CRSs, 

the two most important factors – age and seat row – are almost completely confounded with 

CRS use in crashes in which multiple young children are present. Hence our matched case-

control results are unadjusted and are similar to those obtained through “double sampling” 

(Evans 1986).

The full cohort analysis was conducted using case weights equal to the inverse of the 

probability of selection and adjusted to known crash totals to account for the oversampling 

of severe crashes in NASS-CDS. (Case weights in FARS were set to 1 consistent with the 

fact that the FARS is a census of all fatalities.) To adjust inference to account for the 

disproportional probability of selection of subjects and stratification and clustering of 

subjects by geographic region and vehicle, Taylor Series linearization estimates of the 

logistic regression parameter variances were calculated. For the FARS only cohort and Levitt 

and Porter analyses, generalized estimating equations were used to account for the clustering 

of subjects by vehicle. For the matched case-control analysis, Cox semiparametric regression 

models were used to accommodate the m : n matching of cases to controls.
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3. DATA SOURCES

A full population cohort is obtained by combining data from both the FARS and NASS 

Crashworthiness Data System (CDS) database. In order to be comparable with the NASS-

CDS database described below, the 8% of restrained children in vehicles involved in fatal 

crashes that were still drivable were excluded from the analysis; further, to focus on the 

effectiveness of current restraint systems, only crashes between 1998 and 2003 were 

analyzed. A small number of crashes in which only non-occupants (e.g., pedestrians) died 

were also excluded. Within FARS, we identified 7,816 children aged 2–6 who were vehicle 

occupants restrained in a CRS or a seat belt in a non-drivable (towaway) passenger car, van, 

pickup truck, or sport utility vehicle that was involved in a crash with at least one passenger 

fatality between 1998 and 2003. Of these 7,816 children involved in fatal crashes, 1,096 

(14%) were themselves fatalities. Approximately 5,000 vehicles per year are sampled as part 

of the NASS-CDS. Within NASS-CDS, we identified 1,436 children aged 2–6 who were 

restrained in a CRS or seat belt in a passenger car, van, pickup truck, or sport utility vehicle 

involved in a non-fatal crash sampled between 1998 and 2003. Because of the complex 

sample design of NASS-CDS, these 1,436 children represent 959,483 children meeting our 

inclusion criteria. Table 2 provides details about the samples used for the Levitt and Porter 

restricted sample and matched case-control analyses.

4. RESULTS

Table 3 provides descriptive statistics for the variables used in the analysis, overall and by 

the source of the data (FARS vs. NASS-CDS). The vast majority of children in towaway 

crashes (over 99%) survive; thus the distribution of NASS-CDS cases closely parallels that 

of the entire population.

The pre-crash covariates available in both datasets to construct a propensity score were child 

age, vehicle type (passenger car, pickup truck, van, sports utility vehicle), seat row, age of 

driver, gender of driver, and vehicle model year. A preliminary stepwise regression step 

showed that the only pre-crash covariates independently and significantly associated with 

CRS use were age of child and vehicle type (passenger car, pickup truck, van, sports utility 

vehicle). Hence these factors were used to generate the propensity score estimates. Table 4 

shows that balance across the covariates within each propensity score quintile was largely 

achieved (the exception – a low rate of car seat usage among those front-seated in the second 

PS quintile – is largely due to several very low case-weight NASS cases in that cell). Figure 

1 shows the distribution of propensity scores for CRS use by restraint type. Both restraint 

types span the range of propensity scores, allowing estimation of restraint effects within 

each propensity score quintile.

Table 5 shows the standard cohort relative risk estimators, unadjusted and adjusted, along 

with the causal relative risk estimator developed above, and relative risk estimator using the 

Levitt and Porter and double sampling methods. The standard cohort relative risk estimators 

are computed using the FARS data only and the full population (FARS and NASS-CDS 

combined); the robust causal estimator requires the full population data; and the Levitt and 

Porter and matched case-control estimators use only FARS data. When severe misuse of 
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restraints are included, none of the estimates show a statistically significant difference at the 

α = .05 level, although the adjusted standard cohort relative risk estimator approaches 

significance (RR = 0.69, 95% CI = 0.46, 1.02). Removing the small fraction of FARS seat 

belt users who only used a shoulder belt, or were classified as having some other improper 

use of the belt, and the small fraction of FARS CRS users who had grossly improper use, 

such as not having the CRS restrained with a seat belt still suggest little protective effect 

from use of CRS relative to seat belts in an unadjusted cohort analysis; however, because 

younger children are associated with higher risks of death and higher CRS use, an adjusted 

analysis suggests a 38% reduction in risk (RR = 0.62, 95% CI = 0.42, 0.93). The method of 

Levitt and Porter still suggests no protective effect for CRS, in both the unadjusted and 

adjusted analyses, similar to the results obtained from a standard cohort analysis using 

FARS data alone. The point estimate in matched case-control analysis suggests a protective 

effect for CRS-restrained children, although the limited sample size (288 vehicles containing 

503 children) provides limited power to detect modest differences, as evidenced by the 

relatively wide confidence intervals. The robust relative risk estimator suggests a 22% 

reduction in risk of death for CRS restrained children versus belt-restrained children, 

although this difference does not quite reach statistical significance (RR = 0.78 95% CI = 

0.63, 1.03).

Table 6 shows the estimated robust relative risk estimator, stratified by propensity score 

quintile. This table suggests a tendency for all children aged 2 through 6 to receive benefit 

from the use of CRS instead of a seat belt regardless of how likely they are to actually be 

restrained in one, although all propensity strata are limited in their ability to detect a 

significant difference because of small sample sizes.

5. DISCUSSION

The effectiveness (or lack thereof) of CRS relative to seat belts for children aged 2–6 would 

ideally be ascertained using an unobservable population: those children involved in a crash 

in which they would have died had they been restrained in a CRS, a belt, or in either type – 

that is, the total population of passenger vehicle crashes in which a restrained child aged 2–6 

was in the vehicle from which the crashes survivable under either restraint type have been 

removed. If restraint use were randomized in the population, a standard case-control or 

cohort analysis would consistently estimate CRS effectiveness in this population. However, 

restraint use is likely not effectively randomized in the population with respect to driving 

behavior, so such an analysis can overstate or understate the effectiveness of a restraint. 

Using data from fatal crashes only might appear to solve this dilemma, but it will 

underestimate the effectiveness of CRSs if: a) CRSs are indeed effective relative to seat belts 

and b) if there is a positive correlation between CRS use and good driving behavior. Our 

analysis suggests that both types of biases may be present when obtaining estimates of CRS 

effectiveness relative to seat belts from either the FARS census of crashes with one or more 

fatalities or a FASS-NASS combination of datasets that are representative of all towaway 

crashes. We take advantage of the fact that a census of fatal crashes is obtained to develop a 

simple propensity score method to counter the selection bias approaches inherent in both 

analyses. This results in estimates of restraint effectiveness that may more accurately reflect 

the reductions in mortality risk that accrue from the use of the CRS itself, rather than from 
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the type of driver who chooses to restrain the children in their car in a CRS, and thus the 

reductions in mortality risk that will accrue as CRS use spreads throughout the remainder of 

the driving population. Our conservative robust risk ratio estimator suggests that the risk of 

mortality for children aged 2 through 6 restrained in a CRS relative to those restrained in 

seat belt is in the range of an increase of 10% to a decrease of 32%. This is less effective 

than the increase of 2% to a decrease of 54% estimated by a standard cohort analysis, but 

more effective than the estimate of an increase of 37% to a decrease of 1% that is obtained 

using FARS data alone. It appears that failing to observe the “children that did not die” can 

underestimate CRS effectiveness; younger children are overrepresented in the FARS data, 

and they are more likely to be restrained in a car seat, or, put in terms of the propensity 

score, relying on the FARS data alone to estimate (2) causes an underestimation of high 

propensity score and an overestimation of low propensity scores. On the other hand, using a 

standard cohort analysis can yield overestimates of restraint effectiveness because of the 

failure to account for potentially higher rates of survivable crashes among CRS users.

The Levitt and Porter approach appear to reasonably estimate the distribution of potential 

outcomes in vehicles where someone else in the crash dies – and thus restraint effectiveness 

in the top half of Table 1, but because it does not consider the distribution of potential 

outcomes in otherwise non-fatal (i.e., no one in the “other” vehicle died) crashes – restraint 

effectiveness in the bottom half of Table 1, it appears to suffer from the same bias toward the 

null as a standard FARS-only analysis. The matched-pairs analysis appears to have 

overcome this limitation by matching on vehicle; its estimate of a protective effect for CRSs 

that are not severely misused is similar to that of our robust causal estimator.

Our propensity score approach is not without limitations. Results can be sensitive to the 

choice of the propensity score model; in this analysis, a propensity score estimated using 

additional main effects for seat row, model year, and driver age had a substantial impact on 

the relative risk estimate (RR = 0.89). As Rosenbaum (1998) notes, even if the true 

propensity score is known, only “overt” biases can be eliminated. Thus the propensity score 

is not a perfect substitute for true randomization, which will asymptotically balance both 

observed and unobserved confounders.

Another limitation of any analysis focusing on fatality outcomes is that it ignores the large 

amount of morbidity that is likely prevented by the use of CRSs instead of seat belts in the 2 

through 6 year-old population. “Seat belt syndrome” has been well understood for five 

decades as a special risk for restrained young children in passenger vehicle crashes (Agran et 

al. 1987; Garrett and Braunstein 1962; Kulowski and Rost 1956). Arbogast et al. (2004) 

showed that children aged 1 through 3 in forward-facing car seats reduced their risk of injury 

by 71% over children in seat belts. Durbin et al. (2003) found that children aged 4 through 7 

in belt-positioning booster seats reduced their risk of injury by 59% over children in seat 

belts. Also, exposure to CRS and belt in the FARS database is measured by police report, 

which is subject to measurement error due to potential bias in police reporting of restraint. If 

this error is essentially random, the resulting estimates of CRS effectiveness will be biased 

toward the null, suggesting that the CRS protective effect will be underestimated. Non-

differential bias – e.g., police being more likely to report a fatally-injured child as restrained 
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in a CRS when they were in a belt than a nonfatal crash victim, or vice-versa – may lead to 

either over-or underestimation of CRS effectiveness.

Some of the methods given here did not find even marginally protective effects of CRS 

relative to seat belts. However, this lack of protective benefit contradicts the known 

biomechanical properties of child restraint systems. Optimal performance of restraint 

systems depends upon an adequate fit between the restraint system and the occupant at the 

time of the crash. Child restraint systems are designed to reduce risk of ejection during a 

crash, better distribute the load of the crash through structurally stronger bones rather than 

soft tissues, limit the crash forces experienced by the vehicle occupant by prolonging the 

time of deceleration, and potentially limit the contact of the occupant with intruding vehicle 

structures. The analyses in this manuscript using a full cohort of fatal and non-fatal crashes 

generally suggest reductions in risk of death on the order of 20%. Given the relatively small 

number of fatal outcomes in this age range during the time period of study, the question of 

whether CRSs are truly effective relative to seat belts above and beyond associations with 

the driving behaviors of drivers who use them remains open to some degree. Future efforts 

to assess restraint effectiveness might consider instrumental variables approaches (Bowden 

and Turkington 1984) or other causal modeling techniques such as principle stratification 

(Frangakis and Rubin 2002) to reduce selection bias that may be inherent in observational 

crash data.
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Figure 1. 
Propensity score by restraint type.
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Table 2

Sample sizes used for analyses, by source of data

FARS NASS-CDS

N of Vehicles N of Children N of Vehicles N of Children

Observational Cohort/Robust Causal 6391 7816 982 1436

Levitt and Porter Restricted Sample 3204 3940 — —

Matched Case-Control 228 503 — —
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Table 3

Child occupant and crash characteristics, 1998–2003. Data are presented as weighted for NASS-CDS % 

(unweighted n in parentheses)

Characteristic FARS NASS-CDS All

Restraint Use

Seat Belt 53.7*
(4203)

54.2
(694)

54.2
(4307)

Child Restraint System 46.2*
(3613)

45.8
(742)

45.8
(4945)

Age

2 Years 24.4
1911

21.1
(334)

21.2
(2245)

3 Years 21.8
(1705)

17.4
(279)

17.4
1984

4 Years 20.3
(1585)

19.1
(290)

19.1
1875

5 Years 16.3
(1344)

15.0
(271)

15.0
(1615)

6 Years 15.4
(1271)

27.4
(262)

27.3
(1533)

Seating Position

Front 17.3
(1351)

15.7
(200)

15.7
(1571)

Rear 82.7
(6465)

84.3
(1236)

84.3
(7701)

Vehicle Type

Passenger Car 53.2
(4161)

67.8
(846)

67.7
(5007)

Pickup Truck 11.0
(859)

5.6
(83)

5.6
(942)

Van/Minivan 17.8
(1390)

17.2
(299)

17.2
(1689)

Sports Utility Vehicle 18.0
(1406)

9.4
(208)

9.5
(1614)

Model Year

<1990 19.1
(1492)

15.5
(258)

15.5
(1750)

1990–1993 21.4
(1674)

23.4
(280)

23.4
1954

1994–1997 29.1
(2274)

33.8
(420)

33.8
(2694)

1998–2004 30.4
(2376)

27.3
(478)

27.3
2854

Driver Age
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Characteristic FARS NASS-CDS All

<20 8.2
(560)

4.0
(43)

4.0
(603)

20+ 91.8
(7256)

96.0
(1393)

96.0
(8649)

*
Includes 92 subjects with severe belt misuse and 162 subjects with severe CRS misuse.
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Table 6

Causal relative risk measures using full population: overall, by propensity score quintile (PSQ), and by age

Population Cohort Robust Causal (RR2)

PSQ 1 0.82
(.25,1.98)

PSQ 2 0.69
(.47,0.96)

PSQ 3 0.99
(0.73,1.37)

PSQ 4 0.89
(0.68,1.16)

PSQ 5 0.78
(0.45,1.27)
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