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Brain metastases (BM) continue to represent an unmet clinical need in oncology. 
Immunotherapy and targeted therapy hold great promise in the treatment of BM. Emerging 
data are confirming the activity of these agents in patients with BM. Genomic studies 
have confirmed that clinically actionable mutations are present in BM and they can be 
used in clinical studies to link targeted therapies with their genetic targets. Furthermore, 
as molecular signatures associated with sensitivity and resistance to immunotherapies are 
developed, we will better be able to select BM patients who will most benefit from these 
therapies. Understanding the genetic and immune evolution within BM should drive the 
next generation of immunotherapy and target therapy, as well as increase the accuracy of 
the selection process for these therapies.
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Practice points

 ●  The approach to brain metastases (BM) is multidisciplinary and includes surgery, radiation therapy/stereotactic 
radiosurgery, whole-brain radiation therapy and systemic therapy. Targeted therapies are playing an increasingly 
important role in the management of BM. Genetic characterization of BM is revealing new insights into potential 
therapies for BM patients.

 ●  Lung cancer BM: EGFR ± T790M, ALK.

 ●  Second-generation tyrosine kinase inhibitors (TKIs), including afatinib, have activity in EGFR-positive non-small-
cell lung cancer BM. Patients on first-generation TKIs at CNS progression should be transitioned to a second- or 
third-generation EGFR TKI.

 ●  In patients with anaplastic lymphoma kinase-positive non-small-cell lung cancer BM, newer generation anaplastic 
lymphoma kinase TKIs such as ceritinib and alectinib have demonstrated greater intracranial response rates than 
first-generation TKIs.

 ●  Breast BM: HER2, BRCA 1/2 (as well as hormone receptors).

 ●  Dual HER2 and EGFR TKIs, like lapatinib, have modest CNS activity. The combination of capecitabine and lapatinib has 
higher response rates.

 ●  Melanoma BM: BRAF, PD-L1 expression.

 ●  BRAF inhibitors, like vemurafenib and dabrafanib, have been shown to have good CNS response rates, and should be 
used concurrently with MEK inhibitors.

 ●  Early studies have shown that anti-CTLA-4 antibodies, such as ipilimumab, and anti-PD-1 antibodies, such as 
pembrolizumab, have activity in CNS metastatic disease.
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Metastasis to the brain is one of the most com-
mon causes of neurological complications in sys-
temic cancers, occurring in 20–40% of patients 
during the course of the disease [1,2]. The annual 
incidence of brain metastases (BM) has been 
estimated to be 8–10% of patients with cancer, 
with increasing incidence over time as neuro-
imaging modalities improve and the treatment 
of disseminated disease becomes more effective 
in increasing survival [1,3–5]. Moreover, BM are 
the most common intracranial tumors in adults, 
accounting for over half of brain tumors [6,7]. 
Two large population studies, one conducted 
in the Detroit Metropolitan area, the other in 
the Netherlands, found that lung, melanoma, 
renal cell, breast and colorectal cancers made up 
greater that 67% of the cumulative incidence of 
BM [1,3]. Both studies estimated the cumulative 
incidence of BM at 5 years to be 16–20% for 
lung cancer, 7% for melanoma, 7–10% for renal 
cell cancer, 5% for breast cancer and 1–2% for 
colorectal cancer. The treatment of all BM in 
general usually comprises of some combination 
of surgery, radiation therapy (RT) and systemic 
chemotherapy; however, new targeted therapies 
for each of these tumor types may start to find a 
place in the repertoire, as therapies are adapted 
to the unique genetic mutations of each type.

The approach to treatment of BM is strongly 
influenced by prognosis. Predictors of longer 
survival include higher performance status, 
younger age, well-controlled primary tumor 
activity, absence of extracranial metastases and 
low tumor burden; though patients with four 
or more BM seem to represent a group with an 
invariably poor prognosis [8–10]. For patients 
with favorable prognoses and limited number of 
metastases (1–3), surgical resection and stereo-
tactic radiosurgery (SRS) are considered the 
standard of care to achieve better control and 
reduction in tumor burden, although no pro-
spective randomized studies comparing defini-
tive SRS to surgery have been carried out. In 
these patients, a meta-analysis demonstrated 
an improved survival, reduced morbidity and 
decreased local recurrence with surgical resec-
tion added to radiotherapy, compared with 
whole-brain radiation therapy (WBRT) alone, 
although several of the trails in the analysis 
did not reach statistical significance [11–14]. In 
patients with solitary BM who have undergone 
surgical resection, new evidence favors SRS 
to the resection cavity, associated with far less 
 neurotoxicity than WBRT [15].

Despite advances in surgical techniques and 
radiotherapy, even patients with optimal risk 
factors have median survival of 7.1 months, 
although these numbers do not reflect treatment 
in the era of targeted and immunotherapy [8,16]. 
In patients with multiple BM considered to have 
advanced disease and poorer prognoses, treat-
ment is often aimed at palliation and symptom 
control. WBRT remains the standard of care 
for these patients. Chemotherapy has histori-
cally been used in the recurrent setting, or in 
the primary treatment of chemosensitive tumors, 
such as germ cell tumors [17]. Nonetheless, 
previous data are limited to offer any defini-
tive conclusion of the role of chemotherapy in 
newly diagnosed BM. In several randomized 
prospective trials, primary chemotherapy and 
groups of primary chemotherapy with delayed 
WBRT had similar response rates and survival 
outcomes to WBRT alone [18,19]. Other trials 
of concurrent chemotherapy with WBRT and 
radio sensitizing agents during WBRT have 
found some improved response rates; however, 
no survival benefit was demonstrated and there 
were significantly increased rates of acute and 
latent sequalae of WBRT [20–22]. Thus, concur-
rent, nontargeted chemotherapy with WBRT 
has been discouraged.

The role of immunotherapy and targeted 
therapy is becoming more well established 
in the treatment of BM as cancers are getting 
more genetically defined. Advances in molecu-
lar genetics have led to a better characteriza-
tion of the genetic heterogeneity of BM and the 
detection of unique drivers [23]. The concept of 
divergent or branched evolution of metastases 
from their primary tumors is just beginning to 
play a role in the treatment of BM and in the 
understanding of their unique clinical features. 
In this review, we discuss how the genomic con-
text of BM plays a role in the treatment of several 
of the most common cancers to metastasize to 
the brain, with the goal of informing rational 
therapy options.

Non-small-cell lung cancer
Lung cancer is the leading cause of cancer 
mortality worldwide, accounting for 18.2% 
of total deaths from cancer [24]. It is also the 
most common primary malignancy to meta-
stasize to the brain, with non-small-cell lung 
cancer (NSCLC) constituting the majority of 
cases [25]. BM occurs in approximately 7.4% of 
NSCLC patients at presentation, and 25–30% 
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will develop BM during the course of their dis-
ease [26,27]. Current treatment regimens utiliz-
ing platinum-based chemotherapy, radiation and 
surgical measures afford patients with stage III 
NSCLC – a 26.1% 5-year survival rate; how-
ever, stage IV disease remains challenging, with 
a 1-year survival rate of 10% [28]. In addition, 
many patients with complete initial responses 
to therapy will develop BM, with an incidence 
of 40–50% at 3 years [29]. Given this, targeted 
therapies, especially in tumors with activating 
mutations in EGFR and ALK, have been recog-
nized to significantly improve clinical outcomes 
compared with previous platinum-based chemo-
therapy, and have thus become the standard of 
care in metastatic lung cancer [30,31].

Activating mutations in the tyrosine kinase 
domain of the EGFR are present in 10–25% of 
NSCLC, with the highest prevalence found in 
adenocarcinomas of never-smoking women of 
East Asian descent [29]. Moreover, the frequency 
of BM was higher among EGFR-mutated cases 
than EGFR wild-type cases, at 31.4 versus 19.7% 
(odds ratio [OR]: 1.86; 95% CI: 1.39–2.49; 
p < 0.001) [32]. In the past 10 years, many ran-
domized control trials have established that 
EGFR tyrosine kinase inhibitors (TKIs) improve 
progression-free survival (PFS) and overall sur-
vival (OS) compared with standard platinum-
based chemotherapy in patients without BM [33]. 
As a result, the EGFR mutation is associated 
with prolonged survival after diagnosis of BM 
(hazard ratio [HR] 2.23; 95% CI: 1.62–3.10; 
p < 0.001) [32].

Fusion of the ALK and EML4 results in 
an oncogenic chimeric protein with constitu-
tive kinase activity, and occurs in 2–8% of 
patients with NSCLC [34]. Like EGFR muta-
tions, ALK-rearranged NSCLC are most fre-
quent in adenocarcinomas of young, never-
smoking patients [35]. BM are found in 23–31% 
of ALK-positive patients [34]. Unlike EGFR-
mutant NSCLC, however, ALK activation has 
not been found to increase the risk of BM [35]. 
Nonetheless, ALK inhibitors are under constant 
investigation in the treatment of BM, given their 
success in the control of primary ALK-mutant 
NSCLC [36].

Although genetically driven therapies have 
made tremendous progress in this disease, BM 
are still quite frequent in advanced EGFR-
mutated or ALK-rearranged NSCLCs, with an 
estimated 45% of patients with involvement of 
the CNS by 3 years of survival. Issues of brain 

penetration and insufficient therapeutic levels 
of systemic agents in cerebral spinal fluid (CSF) 
are frequently cited; new data are also emerg-
ing that BM harbor additional oncogenic driv-
ers [23]. Overall, these data points toward the 
important need to systematically investigate 
these drug therapies, to meet the clinical needs 
of the ever-evolving schema of personalized care 
in NSCLC [37].

●● NSCLC: eGFR tyrosine kinase inhibitors
Overall, the superiority of first- and second-gen-
eration TKIs to chemotherapy in EGFR-mutant 
NSCLC is well established and has led to regula-
tory approval of these drugs as first-line thera-
pies [19,38–39]. Gefitinib and erlotinib were the first 
US FDA-approved EGFR TKIs. Unfortunately, 
resistance to these first-generation agents inevi-
tably occurs, most commonly the threonine-
to-methionine substitution at position 790 on 
exon 20 (T790M) [40,41]. Third-generation TKIs 
have been developed to more effectively com-
bat these resistant EGFR-mutant types, such as 
osimertinib and rociletinib. In Phase II trials, 
these TKIs have been shown to have an objec-
tive response rate (ORR) of 51–64% in resistant 
EGFR-mutant NSCLC [42–44].

There have also been recent data comparing 
first- and second-generation TKIs from the Lux-
Lung 7 trial suggests a superiority of afatinib to 
gefitinib in treatment naive patients, with a more 
tolerable side effect profile [45,46]. Other trials are 
ongoing, comparing the efficacy of other first-, 
second- and third-generation TKIs [47,48,49,50].

Overall, the evidence for EGFR TKIs in BM 
is hopeful but lacking. One prospective trial 
exploring EGFR TKIs in BM in 28 patients has 
preliminarily reported an 83% ORR with first-
generation EGFR TKIs [51]; however, other tri-
als report more modest responses [52,53]. One of 
the primary reported issues in the use of EGFR 
TKIs in the treatment of BM is their incon-
sistent penetration of the blood–brain barrier 
(BBB). In one study, the CSF penetration rate 
of erlotinib in patients with CNS metastases was 
found to be 5.1%, and had a significantly lower 
concentration in the CSF than in the plasma [54]. 
Pulsatile, weekly high-dose erlotinib has been 
suggested to overcome this limitation, and it 
has been shown to be effective in a retrospective 
trial; however, more prospective trials must be 
done before any conclusion can be made about 
its effect on OS [55,56]. Lastly, a recent study of 
CSF concentrations of afatinib has suggested 



CNS Oncol. (2017) 6(2)142

Review Lazaro & Brastianos

future science group

better overall CNS activity of next-generation 
EGFR TKIs [57].

Other trials have studied the sequence of 
EGFR TKI and RT. With the goal of reducing 
potential toxicities of RT, there has been increas-
ing interest in deferring RT with upfront EGFR 
TKI therapy in those patients that develop BM. 
One retrospective study of upfront EGFR TKI 
with deferred RT (SRS or WBRT) found that 
OS was decreased in the upfront EGFR TKI 
cohort [58]. There is currently a randomized con-
trol trial studying the use of upfront erlotinib 
with RT at the time of brain tumor progression, 
versus the standard of erlotinib with concur-
rent RT [59]. It is also unclear what the correct 
sequence of WBRT is with EGFR TKIs, as it is 
unclear whether upfront RT has a benefit [60,61]. 
One recent retrospective study of 230 EGFR-
mutant NSCLC patients with BM concluded 
that EGFR TKIs plus WBRT did not have any 
survival benefit compared with upfront EGFR 
TKIs alone [62].

●● NSCLC: ALK tyrosine kinase inhibitors
First-generation ALK TKIs, such as crizotinib, 
have been shown to be superior to chemo-
therapy as first-line treatment of patients with 
ALK-rearranged NSCLC [63,64]. Ceritinib, a 
second-generation ALK TKI, has been also been 
shown to be effective, especially in crizotinib-
resistant cases [65–67]. The ASCEND-1 trial, 
a Phase I trial of ceritinib in ALK TKI-naive 
and ALK TKI-pretreated patients, has shown 
a 56% overall response in ALK TKI-pretreated 
patients [68]. Another multicenter retrospective 
study reported greater OS with sequential crizo-
tinib and ceritinib in patients with and without 
resistant ALK NSCLC [67]. These two studies 
have opened the discussion as to the most effec-
tive sequence and duration of ceritinib in ALK 
TKI-naive and  previously treated patients.

Even with modern therapies, ALK-rearranged 
NSCLC often progresses in the CNS. Within 
1 year from diagnosis, the incidence of BM is 
23.8%, increasing to 45.5 and 58.4%, at 3 
and 5 years, respectively [37]. In one retrospec-
tive pooled analysis of the PROFILE 1005 and 
1007 trials, 20% of patients on crizotinib devel-
oped BM at progression [69]. On the other hand, 
the subset of patients that were ALK TKI-naive 
attained initial CNS disease control rates of 
56% at 12 weeks on crizotinib, with a median 
intracranial time to progression of 7 months 
for those with untreated BM and 13.2 months 

in those with previously treated BM. The fail-
ure of crizotinib in ALK TKI-naive patients, as 
well as ALK TKI-pretreated patients seems to 
be explained in part by resistance and poor pen-
etration across the BBB [70]. Fortunately, newer 
generations of ALK TKIs have shown efficacy 
in resistant ALK-rearranged NSCLC, as well as 
better CNS activity [71,72]. Alectinib is one such 
next-generation ALK TKI that has demonstrated 
excellent CNS activity, with intracranial response 
rates as high as 75% and a median intracranial 
duration of response of 10–11 months [71,72]. The 
ASCEND-1 trial also retrospectively looked at 
94 patients with BM and found that 79% of 
ALK TKI-naive patients had an intracranial 
response to ceritinib, as well as 65% of ALK 
TKI-pretreated patients [68]. It is also clear from 
several studies that ALK TKIs add to OS in com-
bination with RT, although the toxicity of the 
 combination has yet to be full investigated [73,74].

●● NSCLC: bevacizumab
Bevacizumab is a monoclonal antibody against 
the VEGFR and has shown to be beneficial in 
a variety of tumors. The Eastern Cooperative 
Oncology Group conducted a landmark ran-
domized trial of 878 patients with advanced 
NSCLC to explore its potential impact on 
OS [75]. The study randomized these patients 
into two arms of standard chemotherapy 
(paclitaxel-carboplatin) and chemotherapy plus 
bevacizumab, and found that chemotherapy 
plus bevacizumab showed a greater OS (12.3 vs 
10.3 months; HR for death: 0.79; p = 0.003). 
Although this study shows a promising role for 
bevacizumab for advanced primary NSCLC, 
it was not able to comment specifically about 
BM, as patients with metastatic CNS lesions 
were excluded from the trial due to the concern 
for increased risk of intracranial hemorrhage. 
Other studies since then have postulated that 
bevacizumab may be safe in patients with BM, 
but there have not been any definitive prospec-
tive studies done to confirm its safety or effi-
cacy in BM [76,77]. One retrospective study of 
776 patients with BM from NSCLC showed 
that standard chemotherapy plus bevacizumab 
was better overall than chemotherapy alone or 
TKIs alone [78]. Furthermore, the authors also 
found that the median OS and PFS in those 
with EGFR-mutated NSCLC, EGFR TKIs were 
not superior to chemotherapy plus bevacizumab. 
In an analysis of three Phase III trials, another 
retrospective study also hypothesized that 
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pretreatment of bevacizumab may prevent BM 
in patients with lung adenocarcinomas, which 
was shown in mouse models [79].

Breast cancer
Breast cancer is the second most common cause 
of cancer-related death in women [80]. It is also 
the second most common cancer to metastasize 
to the brain [3]. Although the overall prognosis 
for nonmetastatic breast cancer is considered 
quite good, advanced disease is still somewhat 
poorly controlled, with the 26.3% 5-year sur-
vival for patients with distant metastases [81]. 
The overall incidence of BM in breast cancer is 
approximately 2.5–3%, but seems to be increas-
ing as women live longer with modern thera-
pies [3,82]. Moreover, HER2-enriched breast can-
cers, triple-negative breast cancer (TNBC) and 
basal-like subtypes of breast cancer are associ-
ated with increased risk of developing BM at dis-
ease progression, and have represented uniquely 
challenging clinical complications [83].

HER2 overexpression is seen in roughly 20% 
of patients with breast cancer [84]. Moreover, 
BM develop in 30–50% patients with HER2-
positive breast cancer [82,85]. Although OS 
seems to be better in patients with BM that are 
HER2-positive than other breast cancer sub-
types since the development of HER2 recep-
tor inhibitors, such as trastuzumab, the risk of 
BM from HER2-postive disease is higher [83,86]. 
There is also evidence to suggest that BM occur 
in patients with HER2-postive breast cancer 
that is otherwise systemically well controlled 
with HER2-specific therapy [87]. Furthermore, 
HER2-positive status may increase resistance to 
endocrine therapies in hormone-sensitive breast 
cancers [88]. Therefore, it is especially important 
that new therapies be developed to prevent the 
progression of this disease.

TNBC is another especially challenging 
disease in which BM are relatively common. 
In one retrospective study of 679 women with 
nonmetastatic TNBC, the cumulative inci-
dence of BM was 5.6% in 2 years and 9.6% 
in 5 years, with the greatest risk of BM occur-
ring in those that presented with more advanced 
disease [89]. Furthermore, the estimated OS of 
patients of TNBC who have developed BM is 
5 months [90,91]. To date, systemic treatment has 
been largely ineffective; however, there has been 
a growing pool of novel targets since the advent 
of gene sequencing in these cancers. Several 
pathways that have been under investigation 

involve the BRCA and PARP, which are com-
ponents of major DNA-repair pathways. In a 
landmark experiment by Farmer et al., it was 
found that BRCA1- and BRCA2-deficient cells 
were extremely sensitive to PARP [92]. In addi-
tion, histological studies have shown an overlap 
between the pathological and clinical features of 
TNBC and basal-like breast cancers and BRCA-
associated cancers, which have shown some 
promise in targeting these types of tumors [93].

Recent evidence suggests a genotypic and 
phenotypic divergence of BM compared with 
breast cancer primary tumors. One example is 
a study that showed a loss of hormone receptor 
expression in BM compared with their hormone-
sensitive primaries [94]. In addition, whole exome 
analysis of a large cohort of BM from breast can-
cer demonstrated branched evolution in every 
case, meaning that BM and their matched pri-
mary tumors shared a common ancestor, but 
there was continued genetic evolution in the BM, 
with new clinically actionable mutations in the 
BM. Furthermore, clinically actionable muta-
tions in the cyclin-dependent kinase and PI3K/
AKT/mTOR pathways were common in BM [23]. 
Therapies targeting mTOR and PI3K signaling 
have been investigated [95,96]. Taken together, 
these findings suggest a role in the genomic pro-
filing of BM when there is tissue available as part 
of clinical care in guiding therapy options [23].

●● Breast cancer: HeR2 antibodies
Trastuzumab, a monoclonal antibody targeting 
the extracellular domain of HER2, had revolu-
tionized the treatment of breast cancer, leading 
to significant improvements in PFS and OS in 
patients with HER2-positive breast cancer [97]. 
Unfortunately, recurrence often occurs, and 
BM can develop in up to 35% of women being 
treated with adjuvant trastuzumab [87,97–99]. One 
meta-analysis of 9000 women found a 2.56% 
increased risk of BM at first occurrence com-
pared with 1.94% in matched controls [100]. 
The propensity of BM to occur during trastu-
zumab therapy has often been postulated to be 
due to inherent biological factors and the poor 
CNS penetration of trastuzumab, creating a 
CNS sanctuary effect [85,98]. Similar increases 
in the incidence of BM are seen with the use 
of pertuzumab, a related HER2 dimerization 
inhibitor [101].

This issue of increased BM with HER2 inhib-
itors was also addressed in the CLEOPATRA 
trial, which suggested that the combination of 
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pertuzumab, trastuzumab and docetaxel delayed 
onset of new CNS disease (HR: 0.58; p = 0.0049) 
in HER2-positive patients, compared with pla-
cebo, trastuzumab and docetaxel; however, OS 
was not significantly different between the two 
groups [101]. Other supporting evidence for the 
use of pertuzumab-containing regimens in BM 
from HER2-postive breast cancer is offered in 
several recent case reports, but no prospective 
studies qualifying this evidence exist [102,103]. 
There are also studies with the antibody-
cytotoxin conjugate, trastuzumab-emtasine 
(T-DM1) that have shown activity in non-CNS 
metastatic disease and retrospective studies show 
activity in the CNS [104], but robust evidence 
for its efficacy in CNS disease is lacking [105,106].

●● Breast cancer: HeR2 TKis
Lapatinib is a dual HER2 and EGFR TKI that 
has shown modest CNS antitumor effects in 
adjuvant monotherapy, with a CNS ORR of 
6% [107]. The Phase II LANDSCAPE trial also 
explored lapatinib in combination with capecit-
abine and found a CNS ORR of 20% [107]. 
Further investigation of lapatinib and capecit-
abine in patients with HER2-postiive breast can-
cer that had previously received chemotherapy 
and RT showed a CNS ORR ranging from 21 to 
38% [108,109]. Additionally, lapatinib and capecit-
abine have also yielded CNS ORR as high as 
65% in treatment-naive patients with HER2-
positive breast cancer [110]. Lastly, Lin et al. also 
studied lapatinib with topotecan and found that 
the combination was not active and associated 
with excess toxicity, suggesting some unique 
CNS activity of capecitabine [109].

Neratinib, an irreversible HER1, HER2 
and HER4 TKI, has also shown activity in 
patients with HER2-positive metastatic breast 
cancer [111]. In one multicenter Phase II study, 
two cohorts of patients with metastatic HER2-
positive breast cancer with and without prior 
trastuzumab were given neratinib, resulting 
in ORRs of 24 and 56%, respectively [111]. 
Another Phase II trial of neratinib versus pla-
cebo in patients with early-stage HER2-positive 
disease who completed at least 1 year of prior 
trastuzumab treatment showed a 2-year PFS 
rate of 93.9% for the neratinib group [112]. 
Furthermore, in those patients that did have 
recurrence of disease, the incidence of BM was 
not significantly different between the neratinib 
and placebo arms. Indeed, the NEfERTT trial 
of patients with metastatic HER2-postive breast 

cancer given neratinib and paclitaxel showed sig-
nificantly lower rates of CNS progression than 
trastuzumab and paclitaxel, although the two 
groups had similar efficacy on OS [112,113].

●● Breast cancer: PARP inhibitors
PARP inhibitors theoretically function to select 
for normal cells by crippling DNA repair in 
BRCA or PARP-mutant cells [114]. Preliminary 
results have found that PARP inhibitors have 
activity in BRCA1/2-deficient breast can-
cers, which include a subset of TNBC [115,116]. 
Olaparib has had modest effects on OS in 
advanced TNBC and failure has been attributed 
to the development of resistance and the fact that 
sporadic TNBC tumor cells may not all har-
bor BRCA mutations [115]. For these cases that 
are BRCA wild-type, one experimental model 
suggested that PI3K inhibitors may sensitize 
TNBC cells to PARP inhibitors [96]. Further 
investigation of olaparib in combination with 
PI3K inhibitor, PI-103, has shown that the com-
bination can also serve as radiosensitizers and 
lead to significantly reduced tumor volume in 
radiation-treated xenograft models [117].

To date, not many studies have directly meas-
ured the effects of PARP on BM in TNBC. In 
mouse models, one recent experiment showed 
that carboplatin and PARP inhibitor ABT888 
penetrates the BBB and improves OS in BRCA-
mutant intracranial models but not in BRCA 
wild-type models, further confirming the issue 
of BRCA-proficient TNBC [118]. On the other 
hand, one recent Phase I study of 25 breast cancer 
patients with BM has suggested that veliparib, a 
novel PARP inhibitor, may improve survival by its 
ability to cross the BBB and further act as a radio-
sensitizer when paired with WBRT [119]; but the 
specific subtypes of breast cancer for these patients 
were not delineated. Taken together, these studies 
suggest the need for some combination of CNS 
active PARP inhibitors with RT in prospective tri-
als. Ultimately, more studies are needed to inves-
tigate the efficacy of PARP inhibitors in BM and 
resistance of TNBC to PARP inhibitors [115].

Melanoma
Melanoma is the third most common primary 
tumor to metastasize to the brain [3]. Moreover, 
up to 75% of patients with metastatic mela-
noma will develop BM during the course of 
their disease, with CNS disease present in 20% 
of patients at diagnosis [1]. Unfortunately, the 
prognosis of metastatic melanoma with CNS 
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involvement is still quite poor. Median OS 
after the diagnosis of BM has historically been 
around 4.7 months [120]; although, a recent ret-
rospective analysis suggests that median OS 
has reached about 7.7 months with the use of 
 immunotherapies and BRAF inhibitors [121].

Approximately 50% of patients with meta-
static melanoma will have an activating mutation 
of the BRAF oncogene leading to downstream 
constitutive activation of the MAPK signaling 
pathway, of which 95% of cases are V600E 
mutations [122]. BRAF inhibitors are FDA-
approved for metastatic melanoma, improving 
the prognosis in these patients. However, some 
studies suggest that BRAF-mutant melanoma 
carries a higher risk of developing BM.

Immune checkpoint inhibitors have also 
proven to play a significant role in treating meta-
static melanoma, which include anti-CTLA-4 
and anti-PD-1 receptor antibodies. These agents 
essentially function to activate the immune sys-
tem and augment the antitumor response [123–125]. 
Although their efficacy has been studied in a 
number of cancers, several of these agents have 
been FDA-approved for the treatment of advanced 
 melanoma, and thus will be discussed here.

●● Melanoma: BRAF inhibitors
Overall BRAF inhibitors like vemurafenib 
and dabrafanib have markedly improved OS 
in patients with advanced melanoma [126,127]. 
The evidence for their activity in BM, however, 
has been largely lacking, since many large trials 
excluded CNS disease [128]. One retrospective 
study found that BRAF inhibitors were associ-
ated with a lower incidence of BM in patients 
with BRAF-mutant melanoma with no prior 
history of BM; however, BRAF inhibitors had 
no effect on PFS and OS in patients who had 
developed BM prior to treatment [129]. In a pro-
spective multicenter Phase II trial of 172 patients 
with BM due to BRAF-mutant melanoma, 
intracranial response rates of dabrafinib were 
recorded in 39.2% of treatment-naive patients, 
and 30.8% of previously treated patients (but 
without prior systemic treatment) [130]. In addi-
tion, the study corroborates the Phase I safety 
profile of dabrafinib [131]. Nonetheless, median 
PFS and OS in BRAF-mutant melanoma 
patients with BM have been approximately 4 
and 5 months, respectively [130–132].

To prevent resistance, BRAF inhibitors are 
commonly combined with MEK inhibitors 
like trametinib and cobimetinib, which inhibit 

MEK, a downstream kinase from BRAF in the 
MAPK pathway [133,134]. However, evidence is 
scarce in support of its benefit in BM, again 
because of the lack of randomized clinical trials 
exploring the combination [135].

●● Melanoma: anti-CTLA-4 antibodies
Ipilimumab is an FDA-approved anti-CTLA-4 
antibody for metastatic melanoma. Overall, the 
systemic response rates in patients with mela-
noma have ranged from 11 to 21%, with higher 
response rates in patients with BRAF wild-
type melanoma with PD-L1 expression [136,137]. 
Moreover, OS in melanoma patients with BM 
on ipilimumab appears similar to those patients 
without CNS involvement [138]. Furthermore, 
several studies have shown robust, long-term 
responses with ipilimumab use, on the order of 
years [138,139]. Other studies have suggested that 
ipilimumab also significantly increases OS in 
conjunction with SRS [140,141]. One retrospective 
analysis found that the 2-year survival rate of 
those receiving SRS plus ipilimumab was 47.2%, 
compared with 19.7% in patients that received 
SRS alone [141].

Exome sequencing of tumors from patients 
with melanoma who have received anti-CTLA-4 
therapies are currently being carried out [125]. 
Snyder et al. characterized collections of somatic 
mutations in 64 melanoma exomes with the 
hypothesis that they may ultimately help predict 
response to anti-CTLA-4 therapy and were able 
to identify mutational profiles that were associ-
ated with better prognoses. More clinical data 
are needed to support this finding, especially in 
patients with BM.

●● Melanoma: anti-PD-1 antibodies
Nivolumab and pembrolizumab are recently 
FDA-approved PD-1 checkpoint inhibitors supe-
rior to ipilimumab in systemic response rates, 
with ORR ranging from 33 to 57% [136,142]. 
Although direct evidence for PD-1 checkpoint 
inhibitors in BM is still lacking, there are studies 
to suggest improved OS when used with SRS. 
One trial of 26 patients with melanotic BM 
estimated an 85% sustained disease control at 
12 months [143]. In addition to clinical efficacy, 
the safety of PD-1 checkpoint inhibitors must 
also continue to be investigated, as there are sev-
eral early reports of nivolumab-induced organiz-
ing pneumonia and CNS demyelination [144,145]. 
Nonetheless, studies such as the NIBIT-M2 
trial are currently comparing PD-1 checkpoint 
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Table 1. Select studies of newer targeted therapies and immunotherapies in brain metastases.

Cancer 
type

Mutation 
status

Study (year) intervention (dose in mg, 
p.o. unless otherwise 
specified)

PFS in months (95% Ci) CNS response rate 
(partial or complete)

Ref.

NSCLC EGFR  Jänne et al. (2015) Osimertinib (20–240 mg q.d.) 9.6 (8.3 to not reached) in 
T790M-positive patients; 
2.8 months (2.1–4.3) in T790M-
negative patients

– [43]

    He (2015) Rociletinib (Free base 900 
mg b.i.d. or with hydrogen 
bromide salt)

13.1 (5.4–13.1) in T790M-positive 
tumors; 
5.6 (1.3–not reached) in T790M-
negative patients

– [42]

    Porta et al. (2011) Erlotinib (150 mg q.d.) 2.9 (2.3–3.5) 82.40% [52]

  ALK Shaw et al. (2014) Ceritinib (400 mg q.d.) 7.0 (5.6–9.5) – [65]

    Shaw et al. (2016) Alectinib (600 mg b.i.d.) 8.1 (6.2–12.6) 75% [72]

  Unspecified Sandler et al. 
(2006)

Bevacizumab (15 mg/kg iv.) + 
paclitaxel- carboplatin (200 
mg/m2 to 6 mg/ml/min iv.)

6.2 (0.57–0.77) – [75]

Breast HER2 Swain et al. (2014) Pertuzumab (840 mg) + 
trastuzumab (429 mg) + 
docetaxel (8 mg/kg)

15 (0.39–0.85) – [101]

    Lin et al. (2009) Lapatinib (1250 mg) 
+ capecitabine (2000 mg/m2)

– 20% [107]

    Burstein et al. 
(2010)

Neratinib (240 mg q.d.) 3.1 (not reported) – [111]

  TNBC Anders et al. (2010) Olaparib (400 mg b.i.d.) 5.7 (4.6–7.4) – [115]

Melanoma BRAF Long et al. (2012) Dabrafinib (150 mg b.i.d.) 16.6 (15.7–21.9) 39.2% (in treatment-
naive patients)

[130]

  PD-L1 
expression

Larkin et al. (2015) Ipilimumab (3 mg/kg every 3 
weeks per cycle) 
+ nivolumab (1 mg/kg every 
3 weeks per cycle)

11.5 (4.3–9.5) – [136]

  Unspecified Goldberg et al. 
(2016)

Pembrolizumab (10 mg/kg) – 22% [148]

PFS was focused in this analysis, since many of the trials mentioned did not have mature enough data to comment on overall survival.
ALK: Anaplastic lymphoma kinase; b.i.d.: Twice daily; HER2: Human epidermal growth factor receptor 2; iv.: Intravenously; NSCLC: Non-small-cell lung cancer; PD-L1: Programmed 
death-ligand 1; PFS: Progression-free survival; p.o.: By mouth; q.d.: Once daily; TNBC: Triple-negative breast cancer.

inhibitors to currently approved standards [146], 
while other ongoing trials are evaluating their 
activity and safety [147]. Furthermore, an early 
analysis of pembrolizumab in BM from mela-
noma (n = 18) and NSCLC (n = 18) showed 
promising activity [148].

Conclusion
Immunotherapy and targeted therapy hold great 
promise in the treatment of BM (see Table 1 for 
a summary of the pertinent therapies discussed 
above). With each passing year, molecular 
genetic studies elucidate the roles of these agents 
in the contemporary approach, many of which 
have benefits in primary and intracranial sites of 
disease [23]. Furthermore, as molecular signatures 
associated with sensitivity to immunotherapies 

are developed, we will better be able to select 
patients who will most benefit from these thera-
pies. Finally, understanding the genetic evolution 
of BM from primary tumors should drive the 
development of rational clinical trials for this 
common and devastating complication of cancer.
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