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Key Points

•Graft-versus-host
effects may lead to
HIV-1 reactivation and
cell death of infected
pre-HCT CD41 T cells.

•Natural killer cell acti-
vation correlates with in
vitro HIV-1 transcrip-
tional activity in the
setting of HCT.

Introduction

Despite the success of antiretroviral therapy (ART) to suppress plasma HIV RNA, infected cells persist
and constitute a long-lived HIV reservoir.1 Allogeneic hematopoietic cell transplantation (HCT) is 1 of the
few interventions that leads to substantial decreases in the burden of HIV-infected cells in individuals
with established viral reservoirs.2-8 HIV DNA decreases rapidly following HCT in individuals who remain
on ART, but a detailed understanding of the immune mechanisms leading to reduction in viral reservoir
size is lacking. Studies investigating these mechanisms have the potential to provide insight into the
development of HIV curative strategies.

Early beneficial graft-versus-host responses, such as those that permit donor cells to target residual
host tumor or hematopoietic cells after HCT, are mediated, in part, by the innate immune system. Natural
killer (NK) cells reconstitute rapidly following HCT and have been shown to be alloreactive against
HLA-matched recipient cells.9-12 An increase in the proportion of total and activated NK cells and
increased frequency CD562CD161 NK cells, a subset that has been associated with improved
cytotoxic function, were observed following HCT in 1 report of an HIV-infected individual.8 This individual
experienced prolonged ART-free remission (288 days) of a similar duration to what we previously
reported on the “Boston participant B.”5,8 Although beneficial graft-versus-host effects are involved in
nonspecific immune targeting of cells capable of harboring HIV, it is possible that there is selective
targeting of HIV-infected, and transcriptionally active, cells. To better understand the relationship
between HIV-1 infection, viral reactivation, and lymphocyte activity before and after HCT, we analyzed
NK-cell phenotypes and responses in 3 HIV-infected allogeneic HCT recipients. Given the rarity of HCT
in HIV-infected individuals, we also designed and implemented an ex vivo assay to determine the
relationship between HCT donor-derived NK and effector T-cell responses with laboratory-infected
pretransplantation recipient CD41 T cells.

Methods

First, we implemented multicolor flow cytometric assays to characterize lymphocyte phenotypes in
longitudinal samples obtained from 3 HIV-infected allogeneic HCT recipients. The Harvard Cancer
Center’s Institutional Review Board approved the study and written informed consent was obtained from
participants. Next, we designed and implemented a flow cytometry–based assay for the study of
posttransplantation NK- and T-cell activity against laboratory-infected pre-HCT recipient CD41 T cells.
Cells were obtained from uninfected HCT recipients with graft-versus-host-disease but no tumor
relapse. Pre-HCT CD41 T cells were isolated and purified from banked peripheral blood mononuclear
cells (PBMCs), activated, and infected with an iGFP-gag HIV viral strain,13,14 based on prior methods of
establishing viral latency.15 Pre-HCT CD41 T cells were then stained with proliferation dye and
coincubated with PBMCs obtained from the same individuals 9 to 12 months after HCT following
development of donor cell chimerism. The HIV construct included an enhanced green fluorescent
protein (eGFP) insert in an open reading frame of gag to minimize perturbation of regulatory genes
(eg, nef). Infected pre-HCT CD41 T cells were expanded using aCD3/aCD28 antibodies followed by
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resting in the presence of ART (raltegravir/efavirenz) over 6 weeks. We
achieved initial infection rates of.70%, with residual eGFP production
in,5% following resting.Of note, restimulation of these resting, infected
cells using aCD3/aCD28 antibodies led to a desired fivefold to 10-fold
increase in the frequency of eGFP-expressing cells. Control experiments
were performed by infecting post-HCT engrafted CD41 T cells infected
with HIV-GFP (donor-donor controls) and incorporated unmodified total
PBMCs for each time point (internal controls). Lymphocyte activation
(CD381/HLA-DR1), proliferation (Cell-Trace Violet), viral reactivation
(GFP expression), and cell viability were measured over 2 weeks.

Results and discussion

Two HIV-infected HCT participants (Pts 1 and 2) received reduced-
intensity conditioning for Hodgkin and non-Hodgkin lymphoma,
respectively, and a third (Pt 3) received myeloablative conditioning
for acute myeloid leukemia (AML); all had evidence of cytomega-
lovirus (CMV) infection prior to stem cell transplantation (SCT).
Pts 1 and 2 experienced a 3.2 log10 and 4 log10 reduction in

CD41 T-cell–associated HIV-1 DNA 5.8 and 6.4 months following
HCT. Pt 3 experienced a 1.1 log reduction in HIV-1 DNA 1 month
following transplantation. In contrast, all participant samples demon-
strated evidence of HIV reactivation shortly following SCT (Pt 1
experienced new low-level viremic episodes despite continued ART
following SCT and Pt 2 and Pt 3 experienced transient 1.7- to 13-fold
increases in cell-associated RNA levels 40 to 50 days following
SCT, respectively). All individuals passed away from tumor relapse or
transplant-related morbidity following the last collection time points.
We observed increased frequencies of total NK cells, a decrease in
the percentage of more differentiated CD56dimCD161 NK cells, a
decreased frequency of CD571 NK cells, and decreased frequencies
of NK cells expressing inhibitory killer-cell immunoglobulin-like
receptors (KIRs) (Figure 1). Two individuals, 1 who received myeloa-
blative and 1 who received reduced-intensity conditioning regimens,
demonstrated increased percentage of less mature CD56bright NK cells.
An increased frequency of NK cells expressing CD107a (surrogate
marker for cytotoxic degranulation), and interferon-g (INF-g) in
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Figure 1. NK phenotype and response before and after allogeneic HSCT in 3 HIV-infected individuals on suppressive ART. (A) The percentage of lymphocytes

that are NK cells, (B) percentage of CD56dimCD161 NK cells, (C) percentage of CD562CD161 NK cells, (D) percentage of CD56brightCD162 NK cells, (E) percentage of

CD571 NK cells, and (F) percentage of NK cells expressing inhibitory KIRs are shown. The percentage of cells expressing a surrogate marker for cytotoxic degranulation

(CD107a) and INF-g in response to MHC-deficient target cells are shown in panels G and H, respectively. Participants (Pt) 1, 2, and 3 experienced decrease in CD41 T

cell-associated HIV-1 DNA levels 5.8, 6.4, and 1 month following HSCT, respectively. Post-HSCT chimerisms for Participants 1, 2, and 3 were 94% donor leukocyte, 89%

donor leukocyte (24% Donor T-cell), and 87% donor leukocyte, respectively. M, myeloablative conditioning; RIC, reduced-intensity HSCT conditioning.
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response to ex vivo stimulation by major histocompatibility com-
plex (MHC)-deficient 722.221 target cells were also observed in
2 participants. Although a rejuvenated pool of alloreactive T cells
is commonly observed in HIV-uninfected HCT recipients, our
findings have potential relevance in HIV-infected individuals.
For example, an increased frequency of mature CD56dimCD161

NK cells have been observed in the setting of chronic HIV
infection,16-18 which may represent hyporesponsive NK cells.19,20

Replacement with a rejuvenated, alloreactive NK cell pool
may allow more efficient HIV-infected cell targeting. Of note, 1

recently reported HIV-infected HCT recipient experienced an
increase in the frequency of CD562CD161NK cells which have been
associated with improved cytolytic function.8 However, only 1 of our
participants experienced an increased proportion of this NK-cell
subset following HSCT. Furthermore, 2 transplant recipients experi-
enced increasing frequency of less mature CD56bright NK cells.
Overall, rapid replenishment of functional NK cells following SCT has
been associated with improved clinical outcomes in HIV-uninfected
individuals, but increases in the immature subsets with suboptimal
responses may persist for months following reduced-intensity
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Figure 2. Results from a novel ex vivo assay of the effects of NK and CD8
1
T-cell responses on HIV laboratory-infected pre-HCT recipient and post-HCT

donor-origin CD4
1
T cells. (A) A schema of our assay to determine the effects of allogeneic HSCT on HIV reactivation and effector cell activation and responses is shown.

Pre- and post-SCT PBMC were obtained from 30 HIV-uninfected individuals, followed by establishment of latent HIV infection ex vivo in recipient or engrafted donor

CD41 T cells. Post-HSCT donor-derived PBMC were then coincubated with HIV-infected recipient pre-SCT (allogeneic experiments) and donor-derived post-SCT CD41

T cells (autologous control experiments). (B) An increase in the percent of HIV-reactivated (GFP expressing) proliferating pre-HCT recipient CD41 T cells was observed in

several participant samples following 7 days of coculture (N 5 30). Outlier values are shown as individual points on the box plots otherwise representing median and quartile

values. Correlations between activated (CD381/HLA-DR1) donor CD81 T, NK, and CD31CD561 cells and HIV-iGFP–expressing laboratory infected CD41 T cells on day 7

are shown in panels C (experiments using infected recipient CD41 T cells and PBMCs following donor cell engraftment) and D (control experiments using infected post-HCT

engrafted CD41 T cells of donor origin), respectively. Significant correlations between NK and CD31CD561 cells were identified only in the pre-HCT CD4/post-HCT PBMC

experiments, whereas only activated CD81 T cells correlated with HIV-iGFP expression in the post-HCT CD4/post-HCT PBMC control experiments. Dashed lines represent

linear regression and P values were obtained using non-parametric Spearman rank correlation analyses.
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conditioning SCT.21-23 Further studies including larger numbers of
HIV-infected transplant recipients is clearly indicated to allow for
controlling of factors that may influence NK cell reconstitution (eg,
CMV reactivation, KIR mismatch, etc).

In order to further study the impact of donor-derived effector
lymphocytes on the HIV reservoir, we implemented an ex vivo HIV
assay on the pre- and post-HCT samples obtained from 30 HIV-
uninfected allogeneic HCT recipients. Overall, higher CD41 T cell
death was observed in the pre-HCT CD4/post-HCT PBMC
experiments by day 14 of coculture than in donor-donor control
experiments (36% vs 21%). In addition, the percent of eGFP-
expressing HIV-reactivated, proliferating CD41 T cells markedly
increased in several pre-HCT CD4/post-HCT PBMC experiments.
Little HIV reactivation was observed in control experiments
(Figure 2). Interestingly, we observed a significant positive
correlation between the percentage of reactivated HIV-infected
CD41 T cells and the percentage of activated CD56dimCD161 NK
and activated CD31CD561 cells in pre-HCT CD4/post-HCT
assays. However, no significant correlations between CD81 T-cell
activation and HIV-reactivation were identified. In contrast, only
CD81 T-cell activation correlated with HIV reactivation in post-HCT
CD4/post-HCT PBMC control experiments (Figure 2). The reason
for the increased CD81 T-cell activation in the autologous control
experiments is unclear, as both donor and recipient derived T cells
had not been exposed prior to ex vivo infection. Further studies
using either CD8 and NK depletion or positive selection prior to
incubation are certainly warranted.

These experiments suggest an important relationship between NK
cells, CD31CD561 lymphocytes (which can include NKT cells),
and HIV persistence and activation following HCT. While it is
possible that minor antigen mismatch played a role in non HIV-
specific NK-cell recognition of allogeneic CD41 T cells, the
observed significant correlations between NK-cell activation with
HIV protein expression in HLA-matched donor-recipient ex vivo
experiments are intriguing. It has been postulated that HLA-
dependent recognition of an activating KIR leads to NK-cell
activation.24,25 However, HIV nef protein has been shown to down

regulate HLA-B, which may lead to subsequent activation of NK
cells.26,27 Given these observations, further study of the potential
for licensed and uninhibited/activated NK cells to selectively
reactivate and target HIV infected cells are warranted. Our initial
ex vivo experiments were limited in that they did not involve samples
selected for specific donor or recipient HLA types, KIR expression
patterns, or clinical graft-versus-host disease severity. It is possible
that the finding that HIV reactivation and corresponding NK-cell
activation in some, but not all, participant samples was a result of
these factors. Nonetheless, our data provide the rationale to further
pursue the importance of NK-cell–based therapies to help purge
HIV reservoirs and to more fully elucidate the innate mechanisms of
HIV-infected cell clearance following HCT.
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