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Key Points

• 161533 TriKE–treated
MDS NK cells prolifer-
ate and become
activated to overcome
tumor-induced NK cell
dysfunction.

• IL-15 induces the
inhibitory checkpoint
TIGIT on NK cells, but
not when IL-15 is
presented in the con-
text of 161533 TriKE.

Myelodysplastic syndrome (MDS) is a clonal heterogeneous stem cell disorder driven by

multiple genetic and epigenetic alterations resulting in ineffective hematopoiesis. MDS

has a high frequency of immune suppressors, includingmyeloid-derived suppressor cells

(MDSCs), that collectively result in a poor immune response. MDSCs in MDS patients

express CD155 that ligates the T-cell immunoreceptor with immunoglobulin and ITIM

domain (TIGIT) and delivers an inhibitory signal to natural killer (NK) cells. To mediate a

productive immune response against MDS, negative regulatory checkpoints, like TIGIT,

expressed onMDSNK cellsmust be overcome. NK cells can be directed to lyseMDS cells by

bispecific killer engagers (BiKEs) that ligate CD16 on NK cells and CD33 on MDS cells.

However, such CD16 3 CD33 (1633) BiKEs do not induce the proliferative response in

MDS NK cells needed to sustain their function. Here, we show that the addition of an NK

stimulatory cytokine, interleukin-15 (IL-15), into the BiKE platform leads to productive

IL-15 signaling without TIGIT upregulation on NK cells from MDS patients. Lower TIGIT

expression allowed NK cells to resist MDSC inhibition. When compared with 1633 BiKE,

161533 trispecific killer engager (TriKE)–treated NK cells demonstrated superior killing

kinetics associated with increased STAT5 phosphorylation. Furthermore, 161533

TriKE–treated MDS NK cells had higher proliferation and enhanced NK-cell function

than 1633 BiKE–treated cells without the IL-15 linker. Collectively, our data demonstrate

novel characteristics of the 161533 TriKE that support its application as an immuno-

therapeutic agent for MDS patients.

Introduction

The clonal disease of myelodysplastic syndrome (MDS) is characterized by morphological dysplasia,
ineffective hematopoiesis leading to cytopenias, and risk of transformation to acute myeloid leukemia
(AML).1,2 MDS incidence rates have dramatically increased in the population of the United States from
3.3 per 100 000 individuals from 2001-2004 to 70 per 100 000 annually3,4 and is especially prevalent in
elderly patients (median age of 76 years at diagnosis).2 The median survival of patients with high-risk
MDS is 7 months, as advanced age reduces eligibility for potentially curative allogeneic hematopoietic
cell transplantation (allo-HCT).5 When allo-HCT is not an option, 3 chemotherapeutic agents have been
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approved by the US Food and Drug Administration for MDS. The
hypomethylating agents azacitidine and decitabine reverse tran-
scriptional inhibition of tumor-suppressor and DNA repair genes,
whereas lenalidomide, an angiogenesis inhibitor, diminishes immu-
nomodulation and anti-inflammatory changes.6 Given poor out-
comes in patients who receive current drug therapies, more
research is needed to develop and define novel therapeutic
approaches.7

Natural killer (NK) cells are cytotoxic lymphocytes of the innate
immune system that have been increasingly recognized in immune
surveillance against cancer.8-10 Studies from our laboratory and
others have shown the therapeutic potential of NK cells in the
treatment of cancer. NK-cell function can be augmented by the
use of monoclonal antibody therapies or through novel single-
chain variable fragment (scFv) recombinant reagents termed
bispecific and trispecific killer cell engagers (BiKEs and TriKEs),
which target both the CD16 activating receptor expressed on
mature NK cells and tumor antigens.11-13 We have shown that a
CD16 3 CD33 (1633) BiKE effectively activates blood and
marrow MDS-NK cells to lyse CD331 MDS cells.12 Due to its
prominent role in NK cell development, homeostasis, proliferation,
survival, and activation,14 a novel modified human interleukin-15
(IL-15) crosslinker was genetically engineered into the 1633 BiKE
platform to improve NK-cell function in the tumor microenviron-
ment.13 The modified IL-15 in the 161533 TriKE augmented healthy
donor NK function and corrected posttransplant AML patient NK cell
dysfunction. Additionally, 161533 TriKE improved in vivo NK cell
expansion and tumor control in mice compared with the 1633
BiKE.13 Previously we have shown that soluble IL-15 and antibody
engagement of CD16 increased MDS-NK inhibitory receptor T-cell
immunoreceptor with immunoglobulin and ITIM domains (TIGIT)
expression, rendering canonical NK cells susceptible to myeloid-
derived suppressor cell (MDSC)–mediated suppression15; however,
how TriKE treatment affects TIGIT expression on NK cells remains
unknown.

MDSCs are a heterogeneous population of immature myeloid and
granulocytic cells that acquire immunosuppressive properties.
In humans, monocytic MDSCs are commonly identified by the
expression of CD11b, CD33, and CD14 and lack or low expression
levels of HLA-DR, whereas granulocytic MDSCs express CD33 and
CD15/CD66b with low or no HLA-DR levels.16 MDSC expansion
and activation have been associated with cancer and impaired
immune effector cell function, including NK cells.17-21 In the current
study, we evaluated the effects of an IL-15 linker within a TriKE
(161533) that contained the engager moieties anti-CD16 and anti-
CD33 to determine whether MDS-NK cell dysfunction could be
overcome by this unique configuration.

Material and methods

Patients and healthy donors

Peripheral blood mononuclear cells (PBMCs) were obtained fresh
or cryopreserved from MDS (myelodysplastic syndrome and
myeloproliferative disease) patients (n 5 16) or healthy donors
(HDs) after Ficoll-Paque density gradient purification. Patient
characteristics are listed in Table 1. Blood and patient samples
were obtained from the National Marrow Donor Program/Center for
International Blood and Marrow Transplant Research Repository
and Memorial Blood Bank (Minneapolis, MN). All samples were

deidentified before receipt, and use was approved by the University
of Minnesota and National Marrow Donor Program institutional
review boards in accordance with the Declaration of Helsinki.

Cell isolation

Peripheral blood CD331 monocytes from HDs were isolated
by magnetic positive selection (Miltenyi Biotec) and seeded at
2 3 106/mL in RPMI medium containing 10% heat-inactivated
fetal bovine serum (FBS), IL-6 (10 ng/mL, Sigma-Aldrich), and
granulocyte-macrophage colony-stimulating factor (10 ng/mL, R&D
Systems) for 1 week and refreshed on day 3 of culture to generate
MDSCs.22 NK cells were isolated from overnight-rested PBMCs by
negative depletion (STEMCELL Technologies or Miltenyi Biotec).
Control monocytes were isolated from overnight-rested PBMCs
using anti-CD33 microbeads.

BiKEs and TriKEs

161533 TriKE molecule generation and protein production were
described previously.13 In brief, a fragment encoding a G4S linker
juxtaposed the VL and VH genes of the scFv. The 161533 NcoI/XhoI
gene fragment encoded a start codon consisting, in sequen-
tial fashion, of an anti-human CD16 scFv,12 a 20-amino-acid
flanking sequence (PSGQAGAAASESLFVSNHAY), human IL-15
with N72D substitution,23 a 7-amino-acid flanking sequence
(EASGGPE), and an anti-CD33 scFv. Plasmid was transformed
into the Escherichia coli strain BL21 (DE3) (EMD). Following 2-hour
incubation, bacteria were harvested and cell pellets suspended and
homogenized using a polytron homogenizer. After sonication and
centrifugation, pellets were extracted and inclusion bodies exten-
sively washed to remove endotoxin. Proteins were refolded using
a sodium N-lauroyl-sarcosine air oxidation method.13 Refolded
161533 was purified by fast protein liquid ion exchange chroma-
tography (Q Sepharose Fast Flow).13

Table 1. Patient characteristics

Patient number Diagnosis Age, y Sex Disease status

1 RAEB 22 Female Advanced

2 RAEB 53 Female Advanced

3 CIM 63 Female Early

4 RA 59 Female Early

5 RA 46 Male Early

6 RAEB 27 Male Advanced

7 Chronic MPS disorder 42 Male Early

8 RA 37 Female Early

9 RARBT 24 Male Advanced

10 RAEB 50 Female Advanced

11 CMML 55 Male Advanced

12 OMM 32 Male Early

13 RAEB 57 Male Advanced

14 RARBT 52 Male Advanced

15 RA 41 Female Early

CIM, chronic idiopathic myelofibrosis; CMML, chronic myelomonocytic leukemia; OMM,
other myelodysplasia or myeloproliferative; RA, refractory anemia; RAEB, refractory anemia
with excess blasts; RARBT, refractory anemia with excess blasts in transform.
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Flow cytometry analysis

Cryopreserved PBMCs from MDS patients and HDs were cultured
overnight in medium supplemented with 1633 BiKE (50 nM) or
161533 TriKE (50 nM) or left untreated. NK cell degranulation,
interferon-g (IFN-g) production, and proliferation (Ki67) were
evaluated after 6-hour stimulation with HL60 (20:1, adjusted to
mean NK cell frequencies) prior to staining. Cells were stained with
fluorochrome-conjugated antibodies as described in supplemental
Table 1. Detection of CD107a (degranulation), Ki67 (proliferation),
and IFN-g production was performed after fixation and permeabi-
lization (eBioscience) according to the manufacturer’s instructions.
Cells were treated with the protein transport inhibitors Golgistop
and Golgiplug 6 hours before staining. Alternatively, purified NK
cells from HDs were cocultured with monocytes or MDSC for 5
days in the presence of IL-15 (10 nM, equivalent molar concentra-
tion to the IL-15 in TriKE), BiKE (50 nM), BiKE1IL-15, or TriKE
(50 nM) and analyzed for NK-cell function. All cells were acquired by
LSRII and analyzed by FlowJo 10.0.

Flow cytometry–based MDS target killing assay

Purified fresh HD NK cells and cryopreserved bone marrow (BM)
samples from MDS patients were overnight rested in RPMI
supplemented with 10% FBS for recovery. NK cells were added
to CellTrace violet (5 mM, Invitrogen) fluorescently labeled MDS BM
targets, and target killing was evaluated using Live/Dead dye
(Invitrogen) after a 6-hour incubation at an effector to target (E:T)
ratio of 2:1. Cultures were treated with IL-15 (30 nM), 1633 BiKE
(30 nM), or 161533 TriKE (30 nM) or left untreated throughout the
assay. MDS blast killing was assessed by gating on an intermediate
CD45 and SSC low population, further gated to CD1171 and CD341

cells within the CellTrace-positive population and assessed for the
proportion of Live/Dead1 cells.

Phosflow

NK cells from HDs were stimulated with IL-15 (10 nM, equivalent
molar concentration to the IL-15 in TriKE), BiKE (50 nM), or TriKE
(50 nM) in the presence or absence of HL60 for 25 minutes
before analysis of STAT5 phosphorylation. Cells were fixed and
permeabilized (eBioscience) and stained for pSTAT5 (pY694) (BD
Biosciences).

Live single-cell analysis

Cells. The HL60 cell line was maintained in RPMI 1640
supplemented with 10% FBS, 50 U/mL penicillin, and 50 mg/mL
streptomycin. Human NK cells were freshly isolated from PBMCs of
anonymous HDs by negative depletion (Miltenyi biotech). Isolated
NK cells were cultured in RPMI 1640 supplemented with 10% FBS,
50 U/mL penicillin, and 50 mg/mL streptomycin for 12 to 24 hours
before microwell imaging experiments.

Microwell assay and imaging. NK cells were stained with
0.5 mM CellTrace calcein red-orange AM and HL60 target cells
with 1 mM CellTrace calcein green AM and 5 mM Far Red DDAO-SE
or 2.5 mM CellTrace far red (all from Thermo Fisher Scientific)
at 37°C for 10 to 20 minutes. Stained NK cells and stained target
cells were seeded onto a silicon-glass microchip divided into
2 separate compartments containing 50 nM of either 161533
TriKE or 1633 BiKE. Each compartment covered at least 2500
microwells with dimensions of 50 3 50 3 300 mm3. Imaging of the
microchip was performed using a Zeiss LSM 880 microscope

equipped with an environmental chamber kept at 37°C and
5% CO2. Images were acquired using a 103 objective every
3 minutes for 9 hours.

Image analysis. The number of NK cells, as well as live and
dead target cells in each well, was quantified automatically by a
previously described software routine developed in MATLAB.24

Briefly, the microwells were segmented using the bright-field
channel. Thresholds and a Gaussian filter were applied to the
fluorescence channels. Target cells were detected using an
algorithm based on the circular Hough transform.25 NK cells
were detected by an algorithm for finding regional intensity peaks
corresponding to single NK cells.25 NK cell–induced target cell
death is accompanied by leakage of the calcein dye and loss of the
green fluorescence signal. An automated algorithm detecting drops
in the total calcein intensity from each well was used to find the time
points of individual killing events. Tracking individual NK cells and
adding up the distance migrated between each consecutive time
point and dividing with the elapsed time calculated the average
migration speed.

Live kinetic analysis of tumor cell killing

HL60 (acute promyelocytic leukemia) and MV-4-11 (biphenotypic B
myelomonocytic leukemia, authenticated from ATCC, used within
3 months of the first passage) were labeled with red fluorescent
CellTracker (5 mM, Invitrogen). For analysis of tumor cell killing,
HL60 and MV-4-11 cells were plated at a concentration of 13 104

cells per well in 96-well flat bottom plates. Prior to analysis, NK cells
were added at a 3:1 ratio onto the target cells. The number of killed
target cells was monitored by hourly fluorescence imaging over
48 hours using an IncuCyte Live Cell Analysis System (Essen
BioScience). Percent killing was quantified using IncuCyte Zoom
software (Essen BioScience) and normalized to the number of
spontaneous cells death in the target cell only control group
according to the following calculation formula: (% killing 5 (overlap
counts/red counts) 3 100).

Statistical analysis

All data were first analyzed in the software mentioned above and
summarized by Prism Version 6 software (GraphPad). All data were
first tested for normal distribution. Thereafter, differences among
groups were analyzed by a Student t test, 1- or 2-way analysis
of variance (ANOVA), or nonparametric Mann-Whitney U tests
(as indicated in the figure legends). Representative histograms or
images were chosen based on the average values.

Results

161533 TriKE does not increase TIGIT expression in

HD or MDS NK cells

We have previously shown that MDSCs are increased in MDS
patients and suppress NK-cell function. Suppression of MDS-
NK–cell function occurs as the result of high expression of the
TIGIT ligand CD155 on MDS-MDSCs, which triggers inhibition
of NK-cell function via TIGIT engagement.15 In the present study,
we sought to examine whether 161533 TriKE would induce TIGIT
expression in NK cells as seen with soluble recombinant IL-15.
PBMCs from HDs and MDS patients were activated overnight
with IL-15 or TriKE or left untreated alone or in the presence of
HL60 target cells before analysis of TIGIT expression. In striking
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contrast to soluble IL-15 stimulation, IL-15 in the form of 161533
TriKE did not induce TIGIT expression on NK cells, as evidenced
by significantly lower mean fluorescence intensity (MFI) in the
absence of HL60 targets (731 6 179 vs 250 6 94, P 5 .04;
Figure 1A, top and middle left panel). Similar findings were
observed in MDS patient samples (MFI 790 6 207 vs 188 6 51,
P 5 .02; Figure 1A, bottom left panel). Incubating PBMCs from
HDs and MDS patients with HL60 target cells together with
IL-15 induced significantly higher TIGIT expression compared
with 161533 TriKE1HL60 in both HD (MFI [n5 6] 10176 63 vs
3426 68, P, .0001; Figure 1B, top and middle right panel) and
MDS NK cells (MFI [n 5 11] 1105 6 100 vs 200 6 30, P ,
.0001; Figure 1B, bottom right panel). Stimulating PBMCs from
MDS patients with 1633 BiKE did not induce TIGIT expression
on NK cells (supplemental Figure 1A). In contrast, treating
PBMCs with a combination of 1633 BiKE and exogenous
soluble IL-15 drastically increased TIGIT expression on NK
cells (supplemental Figure 1A). These data indicate that in
the presence of tumor cells, 1633 BiKE or 161533 TriKE does
not elevate NK cell TIGIT expression compared with soluble
recombinant IL-15.

161533 TriKE overcomes MDSC-mediated immune

suppression, facilitating effective NK cell lysis of

tumor cells

NK cells stimulated with 1633 BiKE are able to kill in vitro–
generated CD331 MDSCs as well as autologous CD331 MDS
targets in a 4-hour cytotoxicity assay.12 Given the low induction of
TIGIT expression following 161533 TriKE treatment, we sought to
investigate whether 161533 TriKE treatment of NK cells would
overcome MDSC-mediated suppression in a longer-term 5-day
assay.

Purified NK cells from HDs were cultured with monocytes or in
vitro–generated MDSCs in the presence of IL-15, 1633 BiKE, or
161533 TriKE for 5 days prior to exposure to HL60 targets. NK
cell degranulation, IFN-g production, and proliferation were
suppressed in the presence of MDSCs and IL-15 in contrast to
monocyte cocultures (CD107a: 40% 6 2% vs 56 6 3, P 5 .001;
IFN-g: 20 6 3 vs 44% 6 5%, P 5 .005; Ki67: 29% 6 4% vs
51% 6 2%, P 5 .001; Figure 2A). Culture with 1633 BiKE alone
without cytokine supplementation resulted in overall low NK
cell activity as a result of poor NK cell survival (supplemental
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Figure 1B). In contrast, treating NK cells with 161533 TriKE
maintained NK-cell function and proliferation in the presence
of MDSCs (Figure 2A). Short-term overnight priming of NK cells
with IL-15 or 161533 TriKE followed by washing and then coculture
with MDSCs for 5 days did not rescue NK cells from MDSC
suppression. The data show that 161533 TriKE is required
throughout the duration of the 5-day culture to resist MDSC
suppression, indicating a requirement for a sustained IL-15
survival signal (supplemental Figure 1C).

The ability of 161533 TriKE to provoke NK cell escape from
suppression was evaluated further in a 30-hour live imaging
assay using the IncuCyte Zoom platform (Figure 2B-C). Labeled
malignant CD331 myeloid cell lines that are intermediate (HL60)
or highly (MV-4-11)26 resistant to resting NK cell killing were
plated with NK cells in the presence of MDSCs or monocytes and
the indicated drugs. TriKE alone was the only reagent treatment
able to maintain normal NK cell cytotoxicity against HL60 and
MV-4-11 targets in the presence of MDSCs (Figure 2B-C).

Collectively, these data indicate that soluble IL-15 priming, even
in the presence of BiKE, is insufficient to rescue NK cells from
immune suppression, in contrast to IL-15 in the context of the
TriKE reagent.

161533 TriKE induces robust NK cell killing dynamics

To better understand the changes in NK-cell function mediated
by TriKE vs BiKE, state-of-the-art microchip-based live-cell imaging
was used to evaluate NK-cell function and target dynamics.
Unstimulated NK cells and HL60 target cells were stained with
distinct CellTracker dyes. The stained NK cells and target cells
were then seeded onto a silicon-glass microchip, which was
divided into 2 separate compartments containing either 161533
TriKE or 1633 BiKE and assessed by live imaging for 9 hours.
Based on single-cell analysis, we found that 161533 TriKE had
significantly higher NK cell cytotoxicity against HL60 target cells
compared with 1633 BiKE (58% 6 3% vs 38% 6 2%, P 5 .009,
Figure 3A). NK cells cultured in the presence of 161533 TriKE
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killed their target remarkably faster than 1633 BiKE incubation
(time to first kill: 109 6 6 vs 146 6 6 minutes, P , .0001;
Figure 3B-C, left). NK cells treated with 161533 TriKE were more
mobile than NK cells treated with 1633 BiKE (average migration
speed: 1.4 6 0.01 vs 1.8 6 0.01 mm/min, P , .0001; Figure 3C,
right). Furthermore, 161533 TriKE treated NK cells were more
likely than controls to be serial killers (Figure 3D; supplemental
movie). Our data show that 161533 TriKE robustly improved NK
cell killing dynamics, suggesting that IL-15 and CD16 signaling
together contribute to the enhanced function of 161533 TriKE–
treated NK cells.

161533 TriKE elicits strong STAT5 phosphorylation

A STAT5 phosflow assay was employed to investigate whether the
IL-15 moiety in TriKE induces a similar type and magnitude of IL-15
receptor downstream signaling as soluble recombinant IL-15.
Purified NK cells were cultured in medium, IL-15, BiKE, BiKE and
IL-15, or TriKE with or without HL60 target cells for 25 minutes
before analysis of STAT5 phosphorylation. IL-15 forms a complex
with IL-15Rb and the common g-chain on the surface of NK cells to
induce a signaling cascade resulting in the recruitment and
activation of the transcription factor STAT5, which is required for

a number of essential NK-cell functions.27 In the absence of targets,
161533 TriKE and soluble IL-15 activated STAT5 phosphorylation
to a similar extent (pSTAT5 MFI 592 6 25 vs 586 6 25), whereas
1633 BiKE alone and media controls did not induce STAT5
phosphorylation (Figure 4; see supplemental Figure 2A for the
gating strategy used). In contrast, in the presence of HL60 target
cells, BiKE induced significant NK cell STAT5 phosphorylation
compared with NK cells in the absence of target cells (MFI 595 6
20 vs 513 6 16, P 5 .001). However, target cells alone did not
induce pSTAT5 in NK cells, indicating that CD16 ligation can
induce of STAT5 phosphorylation when crosslinked to targets. As
further proof of this, ligating CD16 with an agonistic anti-CD16 on
purified NK cells augmented STAT5 phosphorylation compared
with the medium control (supplemental Figure 2). 161533 TriKE
induced higher levels of STAT5 phosphorylation in NK cells in the
presence of target cells than exogenous IL-15 and target cells (MFI
670 6 30 vs 600 6 32, P 5 .03). In both settings (with or without
targets), 161533 TriKE and 1633 BiKE plus IL-15 induced similar
STAT5 phosphorylation. Collectively, the data demonstrate STAT5
phosphorylation synergy mediated by the TriKE or IL-15 plus BiKE
when targets cells are present to induce an immune synapse that
triggers CD16 in conjunction with IL-15.
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and HL60 target cells with distinct dyes for 10 to 20 minutes. The blue-stained NK cells and green-stained target cells were seeded onto a silicon-glass microchip divided

into 2 separate compartments containing 161533 TriKE or 1633 BiKE. Imaging of the microchip was performed using a Zeiss LSM 880 microscope equipped with an

environmental chamber kept at 37°C and 5% CO2. Images were acquired using a 103 objective every 3 minutes for 9 hours. (A-D) NK cell cytotoxicity (A), representative

images of target cell killing (red cells) at different time points (B), time to first kill and migration (C), and serial killing (D) are shown from 5 independent experiments

(n 5 1031 NK cells for BiKE and n 5 1202 NK cells for TriKE). Data were quantified by MATLAB, and statistical analyses were performed by paired Student t test (A-B)

or Mann-Whitney U test (D).
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161533 TriKE restores NK-cell function in patients

with MDS

Studies from our group have previously shown that 1633 BiKE
enhances NK cell responses to HL60 cells and endogenous
CD331 MDS targets12 and that 161533 TriKE can stimulate NK
cell proliferation in post-HCT samples without the addition of
exogenous soluble IL-15.13 Having shown robust killing dynamics
and maintenance of normal NK cell activity in the presence of
immune-suppressive cells through low expression of the inhibitory
checkpoint TIGIT in TriKE-treated NK cells compared with soluble
recombinant IL-15, the ability of 161533 TriKE to restore NK cell
proliferation and function in samples from MDS patients with active
disease was investigated next.

A dramatic decrease of circulating NK cell frequencies in MDS
patient peripheral blood samples, when compared with HD
samples, was noted in this cohort (1.2% 6 0.3% [n 5 14] vs
13%6 2% [n5 7], P, .0001; Figure 5A). This is consistent with
our earlier study in MDS patients.12 Thus, strategies are needed
to support NK cell proliferation in these patients. Therefore,
PBMCs from HDs and MDS patients were cultured overnight in
medium alone or in the presence of 1633 BiKE or 161533 TriKE.
HL60 target cells were then added and adjusted to a 20:1 E:T

ratio 6 hours before analysis. The gating strategy is shown in
supplemental Figure 3. As previously reported, MDS-NK cell
degranulation and IFN-g production were enhanced by 1633
BiKE compared with cells cultured with target cells alone12

(CD107a 29% 6 2% vs 15.5% 6 3%, P , .0001; IFN-g 17% 6
4% vs 11% 6 3%, P 5 .002; Figure 5B). However, 1633 BiKE
did not enhance proliferation of MDS or HD NK cells (Figure 5B-
C). In marked contrast, 161533 TriKE has a superior effect on
MDS-NK cell responses compared with 1633 BiKE (CD107a
37% 6 3% vs 29% 6 2%, P 5 .001; IFN-g; 27% 6 1% vs 17%
6 4%, P 5 .0001; Figure 5B). In addition, 161533 TriKE
significantly enhanced both MDS (Ki67 21%6 3% vs 11%6 2%
vs 12%6 3%, P# .025) and HD-NK cell proliferation (Ki67; 21%
6 2% vs 12% 6 2% vs 16% 6 2%, P # .03) compared with
PBMCs plus target cells alone or PBMCs plus targets and 1633
BiKE (Figure 5B-C). Treating HD PBMCs with 161533 TriKE and
exogenous IL-15 had no synergistic effect on NK-cell function,
suggesting that IL-15 signaling with the TriKE was already
saturated (supplemental Figure 4). Allogeneic killing of patient
BM MDS blasts was evaluated using flow cytometric cytotoxicity
assays. There was a significant increase in NK cell killing of
primary MDS blasts when treated with 161533 TriKE compared
with no treatment or exogenous IL-15 alone (Figure 6). Our data
suggest that incorporation of the IL-15 molecule into TriKE
enhances NK cell antitumor activity and proliferation in MDS
patient samples.

Discussion

MDS is characterized by multiple genetic and epigenetic alterations
that result in a morphologic heterogeneous disease. A diverse set of
antigens helps the immune system distinguish tumor cells from their
normal counterparts. However, tumor cells can escape the immune
response through recruitment of immune suppressive cells and
increased expression of immune checkpoints. Earlier studies have
shown that NK cells play an important role in the immune
surveillance against tumors,8,28 yet tumor-induced immune sup-
pression may dampen the efficacy of NK cell therapies against
hematological malignancies.29

Several reports have shown the role of MDSCs in immune
suppression in the tumor microenvironment and association
with poor immune effector antitumor responses.20,30,31 There-
fore, targeting MDSCs or strategies to resist their suppression
mechanisms are desired. In this study, we show a unique
feature of 161533 TriKE molecules; besides improving NK cell
killing dynamics, these molecules induce NK cell resistance to
MDSC-mediated suppression through a mechanism that is
different than CD33-targeted killing of MDSC directly. 161533
TriKE, unlike soluble recombinant IL-15, 1633 BiKE plus IL-15,
and tumor target cell stimulation, does not induce the
expression of the inhibitory immune checkpoint TIGIT on NK
cells, which at least partially explains the NK cell resistance
to MDSC suppression. We have previously shown that blocking
TIGIT from the interaction with CD155 on MDS-MDSCs res-
cues NK-cell function.15 The lack of induced TIGIT expression
could be explained by local and directed delivery of IL-15
instead of systematic activation of NK cells in the case of soluble
IL-15. This suggests that IL-15 in the context of the TriKE is
being presented differently. This concept has been suggested
by others. A study by Romano et al has shown that IL-15
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crosspresentation to T cells breaks the tolerance against
tumors expressing self-antigens compared with exogenous
soluble IL-15.32 TIGIT expression is associated with poor T cell
antitumor responses and MDSC-mediated suppression of NK
cells.15,33,34

The main rationale for using IL-15 is that it is the natural homeostatic
factor known to induce differentiation, enhance NK cell survival,
and stimulate activation and proliferation. While other cytokine
linkers might be considered, they may be less optimal. For
example, IL-2 increases regulatory T cells in cancer patients
that correlate with worse prognosis. Other cytokines, such as
IL-12/IL-18, can certainly increase cytokine production by NK
cells but exhibit less proliferative potential and have higher
safety concerns for human therapy. Lastly, the clinical devel-
opment of IL-15 supports the in vivo activity on human NK cells
and was the basis for our choice as the linker in the TriKE
molecule.35-37

NK cells are dramatically decreased in patients with MDS,
making them insufficient to control established disease. Thus,
novel strategies to manipulate NK cell proliferation, persis-
tence, and functional maintenance are needed in the MDS
setting. Allo-HCT can be curative for MDS patients. Neverthe-
less, many patients are ineligible for transplantation because
of the risks associated with allo-HCT, limiting its availability to
the majority of the patients.38 Although alternate therapies
exist, the clonal heterogeneity in MDS leads to high relapse
rates and risk of mortality as well as progression to AML.39,40

Therefore, new therapeutic approaches are highly sought. In
this study, we show that 161533 TriKE can restore NK-cell
function, including proliferation and targeting of primary MDS
blasts.

We and others have reported the efficacy of BiKEs and bispecific
antibodies in augmenting antitumor activity.12,41-43 Here, we
show that 161533 TriKE provokes unique killing kinetics in NK
cells, highlighted by an increase in serial killing, higher target
cytotoxicity, and faster NK cell migration dynamics compared with
NK cells treated with 1633 BiKE. These findings are explained by
the addition of the modified IL-15 linker. These properties support
the use of TriKE as an immunotherapeutic agent with several
advantages, including targeting and reduced TIGIT upregulation,
over IL-15 monotherapy in the MDS setting. As a cautionary note,
similar to chimeric antigen receptor T cells, depletion of myeloid
cells has to be considered when targeting CD33, which is also
present at lower levels on normal myeloid progenitors. In addition,
CD16 is expressed on other immune cells such as neutrophils,
monocytes, and macrophages, and the signaling effect on those
cells by 161533 TriKE needs to be considered. The expected
short half-life of the TriKE will likely make off-target problems more
manageable. These issues will become clear after testing of the
TriKE clinically, which is projected to start in quarter 3/4 of 2018.
Collectively, 161533 TriKE shows therapeutic promise in the
MDS setting, with unique CD16/IL-15 signaling to enhance NK
cell killing dynamics without provoking inhibitory checkpoint
expression.
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