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Abstract

In investigating the correlation between an alcohol biomarker and self-report, we developed a 

method to estimate the canonical correlation between two high-dimensional random vectors with a 

small sample size. In reviewing the relevant literature, we found that our method is somewhat 

similar to an existing method, but that the existing method has been criticized as lacking 

theoretical grounding in comparison with an alternative approach. We provide theoretical and 

empirical grounding for our method, and we customize it for our application to produce a novel 

method, which selects linear combinations that are step functions with a sparse number of steps.
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1. Motivating study

The WHAT-IF clinical trial is a randomized comparison of naltrexone versus placebo that 

was designed to determine whether naltrexone can reduce hazardous drinking in women 

living with HIV. The protocol is registered with clinicaltrials.gov as NCT01625091, and it 

can be found at https://clinicaltrials.gov/ct2/show/NCT01625091. Alcohol consumption is 

measured via self-report and the biomarker PEth. Our colleagues are interested not only in 

determining the effect of naltrexone, but also in measuring the correlation between the two 

measures of consumption. Previous studies have indicated that PEth is well correlated with 

alcohol intake and has a detection window of 1 to 3 weeks following back such as Aradottir 

et al. (2006), Stewart et al. (2009), Hahn et al. (2012), Helander et al. (2012), Viel et al. 

(2012), Jain et al. (2014), and Kechagias et al. (2015). Standard drink units (SDUs) are 

typically used to quantify alcohol consumption; one SDU corresponds to 0.6 ounces of pure 
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alcohol, which is approximately one 12 ounce 5% alcohol by volume (ABV) beer, one 5 

ounce glass of wine, or 1.5 ounces of a 40% ABV spirit. The WHAT-IF clinical trial 

included women who reported hazardous drinking (>7 SDUs per week) at baseline. Self-

reported daily alcohol consumption was recorded from 90 days prior to baseline through 7 

months after baseline using timeline followback, a detailed interview that uses a calendar 

and example glassware to maximize reporting accuracy. PEth was measured at baseline, 2 

months, 4 months, and 7 months. Some study participants were missing one or more PEth 

measurements, and a few others reported implausible alcohol consumption. We excluded 

individuals who ever reported consuming more than 50 SDUs in 1 day, resulting in a final 

sample of 114 women.

Canonical correlation analysis (CCA) is widely used to assess the association between two 

sets of variables, and to identify a linear combination of variables (a composite measure) 

from each set such that the correlation between the two composite measures is maximized 

(Mardia et al., 1979). However, when the ratio of the number of variables to the sample size 

is high, the results based on the classical CCA break down in the sense that the estimated 

linear combinations and resulting correlation can be very far from the truth. This article 

presents a case study focusing on estimating the correlation between a single PEth 

measurement and 21 previous days of self-reported SDUs, while accounting for repeated 

PEth measures per person. Because the correlation between PEth and daily alcohol 

consumption is expected to decrease with the time since previous drinking, we assume that 

the coefficients of the linear combination of daily alcohol consumption can be represented 

by a step function that jumps at the time or times when the correlation decreases. Due to the 

curse-of-dimensionality problem arising from a large number of daily SDUs and a relatively 

small number of women, we need to restrict the number of jumps of our step function in 

some way or else the result will be so noisy as to be useless. To do so, we use an L1 penalty 

on the coefficients of a non-orthogonal set of step function basis functions. Based on our 

literature search, using the Lasso in combination with the step function basis is a simple yet 

novel way to achieve our goal.

Because higher body mass index is likely to be associated with higher self-reported 

consumption and also with PEth biomarker results, we also consider a partial canonical 

correlation analysis, in which we remove the effect of body mass index.

As is often the case within applied statistics, we developed our method to answer our 

collaborators’ question, and then only afterward did we search the literature to compare our 

method to existing methods. The plan of the article is as follows. In Section 2, we review the 

literature on existing methods for estimating a canonical correlation that circumvent the 

curse of dimensionality. Section 3 then presents our own method for estimating a sparse 

canonical correlation between two sets of measures. We compare our method to that of 

Waaijenborg et al. (2008), which is the only method we found that is somewhat similar to 

ours. However, there is a key difference that leads to much faster convergence of our method 

in general. Our use of the step function basis in conjunction with the Lasso is also new. We 

conduct a simulation study in Section 4, and we apply our methods to the WHAT-IF trial in 

Section 5. Section 6 concludes with a discussion.
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2. Review of existing methods

Let y and x be two vectors representing the sets of variables to be correlated. Classical 

canonical correlation analysis (CCA) selects the α and β that maximize the correlation

ρ(yTα, xTβ) = βTCov(x, y)α
αTVar(y)αβTVar(x)β

. (2.1)

Because (2.1) does not depend on the scaling of α and β but rather just on their directions, 

we can view the problem as one of finding the two directions that maximize the correlation. 

Typically, one chooses the default scaling αTVar(y)α = βTVar(x)β = 1. The optimization 

problem then is to maximize the numerator of (2.1) subject to the constraints αTVar(y)α = 

βTVar(x)β = 1.

To overcome the curse of dimensionality arising from small samples and high-dimensional x 
or y, some researchers such as Vinod (1976), Leurgans et al. (1993), and Silverman and 

Ramsay (2005) proposed regularized canonical correlation analysis (RCCA) by modifying 

the constraints with penalties on α and β. For example, Vinod (1976) imposed ridge 

regression constraints αT (Var(y) + λ2I)α = βT (Var(x) + λ1I)β = 1, which would shrink the 

components of α and β toward zero for larger values of λ1 and λ2. Leurgans et al. (1993) 

imposed smoothing constraints αT (Var(y) + λ2D2)α = βT (Var(x) + λ1D1)β = 1 for D1 and 

D2 selected to shrink α and β toward smooth functions for larger λ1 and λ2. Once a suitable 

quadratic penalty is found, the optimization problem is readily solved in the same way it is 

for classical CCA.

Other researchers such as Parkhomenko et al. (2007), Waaijenborg et al. (2008), Wiesel et al. 

(2008), Zhou and He (2008), Parkhomenko et al. (2009), Witten et al. (2009), and Witten 

and Tibshirani (2009) focused on providing sparse versions of α and β, which contain zeroes 

so that only a small subset of components of y and x are selected. These methods achieve 

what we term sparse canonical correlation analysis (SCCA). It is natural to consider an L1, 

or Least Absolute Shrinkage and Selection Operator (Lasso) (Tibshirani, 1996), penalty with 

RCCA, but the resulting constraints are not quadratic which means that solving the 

optimization problem is difficult. We therefore considered using an iterated version of 

RCCA using an idea from Tibshirani (1996), in which we expressed the penalized 

constraints as αT(Var(y) + λ2Db
−)α = βT(Var(x) + λ1Da

−)β = 1, where Da and Db are diagonal 

matrices with elements |αi| and |βj|, and Da
− and Db

− are their generalized inverses. This can 

be viewed as a “poorman’s” approach to solving the optimization problem of maximizing 

the numerator of (2.1) with non-quadratic L1-penalty constraints αTVar(y)α + λ2||α||1 = 

βTVar(x)β + λ1||β||1 = 1. Unfortunately, the iterative algorithm often failed to converge, 

rendering this idea useless. The existing methods using non-quadratic penalties such as 

nonnegative Garrote (Breiman, 1995), Smoothly Clipped Absolute Deviation (SCAD; Fan 

and Li, 2001), Elastic-net (Zou and Hastie, 2005), and Lasso (Tibshirani, 1996) to produce 

sparse versions of α and β all simplify the optimization problem somehow. For example, 
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Witten et al. (2009) and Witten and Tibshirani (2009) effectively assume that Var(x) and 

Var(y) are multiples of the identity, and the authors do not maximize a well-defined 

objective function. The authors set out to maximize βTCov(x, y)α subject to αTα = 1, βTβ = 

1, ||α||1 ≤ c1, and ||β||1 ≤ c2. However, for small c1 and c2, the constraints exclude all possible 

solutions. The authors therefore iteratively select c1 and c2 using cross-validation at each 

step of an iterative algorithm. This means that the optimization problem is changing with 

each iteration, because the constraints are changing. This problem is not mentioned in the 

articles.

The method we developed falls into the class of SCCA methods, and in implementation it is 

very similar to that of Waaijenborg et al. (2008). Witten and Tibshirani (2009) point out that 

the method of Waaijenborg et al. does not seem to be solving a well-defined optimization 

problem. For a scalar y and vector x, we construct a clearly posed optimization problem for 

our method, and for that special case, our method coincides with that of Waaijenborg et al. 

(2008); therefore in that case, Waaijenborg et al. are also solving a well-defined optimization 

problem. The value of studying the case of scalar y is the easy extension to the vector case; 

when y is a vector, we construct an optimization problem similar to but more general than 

that of Witten and Tibshirani (2009), and like those authors, we allow our constraints to 

change at each iteration. Our method is easy to implement using the glmnet package in R. 

We will explain the method of Waaijenborg et al. (2008) together with our method in the 

following section.

3. Sparse canonical correlation analysis

3.1. Sparse canonical correlation analysis between one random variable and one random 
vector

Let y, x1, …, xp be random variables such that E(y2) < ∞, E(x j
2) < ∞ for j = 1, …, p. Define 

vector x = (x1, …, xp) as a 1 × p vector, and assume that the variance matrix of x is 

nonsingular. Then we can always write

y = β0 + xTβ + ε, (3.1)

where E(ε) = 0, E(ε2) < ∞, and Cov(xj, ε) = 0 for j = 1, …, p (Wooldridge, 2010). 

Supposing βC is a vector that maximizes the correlation ρ(y, xTβ), then λβC also maximize 

the correlation for any scalar λ. To motivate our method, we present the following simple 

results for scalar y. The results will be used to justify the iterative algorithm that we propose 

when y is a vector.

Theorem 3.1—Let y be a random variable and x be a vector of random variables such that 
Var(x) is nonsingular and Var(y) < ∞. Consider the following optimization solutions, where 
β0 = E(y) − E(xT)β:
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β∗ = argminβ E(y − β0 − xTβ)2
(3.2)

and

βC = argmaxβ ρ(y, xTβ) subject to βTVar(x)β = β ∗ TVar(x)β∗ . (3.3)

Then β* = βC.

The theorem’s proof is given in the Appendix. We can also extend this result to the case of 

singular Var(x), which is relevant to the case of very high-dimensional x. In the Appendix, 

we show that the set of β* that minimize (3.2) is identical to the set of βC that maximize 

(3.3), and that β ∗ TVar(x)β∗ = βC
T Var(x)βC is constant over that set.

When the ratio of the dimension of x to the sample size is high, we would like to choose a 

sparse β. One classic method is to introduce an L1 constraint. Problems (3.2) and (3.3) 

become

βL = argminβ E(y − β0 − xTβ)2 subject to ‖β‖1 ≤ t (3.4)

and

βC = argmaxβ ρ(y, xTβ) subject to βTVar(x)β = βL
TVar(x)βL, ‖β‖1 ≤ t, (3.5)

where with the equality constraint, ρ(y, xTβ) = βTCov(x, y)
Var(y)βTVar(x)β

= βTCov(x, y)
Var(y)βL

TVar(x)βL

. Let 

a = Cov(x, y)
Var(y)βL

TVar(x)βL

. The problem (3.5) is

βC = argmaxβ βTa subject to βTVar(x)β = βL
TVar(x)βL, ‖β‖1 ≤ t . (3.6)

However, the problem (3.6) is not convex due to the equality constraint on β. We change 

(3.6) to
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βC = argmaxβ βTa subject to βTVar(x)β = βL
TVar(x)βL, ‖β‖1 ≤ t, (3.7)

which can be solved by applying the Karush–Kuhn–Tucker (KKT) conditions in convex 

optimization (Boyd and Vandenberghe, 2004). The solution satisfies βTVar(x)β = 

βL
TVar(x)βL. We present theorem

Theorem 3.2—Let y be a random variable, x be a vector of random variables such that 
Var(x) is nonsingular and Var(y) < ∞. Consider the following optimization problems

βL = argminβ E(y − β0 − xTβ)2 subject to ‖β‖1 ≤ t (3.8)

and

βC = argmaxβ ρ(y, xTβ) subject to βTVar(x)β = βL
TVar(x)βL, ‖β‖1 ≤ t . (3.9)

Then βL = βC.

The proof is in the Appendix, where we also show that for singular Var(x), the set of optima 

for the two problems is the same. Note that in practice, t is typically selected via cross-

validation, which we discuss in Section 3.4.

To customize our method in order to best answer our collaborator’s question about the 

number of days previous self-reported alcohol consumption that best correlates with the 

alcohol biomarker, we represent β, the linear combination of self-reported alcohol 

consumption over the past 21 days, in terms of a series of basis functions W = (W1, W2, …, 

Wp) that are nested step functions, that is, β = Wβs, such that

W1 = (1, 0, 0, …, 0)T ,

W2 = (1, 1, 0, …, 0)T ,

·

·

·

W p = (1, 1, 1, …, 1)T ,

and we can write model (3.1) as
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y = β0 + xTWβs + ε, (3.10)

where βs = (β1s, β2s, …, βps)T are the coefficients of the basis functions. Let βLs be the 

Lasso estimates of βs

βLs = argminβs
∑
i = 1

n
( − yi − β0 − XiWβs)

2 subject to ‖βs‖1 ≤ t, (3.11)

where t > 0 is the penalty parameter, yi and Xi are the ith observation of y and x with sample 

size n. The optimal t can be chosen by K-fold cross-validation. By Theorem 3.2, the vector 

of coefficients βC that maximizes the correlation ρ(y, xTWβs) under the constraints ||βs||1 ≤ t 

and βs
TVar(WTx)βs = βLs

T Var(WTx)βLs is βLs.

3.2. Sparse canonical correlation analysis between two random vectors

When y is a random vector with nonsingular variance matrix, we seek to maximize a 

penalized version of ρ(xTβ, yTα). Considering the previous results, we might try to optimize

argminβ, αE(yTα − xTβ)2 subject to ‖α‖1 ≤ t1, ‖β‖1 ≤ t2,

but it is clear that the optimal solution is α = β = 0.

Instead we borrow the idea of Witten and Tibshirani (2009) and construct an optimization 

problem that can be solved iteratively with constraints that change at each iteration. Let Σx 

be the covariance matrix of x and Σy be that of y. Specifically, we optimize

argmaxβ, αρ(xTβ, yTα) subject to βT∑xβ = βL
T∑xβL, ‖β‖1 ≤ t1

αT∑yα = αL
T∑yαL, ‖α‖1 ≤ t2,

where we choose t1 and t2 using cross-validation at each iteration, and we also allow αL and 

βL to be updated at each iteration. Suppose we start with the true α, and we let y* = yTα. 

Then using the previous results, we can find β by optimizing

βL = argminβE(y∗ − β0 − xTβ)2 subject to ‖β‖1 ≤ t1 .

We can thus construct an iterative algorithm, where the next step is to let β = βL, x* = xTβ, 

and to update α by optimizing
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αL = argminαE(x∗ − α0 − yTα)2 subject to ‖α‖1 ≤ t2 .

We would continue the iteration as is, except for the problem that the L1 penalty induces 

shrinkage of α and β at each iteration, inducing the estimates to iterate toward zero. 

Therefore at each step, we normalize α and β to have L2 norm equal to one, since the goal is 

to find the correct directions of α and β, and the lengths are not important. We note that 

Witten and Tibshirani (2009) also normalize α and β at each step to have length one. We 

evaluate convergence of our method after normalization by calculating the L1 norms of the 

differences between successive iterations of α and β; the algorithm stops when the sum of 

those two values is less than 1e-5.

As mentioned previously, our method is similar to that of Waaijenborg et al. (2008), but 

those authors begin with an initial selection for β as well as α and thus for y* and x*. Then 

they compute the subsequent values as β1 = argminβ|y* − xTβ|2 + λ1P(β) and α1 = argminα|

x* − yTα|2 + λ2P(α), where P(·) is a penalty such as the L1 norm. They use k-fold cross-

validation to select the tuning parameters λ1 and λ2, and they normalize β1 and α1 to have 

unit L2 norm. Then they iterate.

For a scalar y, our method and that of Waaijenborg et al. (2008) coincide, and thus we have 

given a theoretical justification of their method in that case. However, for the more 

interesting case of a vector y, to pinpoint the differences between our method and that of 

Waaijenborg et al. (2008), we describe them both in algorithmic form. For our method:

1. Initialize α with α0.

2. At step t + 1, to find αt+1 and βt+1, we solve the following two optimization 

problems:

2a βt + 1′ = argminβE(yTαt − β0 − xTβ)2subject to ‖β‖1 ≤ t1. In practice, we 

use the empirical distribution to compute the expectation and we use k-

fold cross-validation to select t1. We use glmnet R to solve the 

optimization problem. The glmnet algorithm uses coordinate descent, 

as described by Friedman et al. (2010).

2b αt + 1′ = argminαE(yTα − β0 − xTβt + 1′ )2subject to ‖α‖1 ≤ t2.

Again, in practice we use the empirical distribution to compute the 

expectation and we use k-fold cross-validation to select t2. We use 

glmnet to solve the optimization problem.

3. Let αt + 1 = αt + 1′ /‖αt + 1′ ‖2 and βt + 1 = βt + 1′ /‖βt + 1′ ‖2.

4. Return to step 2 unless the sum of the squared differences between successive 

iterations of α and successive iterations of β is less than 1e − 5, otherwise stop.

The method of Waaijenborg et al. (2008) is similar, but step 1 changes to
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1 Initialize α with α0 and β with β0.

Also, step 2b changes to

2b αt + 1′ = argminαE(yTα − β0 − xTβt)
2subject to ‖α‖1 ≤ t2. Technically, Waaijenborg 

et al. (2008) used the elastic net instead of the Lasso in steps 2a and 2b, but 

clearly, either choice is possible.

In general, our method should converge faster. For example, suppose that for both methods, 

α0 happens to be close to the true α, but for the previous method, β0 is quite far away from 

the true β. With both methods then, β1 will be close to the truth. However, the previous 

method will then use the poor selection of β0 to choose α1, whereas our α1 should be even 

closer to the truth than α0. By continuing in this fashion, one comes to see that our method 

should converge in just a few steps, whereas the previous method will iterate for a long time 

with β2, β4, etc., and α1, α3, etc., far from the truth and β1, β3, etc., and α2, α4, etc., close to 

the truth.

With our method, if we wish to assume that the optimal α and β are step functions with few 

jumps, we further express xTα and yTβ in terms of the basis of step functions, such that xTα 
= xTWαs and yTβ = yTWβs. Therefore, our sparse optima will be step functions with just a 

few downward jumps.

3.3. Sparse partial correlation analysis

Let X, Y, and Z be three random variables. We are interested in assessing the correlation 

between X and Y after removing the linear effect of Z. One common method is to calculate 

the correlation between eX and eY, where eX and eY are the residual vectors obtained from 

regressing X on Z and Y on Z, respectively. Thus, we have the partial correlation

ρXY , Z = Cor[Y − E(Y ∣ Z), X − E(X ∣ Z)], (3.12)

which is symmetric in X and Y. But if we pose the model

Y = α + Xβ + X ∗ Zγ + Zη + ε, (3.13)

where X * Z represents the interaction between X and Z, the partial correlation at (3.12) is 

hard to calculate. We observe that if we pose model (3.1), which does not consider Z, we can 

write the correlation between y and Xβ as

ρ(y, Xβ) = Cor[y − E(y ∣ X = 0), E(y ∣ X) − E(y ∣ X = 0)] . (3.14)

Then, when we consider Z and pose model (3.13), we might consider a new definition of 

partial correlation,
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ρXY , Z′ = Cor[Y − E(Y ∣ X = 0, Z), E(Y ∣ X, Z) − E(Y ∣ X = 0, Z)]
= Cor(Y − Zη, Xβ + X ∗ Zγ) .

(3.15)

The previous procedure for the sparse canonical correlation analysis can also be applied 

using partial correlation, since it is implemented using a regression model with a Lasso 

penalty. We can also assign different penalty factors to β, γ, and η to distinguish the effect 

of X, X * Z, and Z.

3.4. Repeated measures and cross-validation

Let yij be the outcome of individual i at the jth visit and let ŷij be the fitted value. To 

accommodate the repeated measures, we use the weighted linear model with wi = 1/ni as the 

sample weight for the ith individual, where ni is the number of visits for individual i. This 

provides each participant with equal representation in the estimation of the correlation.

Let N denote the total number of individuals. Define the K-fold weighted mean cross-

validation error as

CVEw(t) = 1
∑i = 1

N ni
∑

k = 1

K
ek

w(t), (3.16)

where ek
w(t) = ∑i = 1

Nk ∑ j = 1
ni wi

∗(yi j − yi j)
2, Nk is the number of individuals in the kth fold of 

dataset, and wi
∗ =

wi∑i = 1
Nk ni

∑i = 1
Nk wi

. The optimized penalty parameter t is the one that generates the 

smallest value of CVEw(t).

3.5. Constructing confidence intervals

To construct confidence intervals, one can use bootstrap or jackknife variance estimators 

together with a normal approximation. Let ρ̂b be the estimated ρ based on the bth bootstrap 

sample. If each individual has multiple observations, we randomly choose nb individuals 

from the original data with replacement for each bootstrap sample. The variance estimator is

VarB(ρ) = 1
B − 1 ∑

b = 1

B
ρb −

∑b = 1
B ρb

B , (3.17)

where B is the total number of bootstrap samples, and we can construct confidence intervals 

with normal distribution approximation.
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For the jackknife, we delete the ith individual from the sample each time. Let ρ̂j be an 

estimate of ρ based on deleting the jth individual with this individual’s observations. The 

jackknife estimator of variance is

VarJ(ρ) = N − 1
N ∑

j = 1

N
(ρ j − ρ)2, (3.18)

where N is the total number of individuals.

4. Simulation study

To validate our methods and to compare them to classical CCA, we conducted two sets of 

simulations. The first lets x be a random variable and y be a random vector of length p, and 

the second lets both x and y be two random vectors of length p. In both scenarios, we 

specified x and y to have zero means and nonsingular variance.

Let αg and βg denote the vectors in Eq. (1) that maximize ρ(yTα, xTβ) with scaling 

constraints αg
T∑yαg = 1 and βg

T∑xβg = 1. In the first scenario, let y be a random variable and 

x be a random vector of length 21 with Σy = 2 as the variance of y and Σx as the covariance 

matrix of x, where the ijth element of Σx is 2 × 0.3|i−j|. Let β0 = (rep(1/ 5, 5), rep(0, 16)), 

where rep(c, n) represents a sequence of numbers that repeats the number c n times. Then 

βg = β0/ β0
T∑xβ0. Since y is a random variable, αg is a scalar equal to 1/ 2. We let 

ag = ∑y
1/2αg and bg = ∑x

1/2βg, and then we let ag and bg be the singular vectors from the 

singular value decomposition of K = ∑y
−1/2∑yx∑x

−1/2 = agdbg
T with only one nonzero 

singular value d, set equal to 0.25. Thus, ∑yx = ∑y
1/2agdbg

T∑x
1/2. Let the combined random 

vector of (x, y) follow a multivariate normal distribution with zero means and assembled 

covariance matrix ∑ =
∑x ∑xy
∑yx ∑y

. We simulated a dataset with sample size n = 300. After 

normalizing the true and estimated versions of βg such that ||βg||2 = 1, we present the results 

in Fig. 1. The top panel shows the true βg, the middle panel shows the result of our method, 

and the bottom panel shows the result of classical CCA. We can see that when the ratio of 

the dimension of x to the number of observations is high, our approach yields much better 

results than those of classical CCA.

In the second scenario, let x and y be two random vectors of length 21. Let Σx and Σy be the 

covariance matrices of x and y, where the ij− element of Σx and Σy are 2.25 × 0.15|i−j| and 

1.5 × 0.2|i−j|, respectively. Let α0 = (rep(1/ 8, 8), rep(0, 13)) and β0 = (rep(1/ 10, 10), rep(0, 11)). 

Then αg = α0/ α0
T∑yα0 and βg = β0/ β0

T∑xβ0. Let ag and bg are also the singular vectors 

from SVD of K = ∑y
−1/2∑yx∑x

−1/2 = αgDβg
T, where D is a diagonal matrix with the square 

root of eigenvalues of matrix KKT as the ith diagonal element. Let d = 0.4 be the only 
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nonzero eigenvalue of KKT. We have ag = ∑y
1/2αg and bg = ∑x

1/2βg. Thus, 

∑yx = ∑y
1/2agdbg

T∑x
1/2. Let the combined vector of (x, y) follow a multivariate normal 

distribution with zero means and assembled covariance matrix ∑ =
∑x ∑xy
∑yx ∑y

. We first 

simulated a dataset with sample size n = 300. After normalizing the true and estimated 

versions of αg and βg such that ||αg||2 = 1 and ||βg||2 = 1, we present the results in Fig. 2. The 

left panels show the results of our method, the middle panel of classical CCA, and the right 

panel shows the true values. To explore the behavior of our method with increasing sample 

size, we next simulated a dataset with 3,000 observations, and the results are shown in Fig. 

3. We observe that as the sample size increases, the results based on our method converge to 

the true ones faster those of classical CCA.

In both simulation studies, our method generated estimates close to the true values even with 

a small sample size, while classical CCA method proved unreliable. With the R package 

glmnet, the computing and programming is straightforward.

5. Analysis of the WHAT-IF trial

For the WHAT-IF trial analysis, let Yij denote the PEth test value of individual i at the jth 

visit. Let Xij = (Xij,1, Xij,2, …, Xij,21)T denote the self-reported daily SDUs during the past 

21 days before the PEth test of individual i at jth visit. Let Zi denote the BMI of individual i 
with Zi = 1 if BMI > 25, otherwise Zi = 0. Let Xij * Zi denote the interaction terms between 

daily SDUs and BMI of individual i at jth visit. To maximize the correlation between PEth 

and the linear combination of the self-reported daily alcohol intake, we further assume the 

vector of coefficients in the linear combination can be represented by a step function taking 

jumps at times when the correlation largely decreases. Since the sample size is limited 

compared to the number of coefficients we want to estimate, we apply our SCCA method. 

We also tried to find a vector of coefficients βpar such that the partial correlation between 

PEth and the linear combination of daily SDUs is maximized given BMI. We assign 

different penalty factors to Xij and Xij * Zi to distinguish the effects, and we leave Zi 

unpenalized.

We first applied our method using the baseline data only. In Fig. 4, the results based on our 

method are compared to the ones obtained from the classical CCA method after both are 

normalized to have L2 -norm equal to 1. The results of βpar for the penalized partial 

correlation analysis versus unpenalized are shown in Fig. 5. In both models, the results 

indicated that PEth is correlated with the previous 12 days alcohol drinking before the test. 

The results also showed higher influence for the previous 5 days, and a largely reduced 

influence from day 6 to 12. The results from the penalized partial correlation showed that 

coefficients of Xi1 * Zi are zero.

Second, we applied our method to the complete data using our method for repeated 

measures. The results based on our method with all observations are shown in Fig. 6, where 

we also show the results from the classical CCA method. The results of βpar for the 

penalized partial correlation analysis are shown in Fig. 7. In both the full and partial 
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correlation cases, the results indicated that PEth is correlated with self-report for 5 days 

before the test, which is similar to what we observed with the baseline data. Again, the 

results from the penalized partial correlation showed that coefficients of Xij * Zi are zero.

Furthermore, to construct confidence intervals, we used both the bootstrap and the jackknife 

variance estimators. For the bootstrap, we resampled 1,000 times with 120 individuals in 

each sample. The estimated penalized and unpenalized correlations between PEth and linear 

combination of daily SDUs with bootstrap and jackknife confidence intervals are listed in 

Tables 1 and 2. The results of the penalized and unpenalized partial correlation are listed in 

Tables 3 and 4. Both bootstrap and jackknife confidence intervals based on the complete 

data showed that the correlation and partial correlation given BMI between PEth and self-

report is significant.

6. Discussion

As part of our case study, we developed a new and easily implemented approach to SCCA 

by iteratively fitting linear models with a Lasso penalty and a parameterization that favors 

step functions with just a few downward steps. This led us to conclude that PEth is most 

strongly correlated with self-report measured over the previous 5 days. We reviewed the 

relevant literature, and we discovered that the method of Witten and Tibshirani (2009) solves 

an optimization problem with constraints that change at each iteration. We provided a 

theoretical grounding for the method of Waaijenborg et al. (2008), which is similar to our 

method. We showed that when y is a scalar, the two methods coincide and both solve a well-

defined optimization problem. When y is a vector, we showed that our method, like that of 

Witten and Tibshirani (2009), solves an optimization problem with constraints that change at 

each iteration. Furthermore, we adapted our method to accommodate repeated measures and 

partial correlation.

We conducted two sets of simulations, first with y as a scalar and second with y as a vector, 

to validate our methodology. The results showed that our methods perform well in both 

settings. With the R package glmnet (Friedman et al., 2010), the computation is 

straightforward.
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Appendix: Proofs

A.1. Proof of Theorem 3.1

Let y be a random variable, x be a vector of random variables. Let Var(x) = Σ is nonsingular 

and Var(y) = σ2 < ∞. Then we can always write

y = β0 + xTβ∗ + ε,

where E(ε) = 0, E(ε2) < ∞, Cov(xj, ε) = 0 for j = 1, …, K, and

β∗ = ∑−1Cov(x, y)

β0 = E(y) − E(x)Tβ .

Furthermore, β* = argminβE(y − β0 − xTβ)2.

By definition

ρ(y, xTβ) = 1
σ

βT∑β∗

βT∑β
.

Let β** = Σ1/2β, then

ρ(y, xTβ) = 1
σ

β ∗ ∗ T(∑1/2β∗)
β ∗ ∗ Tβ ∗ ∗ .

To maximize ρ(y, xTβ), we have Σ1/2β* = cβ**, where c > 0 is a scalar, because due to 

Cauchy Schwarz, maxaaTb/||a||2 is equal to cb for any scalar c > 0. Under the restriction 

βTΣβ = β*TΣβ*, we have

β ∗ ∗ Tβ ∗ ∗ = c2β ∗ ∗ Tβ ∗ ∗ .

Thus, c = 1 and Σ1/2β = Σ1/2β*, then β* = βC.

Next, we show that when Var(x) = Σ is singular, the set of β* that minimize (3.2) is identical 

to the set of βC that maximize (3.3), and that β ∗ TVar(x)β∗ = βC
T Var(x)βC is constant over that 

set.

We write Σ = UDUT using the spectral decomposition, where U = [Us, Un] and D is block 

diagonal with the first block Ds a diagonal matrix of the nonzero eigenvalues and the second 
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block equal to the zero matrix. Therefore, ∑ = UsDsUs
T and Us

TUn = 0. Let xs = Us
Tx and 

xn = Un
Tx. Then Var(xs) = Ds and Var(xn) = 0. From Theorem 3.1, we can write

y = E(y) − E(xs)Tβs
∗ + xs

Tβs
∗ + ε,

where βs
∗ = Ds

−1Cov(xs, y), and where ε is uncorrelated with the elements of xs. Because 

Var(xn) = 0, xn
Tβn is constant for any βn, so we can write

y = E(y) − E(xs)Tβs
∗ − E(xn)Tβn + xs

Tβs
∗ + xn

Tβn + ε,

where ε is uncorrelated with the elements of xs and xn. Letting β0 = E(y) − E(xs)Tβs − 

E(xn)Tβn, and defining β such that xTβ = xs
Tβs + xn

Tβn, we have that 

βs
∗ = argmin(βs)E(y − β0 − xTβ)2, where β0 and β are functions of βs and βn, and we define 

β∗ = (βs
T, βn

T)T. Note that, whereas βs
∗ is unique, β* is a set of values indexed by βn. Turning 

our attention to ρ(y, xTβ) = ρ(y, xTUsβs + xTUnβn) = ρ(y, xTUsβs) (because xTUn is 

constant), we that have for a given βn, βs, C = argmax(βs)ρ(y, xTβ) = Ds
−1Cov(xs, y) × c for any 

positive scalar c. We can define c so that this βs, C = βs
∗, and this occurs when 

βs, C
T Dsβs, C = βs

∗ TDsβs
∗. Letting βC = (βs, C

T , βn)T for any βn, we also have that 

βC
T ∑βC = β ∗ T∑β∗. Therefore, the set of β* that minimize (3.2) is identical to the set of βC 

that maximize (3.3), and both sets are indexed by βn.

A.2. Proof of Theorem 3.2

Let y be a random variable, x be a vector of random variables such that E(y) = μy, E(x) = μx, 

Var(x) = Σ is nonsingular and Var(y) = σ2 < ∞. Then we can always write

y = β0 + xTβ∗ + ε,

where E(ε) = 0, E(ε2) < ∞, Cov(xj, ε) = 0 for j = 1, …, K, and

β∗ = ∑−1Cov(x, y)

β0 = E(y) − E(x)Tβ∗ .

Consider the following optimization problems
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βL = argminβ E(y − β0 − xTβ)2 subject to ‖β‖1 ≤ t

and

βC = argmaxβ ρ(y, xTβ) subject to βTVar(x)β = βL
TVar(x)βL, ‖β‖1 ≤ t .

For the first optimization problem, we have

E[(y − β0 − xTβ)2] = E[y − μy − (xT − μx
T)β]2

= E[y − μy − (xT − μx
T)β∗]2 + (β∗ − β)T∑(β∗ − β),

and we are solving for βL such that

βL = argminβ (β∗ − β)T∑(β∗ − β) subject to ‖β‖1 ≤ t .

Rewrite the criterion with Lagrange multiplier

(β∗ − β)T∑(β∗ − β) + λ1 ‖β‖1 .

Take derivative with respect to β, set the equation equals to 0, solve for β with KKT 

conditions:

−2∑(β∗ − β) + λ1Γ = 0

‖β‖1 ≤ t

λ1(‖β‖1 − t) = 0

λ1 ≥ 0,

where Γi = sign(βi) if βi ≠ 0; otherwise, Γi ∈ [−1, 1]. let S denote the soft thresholding 

operator such that S(a, c) = sign(a)(|a| − c)+, where c ≥ 0 and (x)+ is defined to equal x if x > 

0 and 0 if x ≤ 0. Thus, we have

∑βL = ∑β∗ −
λ1
2 Γ = S(∑β∗,

λ1
2 ),

where if ||β*||1 ≤ t then choose λ1 = 0; otherwise, choose λ1 such that ||β||1 = t.
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The second optimization problem is equivalent to

βC = argminβ − βTa subject to βT∑β ≤ βL
T∑βL, ‖β‖1 ≤ t

where a = ∑β∗

σ βL
T∑βL

 and the objective function is minimized when βTΣβ = βL
TΣβL.

Rewrite the criterion with Lagrange multiplier

−βTa + ΔβT∑β + λ2 ‖β‖1 .

Take derivative on β, set the equation equals to 0 and by Karush–Kuhn–Tucker conditions, 

solve for β:

−a + 2Δ∑β + λ2Γ = 0

Δ(βT∑β − βL
T∑βL) = 0

βT∑β ≤ βL
T∑βL

Δ ≥ 0

‖β‖1 ≤ t

λ2(‖β‖1 − t) = 0

λ2 ≥ 0.

Then, we have

∑βC =
sign(∑β∗)( ∣ ∑β∗ ∣ − λ2σ βL∑βL)+

2Δσ βL∑βL
.

Choose Δ such that βTΣβ = βL
TΣβL. Then we have

∑βC =
sign(∑β∗)( ∣ ∑β∗ ∣ − λ2σ βL∑βL)+ βL∑βL

‖sign(∑β∗)( ∣ ∑β∗ ∣ − λ2σ βL∑βL)+‖
2

,

where if ||β*||1 ≤ t then choose λ2 = 0; otherwise, choose λ2 =
λ1
2

1
σ βL∑βL

, which from the 

preceding optimization implies that ||βC||1 = t.

Thus, βL = βC.
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When Σ is singular, we can extend this result in much the same way as we extended 

Theorem 3.1, noting that the inverse of Σ does not appear in the proof of Theorem 3.2. The 

same kind of argument as for extending Theorem 3.1 can be used to show that βL and βC 

solve the same optimization problems, but that neither will generally be unique. Writing βL 

= UsLβsL + UnLβnL and βC = UsCβsC + UnCβnC, we find that both solve

Dsβs = Dsβs
∗ −

λ1
2 Γ = S(Dsβs

∗,
λ1
2 ),

where if ||β*||1 ≤ t then λ1 = 0; otherwise, choose λ1 such that ||Usβs + Unβn||1 = t. For large 

t, there will be a set of optima with a unique βs
∗ accompanied by an arbitrary βn, as with 

Theorem 3.1. However for t such that ||β*||1 > t, we need to jointly select λ1, βn, and βs s.t. ||

β||1 = t.
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Figure 1. 
Comparison of leading canonical correlation vectors with the general covariance matrix 

based on the simulation study.
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Figure 2. 
Comparison of leading canonical correlation vectors with the general covariance matrix n = 

300 based on the simulation study.
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Figure 3. 
Comparison of leading canonical correlation vectors with the general covariance matrix n = 

3, 000 based on the simulation study.
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Figure 4. 
Results based on the lasso penalty vs. ordinary CCA at baseline using the What-If data.
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Figure 5. 
Results of partial correlation given BMI vs. unpenalized at baseline using the What-If data.
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Figure 6. 
Results based on the lasso penalty vs. ordinary CCA with all observations using the What-If 

data.
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Figure 7. 
Results of partial correlation given BMI vs. unpenalized with all observations using the 

What-If data.
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