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Abstract
Establishing and maintaining cell polarity are dynamic processes that
necessitate complicated but highly regulated protein interactions.
Phosphorylation is a powerful mechanism for cells to control the function and
subcellular localization of a target protein, and multiple kinases have played
critical roles in cell polarity. Among them, atypical protein kinase C (aPKC) is
likely the most studied kinase in cell polarity and has the largest number of
downstream substrates characterized so far. More than half of the polarity
proteins that are essential for regulating cell polarity have been identified as
aPKC substrates. This review covers mainly studies of aPKC in regulating
anterior-posterior polarity in the worm one-cell embryo and apical-basal polarity
in epithelial cells and asymmetrically dividing cells (for example, Drosophila
neuroblasts). We will go through aPKC target proteins in cell polarity and
discuss various mechanisms by which aPKC phosphorylation controls their
subcellular localizations and biological functions. We will also review the recent
progress in determining the detailed molecular mechanisms in spatial and
temporal control of aPKC subcellular localization and kinase activity during cell
polarization.
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Introduction
Atypical protein kinase C (aPKC), classic PKC (cPKC), and  
novel PKC (nPKC) are the three major PKC subfamilies1.  
Unlike cPKC and nPKC, which are activated by calcium or  
diacylglycerol or both, aPKC is activated and regulated only 
by protein-protein interactions1. Twenty years ago, the Ohno 
group, who were at the time searching for aPKC-interacting 
proteins, identified a mammalian protein they termed ASIP 
(aPKC-specific interacting protein), which turned out to be the  
homologue of Caenorhabditis elegans polarity protein Par-32. 
Following this lead, they showed that worm aPKC (PKC-3)  
colocalizes with Par-3 at the anterior cortex of one-cell  
embryos and that RNA interference (RNAi) knock-down of 
aPKC gave par-3-like anterior-posterior (A-P) polarity defects3.  
Furthermore, PKC-3 cortical localization is lost in par-3 and 
par-6 mutants and becomes symmetrical in par-2 and par-5  
polarity mutants3. These pioneering studies in mammalian cell 
culture and C. elegans for the first time established aPKC as a  
potential key polarity protein. Interestingly, pkc-3 was not among 
the six partition defective (par) mutants (that is, par-1 to par-6) 
discovered by Kemphues’ group4 in the seminal genetic screen 
on genes required for A-P polarity in worm one-cell embryos.  
Kemphues’ group, however, soon cloned worm par-6 and  
found that Par-6 colocalizes with Par-3 and aPKC. In fact, all 
three proteins are dependent on each other for asymmetric  
cortical localization in one-cell embryos, suggesting that Par-3 
(ASIP), aPKC, and Par-6 form a complex4.

Par-6 was quickly recognized as an essential protein partner 
of aPKC, as its physical interaction with aPKC was confirmed  
simultaneously by several groups5–7. It is noteworthy that two 
of these studies independently discovered Par-6 on the basis of 
its physical interaction with Cdc42 through yeast two-hybrid  
screens6,7 and Cdc42 also turned out to be an important  
regulator of aPKC. Par-6 and aPKC bind each other through  
interactions between their N-terminal PB1 domains8, and so far 
experimental evidence has been highly consistent that Par-6 and 
aPKC robustly associate and colocalize with each other in vivo 
(reviewed in 9)10. In most cases, aPKC and Par-6 mutually 
require each other for their subcellular locations. Another aPKC  
partner protein p62 (also known as sequestosome 1 or SQSTM1) 
also binds to aPKC through PB1/PB1 interactions. However, 
the aPKC/p62 complex in general is not involved in regulating  
polarity but rather in the signaling pathways such as nuclear  
factor kappa B (NFκB) activation (reviewed in 11).

Phosphorylation targets of aPKC in cell polarity
The role of aPKC, as a kinase, in regulating cell polarity  
centers primarily on its phosphorylation of various targets. It is  
fair to say that the list of aPKC substrates is long and distin-
guished and keeps growing. In this review, we can only briefly  
cover a short list of polarity or polarity-related proteins, includ-
ing Lgl12–15, Numb16,17, Miranda (Mir)18, Par-119–22, Par-223, 
Pins24, Baz/Par-325–27, Dlg28, Par-629, Crb30, Yurt31, Rock132, and  
GSK3β33,34.

A recurring theme of aPKC phosphorylation-dependent  
regulation is that phosphorylation by aPKC often inhibits target 

proteins from localizing to plasma membrane (PM) or cell cortex 
allowing apically or anteriorly localized aPKC to exclude these 
target proteins from opposite PM/cortical domains during the 
process of establishing and maintaining polarity. Phosphorylation- 
dependent regulation of membrane/cortical localization of  
target proteins by aPKC may act through several mechanisms.  
First, phosphorylation by aPKC can directly inhibit a target  
protein from physically binding to PM. It has long been shown  
that phosphorylation by aPKC excludes Lgl, Numb, and Mir 
from the apical PM/cortex to maintain Lgl within the basola-
teral membrane in epithelial cells and Numb and Mir at the basal  
membrane in asymmetrically dividing neuroblasts. Mechanisms 
underlying this phosphorylation-dependent inhibition of PM/ 
cortical localization of Lgl, Numb, and Mir had long been  
puzzling, and only recently has it become clear that Lgl, Numb, 
and Mir are all direct PM-binding proteins containing so-called 
polybasic (also known as “basic-hydrophobic”) domains which 
are highly positively charged because of the abundance of Arg and 
Lys residues14,15. Since the inner surface of PM is the most nega-
tively charged membrane surface inside the cell because of its 
unique enrichment of polyphosphoinositides PI4P and PI(4,5)P

2
 

(PIP
2
)35, positively charged polybasic proteins can specifically 

target to PM through electrostatic interactions36–39. Moreover, 
critical aPKC phosphorylation sites on Lgl, Numb, and Mir all 
reside in their polybasic domains, enabling aPKC phosphoryla-
tion to neutralize the positive charges to directly prevent Lgl, 
Numb, and Mir from binding to PM14,15. Such charge-based and 
phosphorylation-dependent regulation actually is very similar to 
the well-characterized MARCKS protein, in which PM-binding 
polybasic effector domain (ED) is also inhibited by PKC  
phosphorylation40. However, not all identified aPKC phospho-
rylation sites regulating PM localization of Numb and Mir 
are in polybasic domains; thus, mechanisms other than charge  
neutralization may also act to prevent polybasic domains from  
binding to PM. For instance, aPKC phosphorylation could 
induce conformation changes or protein interactions that hinder 
the polybasic domain from binding to PM. In addition, a recent 
study showed that although aPKC phosphorylation of the  
polybasic domain clears Mir from PM at interphase in asym-
metrically dividing neuroblasts, at metaphase phosphorylation 
of the polybasic domain may actually enhance the actomyosin- 
dependent anchoring of Mir to basal PM41.

Besides Lgl, Numb, and Mir, C. elegans Par-2 may also bind 
to PM through aPKC-regulated electrostatic interaction with  
phospholipids. In one-cell embryos, aPKC phosphorylates Par-2  
to exclude it from the anterior cortex23. Interestingly, Par-2  
contains an Arg-rich cluster that is required for both in vitro  
binding to PIP

2
 and PI(3,4,5)P

3
 (PIP

3
) and in vivo association with  

PM/cortex42. Moreover, phosphorylation by aPKC inhibits the  
binding of Par-2 to phospholipids in vitro, although the inhibition 
is unlikely due to direct charge neutralization, as the identified  
aPKC phosphorylation site is outside the Arg cluster. Given that 
Par-2 PM localization does not require actomyosin cortex43, it 
is plausible that Par-2 directly binds to PM through electrostatic  
interaction that can be inhibited by aPKC phosphorylation.

aPKC phosphorylation could also inhibit target protein from  
binding to PM or cortex by inducing binding of scaffolding  
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proteins to target proteins. In Drosophila and mammalian epi-
thelial cells, Par-1 phosphorylation by apical aPKC inhibits 
the PM localization of Par-1 and excludes Par-1 from apical  
membrane20,22. In Drosophila oocyte and worm one-cell embryos, 
aPKC phosphorylation excludes Par-1 from the anterior  
cortex21,23. Such membrane exclusion likely involves phosphor-
ylation-dependent binding of adaptor protein 14-3-3 (Par-5)20,44  
that may potentially mask the PM-binding domain KA1 in  
Par-145. Similarly, in MDCK cells, apically localized aPKC  
phosphorylates Pins to induce 14-3-3 binding that sequesters 
Pins from apical PM and therefore maintains the basolateral  
localization of Pins that is critical for orienting spindles  
horizontally during cell divisions24.

In contrast to phosphorylation of Lgl, Numb, and Mir, phospho-
rylation of Baz/Par-3 and Dlg by aPKC controls their subcellular 
localization by modulating their interactions with other polarity  
proteins. Mammalian Par-3 contains a conserved C-terminal  
domain that can be bound and phosphorylated (at S827, S980 in 
Baz) by aPKC5,46. Biochemically, Baz is unique in the sense that 
it can act as both a substrate and an inhibitor of aPKC5, but the  
molecular mechanisms switching the function of Baz between 
an inhibitor and a substrate of aPKC remain unclear. Recent  
studies showed that the CR3 domain carrying the aPKC phos-
phorylation site of Baz contains two flanking “arms” that bind 
to the kinase domain of aPKC and inhibit its kinase activity47.  
Mutations in these arms turn Baz from an inhibitor into a good 
substrate of aPKC. In 2010, three groups reported that, in  
Drosophila, aPKC phosphorylation on S980 in Baz plays an 
epithelia-specific role to confine Baz localization at adherens  
junction (AJ)25–27. Phosphorylation of S980 inhibits the interac-
tion of Baz with apical polarity protein complexes aPKC/Par-6  
or Sdt/Crb or both, allowing aPKC to clear Baz from api-
cal PM and concentrate it to apical AJ. Supporting the idea that  
binding between Baz and aPKC helps to retain Baz at apical  
PM, non-phosphorylatable Baz-S980A shows expanded locali-
zation on apical PM while Baz-S980A carrying additional muta-
tions in flanking arms of the CR3 domain that no longer binds 
aPKC remains at AJ. However, phosphomimetic Baz-S980E fully  
rescues the maternal and zygotic baz null mutant, suggesting 
that spatial and temporal regulations of aPKC phosphorylation  
on Baz are not essential. In addition, although expression of  
Baz-S980A at moderate levels in baz-deficient follicular cells 
caused apical constriction phenotypes, this phenotype could 
be neomorphic given recent studies showing that Baz is in fact  
dispensable for apical-basal (A-B) polarity in follicular cells48, 
and follicular cells expressing only kinase-dead aPKC show  
normal Baz localization49,50. Overall, more studies are needed to  
understand the role of aPKC phosphorylation of Baz/Par-3 in  
A-B polarization in vivo.

Dlg is the latest member of the polarity protein family that was 
identified as a substrate of aPKC28. In this case, though, aPKC  
phosphorylation does not act to control Dlg PM/cortical  
localization but instead regulates Dlg function in controlling 
spindle orientation during asymmetric cell division. Dlg is a  
so-called MAGUK protein containing three PDZ domains, a SH3 
domain, and a GUK domain. The SH3 and GUK domains can 
intramolecularly or intermolecularly bind to each other into a 

self-inhibited conformation51. Phosphorylation of SH3 domain by  
aPKC disrupts the interaction between SH3 and GUK domains, 
turning Dlg into an open and activated conformation capable of 
binding downstream effectors such as GuKH to orient spindle in 
asymmetric cell division.

Mechanisms by which aPKC regulates other phosphorylation 
targets in cell polarity are less clear. aPKC phosphorylates  
ROCK1 (Rho-associated kinase 1) to inhibit its localization at 
apical cell junctions in MDCK cells, preventing ROCK1 from  
inducing apical constriction32. Phosphorylation of mammalian  
Par-6 by aPKC has been reported to promote epithelial- 
mesenchymal transition in mammalian cells29; however, the 
identified phosphorylation site is not conserved in fly Par-6. In  
migrating cells, aPKC phosphorylates GSK3β to inactivate it at 
the leading edge, allowing adenomatous polyposis coli (APC)-
dependent microtubule reorganization33,34. Finally, the intracellular 
domain of apical polarity protein Crumbs (Crb) was once shown 
to be a substrate of aPKC in Drosophila30, and aPKC phosphor-
ylation of Crb was further proposed to be essential for a feed-
back loop in polarizing Crb and Lgl subcellular localizations52.  
However, non-phosphorylatable Crb knock-in mutants are 
homozygous-viable and have no discernable defects in polarity 
and development53; so even if aPKC does phosphorylate  
Crb in vivo, these phosphorylations are dispensable.

Regulation of aPKC subcellular localization during 
cell polarization
Given the myriad downstream targets that aPKC phosphorylates 
and regulates, how aPKC is regulated during cell polarization 
is obviously critical. Regulation of aPKC involves at least two 
important mechanisms. First, aPKC itself needs to be properly  
localized during polarization so that it can properly control target 
protein localization and activity. Second, during this process,  
aPKC kinase activity also needs to be tightly controlled to ensure 
that aPKC phosphorylates target proteins not only at the right  
localization but also at the right time.

How aPKC achieves polarized subcellular localization seems to 
be heavily cell context dependent. In Drosophila embryonic epi-
thelial cells and neuroblasts as well as in worm one-cell embryos, 
apical/anterior localization of aPKC requires Baz/Par-33,54–56.  
Physical interactions between aPKC and Baz/Par-3 are con-
sidered essential for this process, and two recent studies on the  
polarization of worm one-cell embryos further revealed intricate 
details in Par-3-dependent recruitment of aPKC and Par-6 to 
anterior membrane. Dickinson et al. developed an extremely  
sensitive sc-SiMPull (single-cell single-molecule pull-down) 
assay capable of quantifying Par-3, aPKC, and Par-6 proteins in 
individual complexes directly pulled from one-cell embryos10.  
Their results demonstrated that the previously known oligomeri-
zation of Par-3 is essential for recruiting aPKC and Par-6 into 
large protein clusters that contain multiple Par-3, aPKC, and Par-6  
proteins. The large size of these protein clusters makes them  
more efficiently transported by the actomyosin-based cortical flow  
during the establishment phase of A-P polarity in one-cell  
embryos, facilitating the relocalization of Baz, aPKC, and Par-6 
to anterior membrane. It has also been speculated that cortical  
forces may stretch Par-3 to induce conformation changes that 
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promote its oligomerization, hence the formation of the Par-3/
aPKC/Par-6 cluster57. However, during the maintenance phase 
of A-P polarity, PLK-1 kinase phosphorylates Par-3 to inhibit its  
oligomerization and subsequently resolves the large clusters of  
Par-3 and aPKC/Par-610. This transition from cluster to more  
diffused localization likely releases more aPKC/Par-6 com-
plexes from Par-3 and promotes their interaction with Cdc4258.  
Whereas Par-3 inhibits aPKC kinase activity, Cdc42 activates  
aPKC kinase activity to exclude posterior polarity proteins such  
as Par-1 and Par-2 from the anterior cortex (see below).

It should be noted that, although mechanisms revealed by these 
studies are elegant and detailed, the role of Baz in regulating  
aPKC localization is not universal. For instance, in Drosophila  
follicular cells, aPKC localization to apical PM is Baz inde-
pendent, and the loss of aPKC localization in baz mutant cells  
shown by previous studies is likely due to additional background 
mutations in the particular baz alleles used48. Other proteins 
regulating aPKC/Par-6 subcellular localization but (owing to 
space limitations) not covered in this review include Crb/Sdt59,  
Canoe60, and Morg161. Willin (FRMD6), a FERM domain  
protein, recruits aPKC to apical AJ in MDCK cells32. In MDCK 
cells going through cyst formation in three-dimensional cul-
ture, lumen formation starts with apical enrichment of PIP

3
  

phosphatase PTEN, which enriches PIP
2
 on apical PM by con-

verting apical PIP
3
 to PIP

2
. PIP

2
 specifically attracts Annexin,  

which binds Cdc42, which in turn brings aPKC/Par-6 to apical 
membrane62. Interestingly, aPKC localization in Drosophila  
follicular epithelial cells also requires PIP

2
, as in PI4P5K mutant 

sktl cells defective in PIP
2
 synthesis aPKC becomes mislocal-

ized prior to the mislocalization of Baz63. At present, it is unclear  
whether the mislocalization of aPKC is a direct or indirect  
consequence of loss of PIP

2
. Finally, potential delivery of aPKC 

via dynein/kinesin-based Rab11- or Rab35-mediated vesicle  
trafficking could also be critical for the subcellular localization of  
aPKC64,65.

Control of aPKC kinase activity in establishing cell 
polarity
Besides proper subcellular localization, tight control of aPKC 
kinase activity is equally crucial for aPKC to regulate cell  
polarity. Like other PKC family members, aPKC protein alone 
is considered self-inhibited because of the binding between its  
pseudosubstrate region and kinase domain1,66. Although  
conceptually such self-inhibition provides a perfect mechanism 
for selectively activating aPKC in a spatial-temporal pattern 
during polarization, it has been shown that aPKC protein puri-
fied from Sf9 cells shows 10% kinase activity compared with 
the truncated kinase domain, which is considered 100% active66.  
Thus, aPKC has quite a high basal kinase activity, which also 
needs to be properly inhibited. However, experimental evidence  
regarding the roles of Par-6 and Cdc42 in regulating aPKC  
kinase activity has yielded conflicting models. Based on in vitro 
kinase assays, the Ohno group suggested that Par-6 binds to 
aPKC and such binding both inhibits aPKC kinase activity and 
potentiates aPKC activation when inhibition is released upon  
subsequent binding of Cdc42 to Par-667. Similar results were  
shown by studies using purified aPKC/Par-6 complex from  
mammalian cells68. These results support the pivotal role of  

Cdc42 in controlling aPKC/Par-6 activity in establishing A-P  
polarity in worm one-cell embryos58 and in recruiting aPKC/ 
Par-6 during lumen formation62. Recent studies also showed 
that Cdc42 activation promotes aPKC/Par-6-dependent apical  
expansion during cell junction formation69.

Nonetheless, there is also evidence that binding of Par-6 may  
instead activate aPKC33,70 by inducing allosteric conformational 
changes in aPKC that displace the auto-inhibitory pseudosub-
strate region from kinase domain, a process apparently inde-
pendent of Cdc4270. There is additional evidence suggesting that  
Cdc42-dependent activation of aPKC may not hold true in all 
cell types. In Drosophila embryos expressing only mutant Par-6 
that is defective in binding Cdc42, Lgl is still phosphorylated71.  
Similarly, Baz remains phosphorylated in Drosophila cdc42 
mutant photoreceptors27. In C. elegans, Cdc42 is not required 
for A-B polarization in embryonic epithelial cells, although 
it regulates the epithelial elongation process involving cell 
shape changes and junctional actin dynamics33,72. Tight junc-
tion formation in MDCK cells is sensitive to the disruption 
of aPKC/Par-6 interaction but not to the overexpression of  
dominant-negative Cdc4273.

One possible reason for these discrepancies is that assaying 
aPKC kinase activity was carried out mostly in vitro by 
using either purified proteins or immunoprecipitated aPKC  
complexes66–68,70,74–76. As most aPKC substrates are membrane/
cell cortex bound, the relevance of biochemically reconstituted  
kinase assay to the in vivo regulation of aPKC kinase activity  
probably needs to be considered carefully. Recent experiments  
using in vitro giant unilamellar vesicles (GUVs) suggested that 
membrane binding of either aPKC or target proteins such as  
Lgl77 can be critical in regulating aPKC phosphorylation. For 
instance, Lgl bound to negatively charged GUVs appears to 
be more resistant to aPKC, suggesting that membrane binding  
makes polybasic domain in Lgl less accessible to aPKC for 
phosphorylation. Furthermore, association of aPKC with PM or  
cell cortex could also potentially modulate its kinase activity, as 
negatively charged membrane phospholipids such as PIP

3
 can  

directly stimulate aPKC kinase activity as suggested by in vitro 
assays78. Also notable is that the range of aPKC kinase activity 
change is rather moderate in most in vitro kinase assays,  
oftentimes measured in less than twofold to fourfold of increase/
decrease66–68,74–76,78, in contrast to over 10- or 20-fold changes 
of activity seen in the activation of c/nPKC isoforms1. Whether  
such moderate kinase activity changes (if accurate also in vivo) 
can explain the potent regulatory power of aPKC on target  
proteins remains to be fully investigated. It is noteworthy that, 
by using different purification and reconstitution methods,  
Graybill et al. showed that kinase activity of aPKC/Par-6 com-
plex in vitro can be 10 times higher than aPKC alone70, suggesting 
the possibility of drastic changes of aPKC kinase activity in vivo.  
Overall, it appears that mechanisms regulating aPKC kinase  
activity can be highly dependent on cell types and polariza-
tion processes, likely by involving different sets of regulators of  
aPKC.

In addition, in vivo aPKC studies have been carried out using  
mostly genetic and overexpression methods that in general are 
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not capable of determining the precise role of aPKC kinase 
activity at specific stages of cell polarization. To this end, acute  
manipulation of aPKC activity in vivo would be highly useful 
but can be technically challenging. In C. elegans, such technical  
hurdles were recently overcome by Rodriguez et al.58 by using 
temperature-sensitive aPKCts mutant and drug inhibition in 
permeabilized embryos. These tools allowed experiments to  
acutely inhibit aPKC kinase activity at specific stages of one-
cell embryo polarization, revealing phenotypes different from 
loss of aPKC protein assays by RNAi depletion58. For instance,  
Par-6 remains on the membrane when aPKC kinase activity 
is acutely inhibited, in contrast to aPKC-RNAi embryos in 
which Par-6 is lost from membrane because aPKC and Par-6 are  
mutually dependent on each other for subcellular localizations. 
In addition, although aPKC is lost from membrane in par-3,  
par-6, or cdc42-RNAi embryos, the authors—by fusing aPKC 
to the C1B domain of PKCα—could acutely force membrane  
targeting of C1B-aPKC by adding phorbol ester (phorbol  
12-myristate 13-acetate, or PMA) to mutant embryos. PMA- 
induced PM targeting of C1B-aPKC acutely removed Par-2 
from membrane in par-3-RNAi embryos but not in par-6 or  
cdc42-RNAi embryos. Experiments based on such elegant acute 
manipulation of aPKC kinase activity allowed the authors to 
directly demonstrate in vivo that Par-3 inhibits while Par-6 
and Cdc42 are required for aPKC kinase activity in one-cell  
embryos. They proposed that aPKC/Par-6 complex may cycle 
through Par-3 cluster and Cdc42, a process that involves Par-3 
cluster concentrating aPKC at the anterior PM and Cdc42  
forming localized active Cdc42/aPKC/Par-6 complexes whose 
diffusive nature promotes aPKC phosphorylation on posterior  
polarity proteins. However, at present, direct experimental  
evidence supporting the cycling of aPKC between Par-3 and  
Cdc42 complexes remains to be established.

Concluding remarks
In the past two decades, we have witnessed tremendous 
progress in revealing the important role of aPKC in cell polarity.  
Nonetheless, several key questions remain. First, although the  
list of aPKC targets keeps growing longer, understanding the  
details of discrete regulatory events induced by aPKC phos-
phorylation and integrating them into the dynamic cellular  
processes leading to cell polarization are still highly chal-
lenging. Second, conflicting results regarding the regulation 
of aPKC kinase activity need to be reconciled, hopefully by  
discovering new molecular mechanisms on spatial and temporal  

control of aPKC kinase activity during cell polarization. A major 
obstacle appears to be that, except for the kinase domain, no 
protein structure data are available for the whole aPKC protein, 
making it difficult to determine how aPKC undergoes necessary  
conformation changes upon binding to different regulatory  
proteins such as Par-6, Par-3, and Cdc42. Further complicat-
ing the issue is that aPKC also needs to be phosphorylated to  
become kinase-active1, and few studies have queried this  
phosphorylation-based regulation of aPKC in vivo during cell 
polarization49. In addition, there is evidence suggesting the  
kinase-independent function of aPKC in cell polarity49, which 
has been much less explored. Finally, PM/cortical localization of  
aPKC is critical for its function79, but more studies are needed 
to determine how aPKC gets localized to PM/cell cortex. For  
instance, aPKC PM/cortical localization is sensitive to hypoxia14 
and loss of phospholipids such as PIP

2
63, but mechanisms under-

lying such unexpected hypoxia/phospholipid sensitivity and 
its significance in aPKC regulation and function are currently  
unknown. Recent studies in C. elegans one-cell embryos using  
sc-SiMPull10, acute pharmacological manipulation taking advan-
tage of permeabilized embryos58, and sophisticated live imaging 
and physical modeling57 are exemplary in terms of delineating 
the molecular mechanisms controlling the aPKC function and  
kinase activity in A-P polarization. Adapting these approaches 
to other polarity model systems such as Drosophila epithelia 
may be challenging but will be highly useful. Further developing  
novel techniques such as optogenetic tools80–82 and establishing 
more sophisticated cell polarity model systems will certainly be a 
great help to advance our understanding of aPKC.
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