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Abstract

Precision medicine is an integrative approach to cardiovascular disease prevention and treatment 

that considers an individual’s genetics, lifestyle, and exposures as determinants of their 

cardiovascular health and disease phenotypes. This focus overcomes the limitations of 

reductionism in medicine, which presumes that all patients with the same signs of disease share a 

common pathophenotype and, therefore, should be treated similarly. Precision medicine 

incorporates standard clinical and health record data with advanced panomics (i.e., genomics, 

transcriptomics, epigenomics, proteomics, metabolomics, microbiomics) for deep phenotyping. 

These phenotypic data can then be analyzed within the framework of molecular interaction 

(interactome) networks to uncover previously unrecognized disease phenotypes, relationships 

between diseases, and select pharmacotherapeutics or identify potential protein-drug or drug-drug 

interactions. In this review, we discuss the current spectrum of cardiovascular health and disease, 

population averages and the response of extreme phenotypes to interventions, and population-

based versus high-risk treatment strategies as a pretext to understanding a precision medicine 

approach to cardiovascular disease prevention and therapeutic interventions. We also consider the 

search for resilience and Mendelian disease genes, and argue against the theory of a single causal 

gene/gene product as a mediator of the cardiovascular disease phenotype as well as an Erlichian 

‘magic bullet’ to solve cardiovascular disease. Finally we detail the importance of deep 

phenotyping and interactome networks, and the use of this information for rational polypharmacy. 

These topics highlight the urgent need for precise phenotyping to advance precision medicine as a 

strategy to improve cardiovascular health and prevent disease.
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“It is because we are not exact that we fail.” Paul Ehrlich, 1896 1.

Over the past 50 years, progress towards the eradication of cardiovascular disease has been 

achieved through the adoption of lifestyle modifications, including dietary, tobacco, and 

exercise interventions, as well as evidence-based therapies that aim to modify a recognizable 

and commonly shared cardiovascular or at-risk phenotype. Despite the success of this 

approach, the related issues of disease prevention and cure have been elusive, presumably 

because of imprecise deep phenotyping of individuals needed to characterize sub-groups of 

disease. The magnitude of the problem remains considerable. At present, there are 92.1 

million adults (>1 in 3) in the United States who have been diagnosed with cardiovascular 

disease, with a projection that by 2030, at least 44% of the adult population will have this 

diagnosis 2. While death rates attributable to cardiovascular disease have declined ~25% 

from 2004 to 2014 in the United States, cardiovascular disease remains the leading cause of 

death worldwide accounting for ~32% of all global deaths, with the expectation that this 

number will rise to > 23.6 million deaths annually by 2030 3, 4. The contribution of attendant 

comorbidities and traditional risk factors (e.g., hyperlipidemia, hypertension, diabetes 

mellitus, metabolic syndrome, chronic kidney disease), health behaviors (smoking and 

tobacco use, physical inactivity, nutrition, overweight and obesity), and other immutable 

factors (family history) to morbidity and mortality is understood and likely underlies the 

sex-, age-, race-, ethnic-, regional- and economic-based differences in disease burden 

(reviewed in 4). A recent meta-analysis stressed the importance of these comorbidities to 

disease risk. This study, which included data from 9 prospective cohort studies that followed 

12,878 individuals, found that working towards optimal cardiovascular health metrics to 

achieve the greatest possible benefit was associated with a decrease in the risk for major 

adverse cardiac events, including cardiovascular mortality (RR: 0.25; 95% CI: 0.10–0.63) 5. 

Taken together, there is broad heterogeneity in the clinical profiles and outcomes of 

individuals with cardiovascular disease, thereby highlighting the urgent need for precision 

phenotyping.

The current approach to reducing cardiovascular morbidity and mortality in at-risk 

individuals or those with established disease is based on a traditional reductionist approach 

and uses a multi-tiered system with input from patients, the physician and the medical 

system, and evidence-based medicine at large. The first layer involves patient identification 

of symptoms that represent a deviation from normal or baseline. This report initiates entry 

into the medical system where contact with a physician results in a personalized assessment 

of the physical signs of disease and implementation of evidence-based therapies whose 

efficacy is supported by results from clinical trials. While this paradigm of care can 

ameliorate symptoms and affect disease progression, this outcome is not always certain, 

especially when targeting a chronic complex illness like atherothrombotic cardiovascular 

disease that does not have a single root cause. To address this issue, it is necessary to 

understand the totality of cardiovascular disease at a granular and integrative molecular 

level.

While all patients are fundamentally unique, reductionism in medicine presupposes that 

patients with common signs and symptoms share the same disease pathophenotype and, 

therefore, will respond similarly to medical, procedural, and/or behavioral interventions 
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tested in aggregates of like individuals 6–8. It also places the focus squarely on treatment of 

established cardiovascular disease without addressing health, prevention, timing of disease 

inception, or cure and eradication 9. Owing to advances in panomics (genomics, 

transcriptomics, epigenomics metabolomics, proteomics, microbiomics), i.e., technologies 

and data analysis that provide in-depth clinical, biological, and molecular phenotyping, there 

is growing awareness that this conventional approach may be an overly simplistic view of 

the multiple contributors to and complexity of an individual’s cardiovascular disease 

phenotype. Similarly, it is now understood that other factors, such as exposure to the natural, 

personal, and social environments, contribute to an individual’s highly personalized disease 

phenotype (reviewed in 10). Integration of this large body of data points lends itself towards 

a more exacting (patho)phenotype, one that is amenable to precision medicine.

Why precision medicine? Precision medicine represents a new strategy in the approach to 

care by targeting prevention and treatment while considering individual differences in 

genetics, exposures, and lifestyle and health factors that are determinants of a person’s 

disease phenotype (Figure 1). The goal of precision medicine is to identify optimal care for 

an individual based on a unique personal profile rather than that of the average population. 

The power of precision medicine lies in the data and requires the synthesis of rapidly 

changing datasets, ranging from standard clinical, imaging, and laboratory testing to next-

generating sequencing, metabolomics, and proteomic studies, to historical health record 

data. Data derived from these sources may also be analyzed using advanced systems biology 

and network analytical methods to uncover new and unbiased relationships between health 

and disease factors. The optimal system will also evolve rapidly, learn, and be facile enough 

to be useful for prevention, diagnosis, and treatment across a broad range of cardiovascular 

health factors, risk factors, and diseases. The evolution of precision medicine and its 

application to cardiovascular disease holds the promise of improving health as well as 

revolutionizing prevention and treatment options similar to what has occurred in the field of 

oncology.

Population averages and probability density function

To move precision medicine into the cardiovascular arena, it is necessary to identify and 

adopt parameters that reflect what is a considered the normal or ideal range (Figure 2A). 

This is especially important given the diversity in population age and ethnicity where 

‘normal’ standards may change over time. Within the general population, there is variability 

with some individuals who have ideal health, others who have recognizable disease risk 

factors, and those who have established disease. Within groups, the transition between these 

health states tends to be less clear with there generally being a continuum with overlap 

between categories 9. Examples of this point are blood pressure and blood cholesterol levels. 

In each case, there are individuals with normal levels who are considered healthy, those with 

increased levels in the absence of cardiovascular disease, those with high levels and disease, 

as well those who do not fit into any clear category and are at an overlap of states 9.

In clinical trials, this continuum of disease is often simplified with the assumption that all 

participants have the same phenotype, which can be represented using a typical bell-shaped 

curve with a discernable median measurement. Individuals entered in the clinical trial are 
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considered based on the variable of interest, such as their cholesterol level, blood pressure, 

or history of myocardial infarction, and not their complex phenotype. This 

oversimplification allows results to be described in terms of an average finding on a per 

group basis. While this paradigm has been the norm, the hazard of assuming similarity is 

that only relatively large differences may be detected as significantly different and the actual 

range of responses may be undetected 9. This was concept was illustrated when patients with 

chronic heart failure were “re-phenotyped” using cluster analysis. This analysis revealed 

significant heterogeneity between patients with individuals segregating into groups that 

would not have been predicted based on their initial clinical phenotype 11. In precision 

medicine, similarity in phenotypes is not assumed for the purpose of studying a population 

behavior or response. Instead, the goal is to deviate from population averages as the metric 

and focus on the individual’s unique phenotype with an eye towards identifying a response 

to treatment as one that moves the individual from disease to health and those at health to 

ideal health 9.

Responses of the “tails” of the distribution and implications

The importance of phenotyping and identifying an ideal level of health within community-

based populations has implications for defining what constitutes a high-risk phenotype, or 

those individuals who fall in the tail(s) of the distribution curve. For example, individuals 

with blood pressure or blood cholesterol levels at the population extreme are considered 

high-risk. There have been two strategies considered when deciding how to reduce adverse 

events: a high-risk strategy and a population-based strategy. The high-risk strategy targets 

only those individuals who fall within the tail of the distribution curve and have the greatest 

risk for disease in an attempt to lower levels to what is considered normal or ideal. However, 

the majority of cases of cardiovascular disease occur in individuals who fall in the average 

risk group. A population-based strategy targets this latter group, focuses on treating more 

individuals in the population, and aims for a smaller population-based risk factor reduction. 

This approach follows the argument put forth by Geoffrey Rose, viz., that shifting the risk 

distribution curve by only a small amount within a population will have greater societal 

benefit in reducing or preventing cardiovascular morbidity and mortality than treating only 

high-risk patients 12. Others have also argued that significant reduction in the population 

burden of cardiovascular disease can only occur from a population approach shifting the 

entire population distribution to lower levels 13. Despite the epidemiological cogency of this 

argument, adopting a population-based strategy that shifts the population mean also shifts 

the distribution of individuals who fall within the tails and, therefore, cross thresholds to 

initiate or stop treatment (Figure 2B). The net outcome can be either beneficial or harmful. 

Consider differences in the threshold for treatment of cholesterol using guidelines 

established by the ACC/AHA as compared to the US Preventive Services Task Force. 

Differences in the guidelines suggest that shifting to the US Preventive Services Task Force 

recommendations from the ACC/AHA guidelines resulted in ~9% of individuals who met 

ACC/AHA guideline criteria for statin use for primary prevention no longer being 

recommended for treatment; 55% of this group are younger adults with high mean long-term 

risk for cardiovascular disease 14.
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Using data from the National Health and Nutrition Examination Survey III study, 

investigators performed a head-to-head comparison of population-based and high risk-based 

treatment strategies using a low- or moderate-intensity intervention to determine which had 

the greatest benefit for reducing cardiovascular events and cardiovascular mortality. The 

study compared a population-based strategy that treated all, a high-risk strategy that selected 

individuals within the top 25% low-density lipoprotein cholesterol (LDL) level, and a high-

risk strategy based on individuals within the top 25% for cardiovascular risk as determined 

by a risk prediction tool. In this case, the investigators found that the high-risk strategy 

focused on individuals within the top 25% of cardiovascular risk was the most efficient 

method for preventing cardiovascular events over the long-term but was comparable to a 

population-based strategy with a more moderate interventional goal. This finding led to the 

conclusion that while the high-risk treatment strategy was the most efficacious, the 

population-based prevention strategy was a reasonable option if the intervention had no or 

minimal side effects 13. In contrast, in developing low- and middle-income countries, the 

high-risk strategy should be utilized, especially when there are few resources available 15.

The search for single pathogenic genes/gene products and its flaws

The standard view that all or most cardiovascular diseases have a heritable component has 

fueled the search for single pathogenic genes for specific disorders. Although cardiovascular 

disease is significantly broad and encompasses diseases related to blood vessels, the 

myocardium, heart valves, the conduction system, and developmental abnormalities, there 

are only a few cardiovascular disorders that can be attributed to a single pathogenic gene. 

Nonetheless, there are notable examples of monogenic disorders that cause cardiovascular 

disease, such as a mutation in the low-density lipoprotein receptor (LDLR) gene that causes 

familial hypercholesterolemia 16, 17; in the beta-myosin heavy chain and other sarcomeric 

proteins that are causal for hypertrophic cardiomyopathy 18, 19 and a mutation in the fibrillin 

(FBN1) gene that causes Marfan syndrome among others 20. In contrast, atherosclerosis and 

myocardial infarction are multifaceted diseases with a complex inheritance, cannot be 

explained by a single pathogenic gene, and are more likely due to perturbations of large, and 

possibly phenotypically related, genes and other environmental factors 21.

There are several inherent limitations associated with the search for a single pathogenic gene 

in complex cardiovascular diseases, and these are exemplified in known monogenic 

disorders. The first is that the genotype-phenotype relationship can be difficult to ascertain. 

For example, mutations in the alpha subunit of the type V voltage-gated sodium channel 

(SCN5A) was initially described as a single causal gene for inherited long QT syndrome 22. 

Since that time, other phenotypes have been associated with the mutation, including Brugada 

syndrome and dilated cardiomyopathy 23, 24. The second consideration involves penetrance 

and expressivity with examples of incomplete penetrance in a pedigree with familial 

hypercholesterolemia and an LDLR mutation, and differences in disease expression in 

families with Marfan syndrome and the same heritable mutation in FBN1 25, 26. Incomplete 

penetrance of these classic Mendelian disorders simply suggests other interacting genetic 

variants and/or environmental exposures on their pathogenesis.
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The limitation of genome-wide association studies (GWAS) as a method designed to 

implicate a single pathogenic gene, or a limited number of pathogenic genes, is that 

performing genetic mapping by association only identifies genomic regions that may 

contribute to the disease process. While coverage of the genome is improving, the singular 

information provided by these data are that a pathogenic gene resides nearby with distance 

determined by the sequencing platform. Results from GWAS support the concept that 

complex disorders possess genetic heterogeneity of variants (common, low-frequency, or 

rare), and this is likely the most frequent expression pattern in these types of diseases. This 

point was exemplified in a GWAS meta-analysis of individuals with myocardial infarction 

and control subjects. In this study of 60,801 individuals with a myocardial infarction and 

123,504 controls, there were common and rare variants identified accounting for genetic 

heterogeneity 27.

Another argument against a single pathogenic gene for atherothrombotic vascular disease 

and myocardial infarction is illustrated by the relationship between chromosome 9p21 and 

coronary artery disease or myocardial infarction. Single nucleotide polymorphisms (SNP) in 

9p21 were identified by several independent GWAS and each risk allele was associated with 

a 29% increased risk of cardiovascular disease 28–30. The findings that the SNPs were in 

non-coding regions, the nearest genes were > 100 Kb away, and causality between the 

nearest genes (CDKN2B, CDKN2A) and susceptibility to atherosclerosis has not yet been 

ascertained all argue against the single pathogenic gene explanation 28–30. Considering the 

history of GWAS and the observation that these studies have not identified a single 

pathogenic gene or SNP as the mechanism underlying coronary artery disease or myocardial 

infarction indicates further that searching for a single element to explain a complex 

phenotype is not sufficient. Instead, it is more likely that results from GWAS and next-

generation sequencing will contribute to a mechanistic exploration of molecular networks 

(see below) and to the need for concomitant deep phenotyping multifaceted cardiovascular 

diseases, such as coronary artery disease and myocardial infarction.

Resilience and Mendelian disease genes

Advances in next generation sequencing have expanded our understanding of the genetic 

basis of cardiovascular diseases in particular and of all human disease in general. There are 

>150,000 disease-related genetic variants mapped to >6,000 Mendelian disorders (Online 

Mendelian Inheritance in Man[OMIM]) that have been catalogued in the Human Gene 

Mutation Database (HGMD)31, 32. Although this information is readily available, there are 

relatively few therapies developed that effectively treat or cure these Mendelian diseases 33. 

For common complex diseases, such as atherothrombotic cardiovascular disease, few gene 

variants have translated directly into predictors of disease risk or severity, thereby limiting 

their potential to be developed into a diagnostic or therapeutic.

More recently, attention has turned to examining the genetic and environmental factors that 

predispose to resilience, the ability to adapt successfully to stress. In the context of 

Mendelian disease, resilience implies the ability to withstand changes to fitness in the 

presence of disease-associated mutations 34. The role of second site mutations or 

environmental modifications that promote resilience to disease has also been established in 
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preclinical models 35, 36. In addition, clinical studies that have found highly penetrant 

disease-causing mutations in individuals who do not manifest the disease phenotype, 

suggesting that there are either genetic or environmental resilience factors that protect 

individuals from manifesting disease 37, 38. A healthy lifestyle, defined as the absence of 

obesity, no current tobacco use, a healthy diet, and regular physical activity, has been shown 

to serve as an environmental resilience factor and modify genetic risk of cardiovascular 

disease. In a study of 55,685 individuals who were stratified according to a polygenic risk 

score comprised of 50 SNPs associated with coronary artery disease, individuals with a high 

genetic risk with a healthy lifestyle had a 46% reduction in the relative risk of coronary 

events 39.

While many genetic studies have attempted to identify mutations linked to disease, an 

alternative is to search for genetic factors that prevent disease, or wellness factors, in the 

presence of Mendelian disease-causing mutations. While attempts to find resilience factors 

have been limited, some secondary cardiovascular disease modulators have been identified, 

including a loss-of-function mutation in PCSK9 and mutations in zinc transporter 8 that 

protect obese individuals from diabetes mellitus 35, 40–42.

A more recent study used a different tactic to find resilience factors and studied the genomes 

of 589,306 individuals who were apparently healthy. Using this approach, they identified 13 

adults with what had been viewed as completely penetrant Mendelian disease mutations for 

8 different severe childhood diseases, including cystic fibrosis, atelosteogenesis, and Smith-

Lemli-Opitz syndrome, but who were without any clinical manifestations of disease. This 

finding suggested that these individuals have some form of “genetic protection” or resilience 

against even these classical Mendelian disorders; however, it was not possible to isolate the 

resilience factor(s) due to the data available and study design 43.

The search for the Ehrlichian ‘magic bullet’ and its flaws

The complexities of the cardiovascular disease phenotype also highlight the fact that there is 

no single therapy, or Ehrlichian ‘magic bullet,’ that will cure the disease. In 1900, the 

German Nobel laureate Paul Erlich, a pioneer of chemotherapy, put forth the concept of the 

magic bullet. He hypothesized that there would be a way to target specifically disease-

causing microbes in the same way a bullet fired from a gun hits its target. He referred to this 

hypothetical agent as Zauberkugel or magic bullet. His continued work to cure syphilis using 

a magic bullet led to the discovery of Salvarsan (an arsenical compound) on August 31, 

1909, the 606th compound he tested that was efficacious and free of important side effects 
44.

The magic bullet concept was soon popularized and its meaning expanded to include a 

perfect drug to cure a specific disease that acted without side effects. The goal would be 

achieved by identifying a compound that targets a specific disease-related molecule and does 

so in a highly specific manner with no off-target effects. This idea has become an enduring 

part of cardiovascular (and all of ) medicine even though there are numerous examples of 

therapies or interventions for cardiovascular disease that have been hailed as a ‘magic 

bullet,’ yet have failed to provide a cure, including stem cells and statins. In fact, this is not 
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surprising as cardiovascular diseases are complex pathophenotypes with significant biologic 

diversity owing to numerous genetic, metabolic, and environmental mediators.

Thus, the idea of a single target in the original, strictest definition of a magic bullet is 

unlikely to have broad applicability in cardiovascular diseases. In other words, the use of a 

mono-specific drug(s) to target a multifactorial disease will not be successful. This has led to 

the idea of targeting multiple targets at once (e.g., the polypill). While this strategy may 

improve the pharmacological profile, there is also the increased risk of adverse effects. 

Biologicals such as monoclonal antibodies are less likely to have off-target effects, but may 

show variations in efficacy and unknown off-target effects or on-target toxicity (e.g., 

abciximab and severe bleeding or immune checkpoint inhibitors and autoimmune diseases). 

This approach has evolved further to fall within the rubric of precision medicine via 

network-targeted therapy that uses a combination therapy strategy targeting multiple steps in 

a signaling pathway or network identified by deep phenotyping. This more complex 

approach could be considered a modern interpretation of Ehrlich’s magic bullet theory in the 

contemporary era 44, 45.

Importance of molecular interaction (“interactome”) networks

Using data from genomic and other panomic profiling, data can be analyzed using molecular 

interaction or interactome networks to discover disease associations and possible therapeutic 

targets (figure 3). Interactome networks play an increasingly important role in the discovery 

of novel relationships between genes or proteins that may have broad applicability across a 

spectrum of human diseases. The interactome defines a comprehensive, unbiased set of 

biologically relevant molecular (i.e., gene, protein, metabolite) interactions in a cell, organ, 

or person. The advantage of examining the interactome to understand disease pathobiology 

is that the interactome allows for the simultaneous consideration of (ideally) all, or a large 

number of relevant genes, metabolites, and/or proteins as well as their interactions as 

depicted through network representation. These networks and sub-networks allow for 

discovery of new interactions, ascertainment of pathways governing phenotype, 

identification of critical regulatory checkpoints in a biological system, and prediction of the 

consequences of disease in network associations or pathway functions on phenotype. The 

interactome eliminates the bias introduced by analyzing a dataset using a reductionist 

approach, which examines a limited number of interactions in the dataset to find a 

differentially expressed gene or protein associated with a phenotype without consideration 

of the network context within which it operates 46, 47. The current human protein-protein 

interactome contains 13,460 proteins that have 141,296 physical interactions (protein-

protein, metabolic pathways, kinase-substrate)48. The interactome network is scale-free, 

indicating that interactions are not random, and the proteins within it exhibit emergent 

behavior such that detailed information about one protein does not predict its functional 

response within the context of the interactome or of the interactome itself 49. Although the 

human interactome is “incomplete” owing to the fact that the majority (80%) of pairwise 

protein interactions have not been analyzed using currently available high-throughput 

methodology, it remains a valuable tool for discovery of disease-related phenomena 48.
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The human interactome has been shown to contain sub-networks for specific diseases, so-

called disease modules. Certain disease modules overlap with one another, and these 

diseases typically have similar symptoms, patterns of co-expression, and comorbidities, 

while diseases that reside in separate neighborhoods in the network do not share these 

characteristics and are clinically distinct. Analysis of disease relationships has shown that 

7% of disease pairs have overlapping disease neighborhoods in the interactome with 

unexpected disease relationships, such as that between asthma and celiac disease, which may 

share a molecular phenotype despite differences in their pathobiology. Interrogation of the 

shared factors between asthma and celiac disease revealed pathways for immunoglobulin A 

production as a common intermediary 33. Interactome-based network analysis has been used 

to inform GWAS data. For example, the great majority of genes associated with type 2 

diabetes mellitus have very small effect size and limited statistical significance when 

analyzed in isolation; however, mapping these alleles to the interactome leads to the 

identification of novel interactions in pathway clusters that provide unique, highly 

statistically significant information on mechanism not appreciated by conventional GWAS 

(Figure 4). Another capability of the interactome is to improve comprehension of the 

molecular actions of drugs with a goal of identifying drug targets, the potential for adverse 

reactions, and the possibility of repurposing drugs based on newly identified relevant 

molecular targets. This concept was investigated for myocardial infarction using a network 

that incorporated myocardial infarction disease genes, drugs, drug targets, and drug target 

interactors or binding partners in the interactome to reveal that many myocardial infarction-

related drug targets and disease proteins have close relationships within the disease module 

in the interactome, and some of the drug target intermediaries are themselves targets for 

other drugs suggesting potential drug repurposing strategies 50. Studies of the interactome 

have also been utilized to identify tissue specificity of modules associated with human 

disease. This has shown that an entire functional sub-network or pathway incorporating 

disease gene products, or a disease module, must be expressed within a particular tissue for a 

disease to be manifest in that tissue, not simply expression of the disease gene product itself. 

This type of analysis also leads to the creation of a disease-tissue network, and allows for the 

discovery of unexpected disease-tissue associations 51.

Importance of phenotype

A core principle of precision medicine is establishing the precise phenotype for any given 

disorder (Figure 5). The ability to understand and recognize the relationship between the 

elements that comprise health phenotypes and disease (patho)phenotypes is required for 

precision medicine to improve individual and population outcomes 52, 53. The foray into 

precision phenotyping has faced some obstacles, including the unknown function of many 

genes or metabolites, the incomplete descriptors used to categorize diversity within disease 

phenotypes, and inadequate data collection or extraction from medical records 52, 54. These 

shortcomings have led to the characterization of most phenotype descriptions as imprecise 

and highlight the necessity of a unified descriptive ontology that is widely adopted. This 

widely recognized need has led to the proposal that the Human Phenotype Ontology (HPO) 

be utilized as a standard to characterize disease phenotypes using a specific vocabulary; 

however, it remains to be seen if this is system will achieve widespread use 55.
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The importance of obtaining a more detailed granular phenotype for cardiovascular diseases 

is underscored by the fact that phenotypic profiling is lagging with respect to panomics 

technologies, and, that phenotypic information is necessary to deconvolute the results of 

genomic, transcriptomic, metabolic, and proteomic studies. Only recently has the approach 

to clinical phenotyping moved beyond historical metrics, such as blood pressure, to improve 

stratification of cardiovascular diseases. Current phenotypic assessments are beginning to 

incorporate standard clinical traits, such as blood pressure, as well as other complex 

characteristics like social, environmental, and personal exposures 10, 56. Phenotypes are also 

being assessed continually using personal sensors and wearable devices, illustrating the 

importance of time trajectories in monitoring early identifiers of disease progression 57, 58.

There are several recent examples of the use of advanced phenotyping methodologies to 

discover differences within individuals with a clinical syndrome that has underlying 

heterogeneity. Clinical phenomapping of patients with heart failure and preserved ejection 

fraction using unbiased hierarchical clustering analysis revealed three distinct groups of 

patients, with one phenogroup having an increased risk of heart failure hospitalization (HR: 

4.2, 95% CI: 2.0–9.1, p<0.001) 58. Similarly, cluster analysis of 1,619 chronic heart failure 

patients identified heterogeneity within the group as a whole and 4 phenotypic clusters of 

patients with differences in their risk of all-cause mortality or all-cause hospitalization 11.

The concept of an unbiased or undirected phenome-wide assessment of an individual is also 

entering the realm of possibility, and has been conducted in a single person who was 

extensively phenotyped over the course of 18 months. In the MyConnectome project, brain 

function over time was assessed with imaging, functional studies, health surveys, and 

genomic and metabolomic profiling with data from the latter examined using network 

analysis. Using this platform, gene and metabolite expression were related to dynamic 

changes in brain connectivity over a timescale of days to months. This pioneering study 

illustrates the feasibility of this deep temporal phenotyping approach and provides a strategy 

for translating these types of studies into the cardiovascular space 59.

Endophenotype diversity and pre-emptive/preventive strategies

The endophenotype, or intermediate phenotype, is a biological trait that is quantitative and 

reflects the function of a biological system. It is heritable and is more closely related to the 

root cause of a disease than the broad clinical phenotype 60, 61. GWAS that examine 

conventional phenotypes can be improved upon by focusing on individual endophenotypes 
62. Endophenotypes are themselves believed to be subject to natural selection leading to the 

concept that there are evolutionarily established molecular mechanisms, which regulate 

endophenotypes, and that these factors translate into genetic predisposition for the correlate 

downstream clinical phenotypes 63–65. This view leads to the expectation that complex 

molecular mechanisms link genes responsible for both endophenotypes and phenotypes 66. 

Thus, genetic effects on endophenotype and phenotype do not necessarily have to be the 

same in different populations, and genetic predisposition to an endophenotype does not 

necessarily translate into predisposition for a downstream phenotype.
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A number of GWAS studies have illustrated the diverse relationships between 

endophenotypes and phenotypes. For example, one study examined the association of the 

rs693 and rs562338 polymorphisms in the apolipoprotein B locus with total cholesterol and 

high-density lipoprotein cholesterol (endophenotype) with myocardial infarction and 

survival (phenotypes) across 4 population-based studies (MESA, ARIC, FHS, 

Cardiovascular Health Study [CHS]). The endophenotypes were investigated to determine if 

they could mediate the associations of the polymorphisms with myocardial infarction or 

mortality. In this analysis, the SNPs rs693 and rs562338 were robustly associated with the 

endophenotype (total cholesterol) but had a trivial association with the phenotype 

(myocardial infarction and survival) despite the well-known relationship between lipids and 

myocardial infarction 67.

Network analysis has been used to examine endophenotypes and their overlapping 

relationships to different diseases. Inflammation, thrombosis, and fibrosis are 

endophenotypes that are linked pathologically and common to virtually all disease states, 

both in terms of response to injury and to repair 68–71. To explore biological and topological 

crosstalk between these endophenotypes, network analysis of the inflammasome, 

thrombosome, and fibrosome was undertaken. Mapping these networks to the human 

interactome identified inflammation, thrombosis, and fibrosis sub-regions that were highly 

overlapping and contained disease genes associated with complex diseases and 

cardiovascular risk factors. These sub-regions were found to be integral to the structure of 

the basic interactome network thereby highlighting the key role of these processes in (health 

and) disease 72.

With the advent of panomics profiling, endophenotypes and their association with complex 

disease phenotypes will be refined further. To ensure the integrity of these relationships, 

however, there is an implicit need for standardization of methodology and platforms, as well 

as adoption of Clinical Laboratory Improvement Amendments (CLIA)-grade laboratory 

testing with strict adherence to quality control. Analytical methods to integrate 

endophenotypic data should favor unbiased approaches, such as network analysis, and 

account for issues related to multiple testing, which is an inherent limitation of large dataset 

analysis.

Genetic diversity and rational polypharmacy

Although randomized clinical trials have determined the efficacy of many new therapeutics 

across large populations of individuals with similar clinical phenotypes, heterogeneity in the 

response to drugs remains a relevant and challenging issue. Aggregating patients with 

similar disease characteristics into a cohort deemed to be putative therapeutic responders 

with equal effect obviously ignores this heterogeneity for clinical trial design and therapeutic 

simplicity, even though there is no phenotypic basis to support such an oversimplified 

categorization (Figure 6A) 56. Pharmacogenetic variation due to single and cumulative drug-

gene interactions can lead to adverse drug interactions 73, 74; these types of reactions 

increase with polypharmacy. Approximately 66% of adults age 65 years or older have at 

least one or more prescription medications that require daily use 75–77. It is estimated that 

~35% of geriatric patients have adverse drug events, at least half of which are deemed 
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preventable; and 10–17% of hospitalizations in this population are related to drug reactions 

leading to 51% of adverse drug-related deaths 77–79. The application of precision medicine 

to this problem has revealed that cardiovascular pharmacogenetics can be used to identify 

genetic diversity markers associated with poor response or adverse reactions to drugs. In 

fact, drug interactions related to predisposing genetic factors lead to ~47% of warnings of 

potential interactions associated with side effects 79.

There are numerous examples of genetic diversity and DNA variants as determinants of 

response to a drug. In cardiovascular disease, platelet aggregation promotes 

atherothrombotic vascular disease and stent thrombosis following percutaneous coronary 

intervention. The P2Y12 inhibitor clopidogrel, which is part of a typical dual antiplatelet 

regimen, has a range of inter-individual variability. Some individuals are known to be 

clopidogrel “non-responders,” a phenotype that has been associated with genetic 

determinants and an increase in ischemic events 80–83. Loss-of-function alleles in CYP2C19 

(CYP2C19*2 and CYP2C19*3) have been associated with poor drug responsiveness, while 

the gain-of-function allele CYP2C19*17 is associated with increased bleeding risk 84, 8586. 

Attempts to utilize this information for tailored therapy in patients with drug-eluting stents 

and high on-treatment platelet reactivity, however, did not affect cardiovascular death, 

myocardial infarction, or stent thrombosis 87.

It has been suggested that ~50% of patients taking statins stop taking their medications 

owing to side effects or adverse events 88. Of the related genes, only the gene for the soluble 

carrier organic anion transporter 1B1 (SLCO1B1), which regulates statin influx and 

metabolism in the liver, has been associated consistently with myopathy 88. Patients who are 

either homozygous or heterozygous for the rs4263657 polymorphism have an increased risk 

for rhabdomyolysis with statin use, and it has been suggested that individuals with this SNP 

avoid statin drugs 89.

Warfarin, one of the most commonly prescribed anticoagulants, has a narrow therapeutic 

window but wide inter-individual variation 90. Warfarin is metabolized primarily in the liver 

by oxidation by cytochrome P450 2C9 (CYP2C9), and inhibits the protein vitamin K 

epoxide reductase complex subunit 1 (VKORC1) 91, 92. Studies have attributed the ~10%–

50% variability in dose requirements to genotypes, notably SNPs in CYP2C9 (CYP2C9*2, 
CYP2C9*3) and VKORC1 (rs9923231) 93–95. The Food and Drug Administration has 

recognized the importance of these genetic variants and updated the drug packaging to 

include information on dosing based on CYP2C9 and VKORC1 genotypes 96, 97. Two 

randomized clinical trials, the Clarification of Optimal Anticoagulation through Genetics 

(COAG) trial and the European Pharmacogenetics and Anticoagulant Therapy-Warfarin 

(EU-PACT) study, evaluated genotype-guided warfarin dosing 98, 99. These studies 

incorporated CYP2C9 and VKORC1 genotyping into the clinical algorithm for selecting the 

warfarin dose. The 1,015 patient COAG trial reported that genotyping had no effect on the 

percent of time in the therapeutic International Normalized Ratio (INR) range, while the 455 

patient EU-PACT study found that genotyping was useful, resulted in fewer episodes of 

excess anticoagulation (INR levels >=4.0), and led to more rapid achievement of the 

therapeutic range (21 vs 29 days) than those who were not guided by genotype 98, 99. The 
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differences observed between these trials has been attributed to trial design, prevalence of 

the SNPs in the study population, and the demographics of the study populations 100.

Genetic variants have also been identified that modify the response to other relevant 

cardiovascular drugs, including beta-blockers (ADRB1, ADRB2, GRK5, GRK4); 

angiotensin converting enzyme inhibitors (ACE, AGTR1); diuretics (ADD1, NPPA, 
NEDD4L); and calcium channel blockers (CACNB2, CACNA1C) (reviewed in 101). To 

date, however, genetic testing has not been employed routinely to guide selection of these 

drugs, and many genetic variants require confirmation in larger studies.

Other pilot studies have examined the efficacy of implementing pharmacogenetic profiling 

coupled with a clinical decision support tool in polypharmacy patients to reduce adverse 

drug reactions and emergency department visits. In a small study of 110 patients randomized 

to genetic profiling of CYP 450 genes and prescribed relevant medications, the use of 

pharmacogenetic profiling was associated with a reduction in the number of emergency 

department visits (RR 0.58; 95% CI: 0.34–0.99, p=0.045) and hospitalizations at 60 days 

(RR, 0.48; 95% CI: 0.27–0.82, p-=0.0007). Interestingly, of 124 recommendations on drug 

therapy based on pharmacogenetic profiling that were passed on to the patient’s clinician, 

only 96 (77%) were followed. While exploratory, this study highlights the benefits of 

identifying genetic diversity to achieve rational polypharmacy and clinician attitudes towards 

this approach 102.

Pharmacogenetic profiling has also been used to determine if individuals treated with 

polypharmacy tend to express more rare variants than the general population and, therefore, 

are less likely to respond to individual medications. Using a de-identified electronic medical 

record and corresponding samples from a biorespository, investigators identified 326 

“frequently medicated” individuals (defined as prescribed clopidogrel or warfarin in addition 

to more than five medications from select classes with at least one drug known to have a 

pharmacogenetic interaction). Analysis found that most of the marker allele frequencies in 

polypharmacy patients did not differ from what was reported for individuals of European 

descent in the 1000 Genomes Pilot with a single exception in CYP2D6 (rs1080985) 103. The 

relevance of this finding was deemed unclear as it was not certain if it was the result of 

sequencing errors in the 1000 Genomes Pilot or a true difference 104.

Precision medicine will advance this field by using enhanced phenotyping for disease 

stratification to identify groups of patients that differ in drug responsiveness, will benefit 

from existing pharmacotherapies, or will benefit from rational polypharmacy [i.e., the use of 

multiple drugs chosen based on knowledge of their interactome-based network location and 

effects on key pathways in the interactome that govern pathophenotype (Figure 6B)] 105. 

This strategy can also be used to identify biomarkers to guide drug dosing, continue therapy, 

or limit side effects and adverse drug reactions 101. When and how pharmacogenetic 

profiling will become a mainstay of clinical practice to guide polypharmacy and limit 

adverse drug reactions remains to be determined 106. In part, the slow uptake of clinically 

applied pharmacogeneticcs is a reflection of statistical uncertainty, the abundance of 

genomic variants (even those previously believed to be causative), and the typical 
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association analysis rather than network analysis of the functional consequences of the 

variants 107.

Precision versus personalized medicine

Although the terms precision medicine and personalized medicine have been used 

interchangeably, they are not identical but, rather, related and overlapping disciplines. 

Precision medicine identifies the unique aspects of an individual related to health and 

disease to select appropriate and effective therapy. Personalized medicine may refer to 

implementation of these data into a person-specific treatment plan or, simply, the creation of 

a treatment plan for an individual based on a known biomarker(s). Personalized medicine is 

not, however, meant to suggest that results from detailed phenotyping will be used to create 

new drug or other therapies.

Precision medicine is increasingly considered as the art and science of creating 

individualized assessments of health and disease that are derived from established clinical 

and pathological indices integrated with state-of-the-art panomic (i.e., genomic, 

transcriptomic, metabolomic, and proteomic) profiling 108, 109. Thus, precision medicine 

aims to drive the field away from the implementation of the same pharmacotherapy, lifestyle 

intervention, or behavioral modification to a group of individuals presumed to share the 

same phenotype and towards personalizing treatments that are aimed at prevention, 

promotion of health, and amelioration of disease. While this concept has been embraced 

with success in the field of oncology, the issue of patient adherence with a personalized 

therapy identified using precision medicine remains a concern 109. Estimates indicate that 

approximately half of all medications are not taken as prescribed and that patients with 

chronic conditions such as cardiovascular disease only take 50%–60% of the medications 

prescribed 110. While this is a valid point and developments in precision and personalized 

medicine must be matched by patient education and acceptance of these strategies, it is also 

plausible that poor adherence rates are the result of imprecise medication use leading to 

limited efficacy and/or increased side effect risk in a given individual. This issue will clearly 

require further study.

Future considerations

Precision medicine is poised to become the next great revolution in the practice of medicine, 

as well as in the maintenance of cardiovascular health and the prevention and cure of 

cardiovascular disease. Precision medicine disrupts standard practice and draws from 

clinical testing, electronic health records, panomics profiling, big datasets, and novel 

analytical methods, such as systems biology and network science, to create a person-specific 

phenotype that can then be used to identify an optimal intervention with minimal risk. The 

obvious benefits of this approach to patients, clinicians, and researchers are numerous and 

include: individual phenotype specificity, identification of individuals with a similar 

molecular phenotype, selection of best drugs or therapies with maximal efficacy and no or 

limited adverse reactions, efficient selection and enrichment of clinical trial participants, 

potential to improve adherence and reduce costs, and creating a paradigm shift in how 

cardiovascular care is delivered. To accomplish this laudable goal, the medical community at 
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large and other stakeholders will need to overcome barriers to implementation that range 

from technical to sociopolitical (Figure 7) 111. At the very least, precision medicine will 

need to demonstrate that phenotype-based person-specific interventions are superior to the 

current standard of care and, ultimately, have a population effect by moving the mean on the 

disease spectrum towards health 111. Other barriers are related to large dataset collection and 

focuses on methods to ensure data accuracy, computational power, security and privacy of 

datasets, renewal of accruing data, and continuous development and refinement of analytical 

methods. Finally, education, affordability, and public acceptance of the strategy all play key 

roles in its ultimate implementation 111.

Despite a clear path forward toward mainstream application of precision medicine, there 

continues to be debate about whether a precision medicine approach will have a global 

impact on cardiovascular disease prevention and treatment, or will only serve a small group 

of patients and be relegated to a highly selected niche role. This skepticism has arisen, in 

part, based on progress in the field to date and perceived challenges in maintaining the 

physician-patient relationship 112, 113. While these concerns are valid points, they are not 

insurmountable and are currently being addressed in visions as how best to implement 

precision medicine in the practice of cardiovascular medicine. The nascent field of precision 

medicine fully embraces Paul Ehrlich’s concept that imprecision leads to failure, and 

harnesses our most precise technologies and methodologies to improve cardiovascular health 

and treat disease.
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Non-standard Abbreviations and Acronyms

ACE Angiotensin converting enzyme gene

ADD1 Adducin1 gene

ADRB1 β1-adrenergic receptor gene

ADRB2 β2-adrenergic receptor gene

AGTR1 Angiotensin II receptor, type 1 gene

ARIC Atherosclerosis Risk in Communities study

CACNA1C Calcium voltage-gated channel, subunit α1 C gene

CACNB2 Calcium voltage-gated channel subunit β2 gene

CDKN2A Cyclin-dependent kinase inhibitor 2A gene

CDKN2B Cyclin-dependent kinase inhibitor 2B gene
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CHS Cardiovascular Health Study

CLIA Clinical Laboratory Improvement Amendments

COAG Clarification of Optimal Anticoagulation through Genetics study

CYP2C19 Cytochrome P450 2C19 gene

CYP2D6 Cytochrome P450 2D6 gene

CYP450 Cytochrome P450 gene

EU-PACT European Pharmacogenetics for Anticoagulant Therapy

FBN1 Fibrillin1 gene

FHS Framingham Heart Study

GRK4 G protein-coupled receptor kinase 4 gene

GRK5 G protein-coupled receptor kinase 5 gene

GWAS Genome wide association study

HGMD Human Gene Mutation Database

HPO Human Phenotype Ontology

INR International Normalized Ratio

LDL Low-density lipoprotein

LDLR Low-density lipoprotein receptor gene

MESA Multi-Ethnic Study of Atherosclerosis

NEDD4L Neural precursor cell expressed, developmentally down-regulated 4-like 

gene

NPPA Natriuretic peptide A gene

OMIM Online Mendelian Inheritance in Man database

P2Y12 Purinergic receptor P2Y12 gene

PCSK9 Proprotein convertase subtilisin/kexin type 9 gene

SCN5A Sodium voltage-gated channel, α subunit 5 gene

SLC01B1 Solute carrier organic anion transporter family member 1B1 gene

SNP Single nucleotide polymorphism

VKORC1 Vitamin K epoxide reductase complex subunit 1 gene
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Figure 1. A precision medicine approach to phenotyping
Individuals may have a similar endophenotype but be biologically distinct and have different 

disease profiles. Using a precision medicine approach, individuals undergo deep 

phenotyping with data analysis performed using network analysis. This analytical strategy 

clusters individuals into groups that are different from those based on endophenotype alone. 

This methodology can be used to optimize medication and behavioral changes to improve 

health, predict and prognosticate disease, identify biomarkers for disease, enrich clinical trial 

enrollment, and optimally tailor exposures.
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Figure 2. Population distribution and effect of changing the population mean
A) Within a population, the majority of persons express a phenotype that centers around a 

mean with a minority of individuals who exhibit an extreme or “high-risk” phenotype. B) A 

change in the population average affects the number of individuals who are considered to be 

at the extremes. This may also influence the number of individuals who reach a pre-defined 

threshold for initiating treatment.
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Figure 3. Molecular interaction networks (“interactome”)
The protein-protein interactome describes interactions between proteins in a scale-free (i.e., 

interactions are not random but clustered) manner. Within the interactome, groups of 

proteins reside in disease neighborhoods (colored areas) that may overlap indicating 

common mediators (left, center). Within the neighborhood, there are a number of disease 

modules, or groups of protein interactions that are related. Analysis of the interactome may 

uncover new or previously unrecognized relationships. Gray circles, nodes (i.e., proteins in a 

protein-protein interaction network); black lines, edges (i.e., interactions).
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Figure 4. Identifying GWAS genes that have biological relevance
Analysis of GWAS data reveals that there are a large number of genes that, while having 

genome-wide significance have very modest effect sizes. A) Using data from patients with 

type 2 diabetes mellitus as an example and starting with a module that includes six genes of 

greatest statistical significance, GWAS genes are added to the module in decreasing order of 

their p-value (top). The statistical significance of the growing network as compared to a 

random network is shown (middle) as well as the size of the resulting module (bottom). B,C) 

Of 77 significant GWAS genes, only 5 connect to the interactome cluster initially; however, 

Leopold and Loscalzo Page 26

Circ Res. Author manuscript; available in PMC 2019 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the addition of the interactor genes (product), CALM2, joins disconnected parts of the 

network and increases both its size and significance. Another disconnected cluster is then 

joined to the module through consideration of 200 GWAS genes, including the KCNJ11 
(GWAS significant gene) and ABCC8. Reproduced with permission from 48.
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Figure 5. The importance of phenotype and its molecular network underpinning
Individuals who share a common endophenotype, such as hypertension or 

hypercholesterolemia, may have a very different phenotype when examined at a molecular 

level. Using molecular phenotyping, such as genome sequencing, and network analysis, 

individuals may cluster into distinct phenotypes. These phenotypes have important 

implications for disease risk, prognosis, or response to medication. These important 

differences are not discoverable when relying on endophenotype alone. (Blue nodes, normal 

or major alleles; red nodes, variant or minor alleles in protein-protein interaction network).
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Figure 6. Precision medicine approach to rational polypharmacy
A) The current approach to selecting pharmacologic therapy involves identifying a group 

with a common endophenotype, using genomic profiling in select cases to identify potential 

drug (non)responders, and then testing a medication based on results from clinical trials. B) 

Using a precision medicine approach, individuals with a common endophenotype undergo 

deep phenotyping, including panomics, exposures, and clinical assessments, and the data are 

analyzed using network analysis to identify more precise phenotypes and their molecular 

determinants in the interactome. (Gray nodes, disease-determining module on network; red 

blue, and green nodes, drug targets by phenotype). This information is then used to select 

agents that target key pathways or proteins.
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Figure 7. Challenges in precision medicine
Precision medicine relies on integration and dynamic adaptability of panomic analysis, 

overall data analysis and data management; and acceptance by the public, medical, research, 

big pharma, and policy-maker stakeholders.
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