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Abstract

Identifying maize inbred lines that are more efficient in nitrogen (N) use is an important strat-

egy and a necessity in the context of environmental and economic impacts attributed to the

excessive N fertilization. N-uptake efficiency (NUpE) and N-utilization efficiency (NUtE) are

components of N-use efficiency (NUE). Despite the most maize breeding data have a multi-

trait structure, they are often analyzed under a single-trait framework. We aimed to estimate

the genetic parameters for NUpE and NUtE in contrasting N levels, in order to identify supe-

rior maize inbred lines, and to propose a Bayesian multi-trait multi-environment (MTME)

model. Sixty-four tropical maize inbred lines were evaluated in two experiments: at high

(HN) and low N (LN) levels. The MTME model was compared to single-trait multi-environ-

ment (STME) models. Based on deviance information criteria (DIC), both multi- and single-

trait models revealed genotypes x environments (G x E) interaction. In the MTME model,

NUpE was found to be weakly heritable with posterior modes of heritability of 0.016 and

0.023 under HN and LN, respectively. NUtE at HN was found to be highly heritable (0.490),

whereas under LN condition it was moderately heritable (0.215). We adopted the MTME

model, since combined analysis often presents more accurate breeding values than single

models. Superior inbred lines for NUpE and NUtE were identified and this information can

be used to plan crosses to obtain maize hybrids that have superior nitrogen use efficiency.

Introduction

Maize is the leading cereal crop in terms of production and, together with rice and wheat, it is

one of the most important sources of the global population’s daily caloric requirement [1].

Most of the maize planted in the tropics is grown in areas where soils are acidic and low in

nutrients, especially nitrogen (N). Nitrogen plays an essential role in the cycle of most crops

and maize requires a large amount of this nutrient. In tropical areas, together with drought,

low N conditions represent the major cause of yield loss in maize [2]. On the other hand, some
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economic and ecological impacts are attributed to excessive N fertilization. Consequently, it is

important to improve the N-use efficiency of maize, developing maize cultivars that perform

better under low N conditions, to avoid the environmental damage associated with excess N-

based fertilizers.

Nitrogen-use efficiency (NUE) is defined as grain yield per unit of N available in the soil

and is composed of N-uptake efficiency (NUpE) and N-utilization efficiency (NUtE) [3].

NUpE refers to the quantity of N absorbed by the plant relative to N in the soil, whereas NUtE

quantifies the amount of grain produced per unit of N uptake. [4] found that a global average

N recovery rate is almost 60%, indicating that two-fifths of N inputs are lost in ecosystems. In

a recent review, [5] analyzed the available literature (from a period of over 100 years) on asso-

ciations between maize yield and plant N dynamics to better understand the plant’s nutrient

uptake. They found that fertilizer N accounted for 40% of the total N required by tropical

maize. The NUE can be increased through the improvement of NUtE and NUpE. According

to [6], at low nitrogen (LN) input, variation in NUtE is more important than variation in N

uptake, whereas at high nitrogen (HN) input, the reverse is observed. This highlights the

potential of selecting superior maize inbred lines for N use components in order to develop

cultivars that are better able to extract the available N in the soil and better exploit that N to

produce grain.

The selection of maize inbred lines that are superior for NUE and its components is complex,

since they are controlled by many genes and are strongly affected by the environment. Several

studies have shown that there is genetic variability for NUE in maize [7, 8, 9] at low and high N

levels. However, at low N conditions, there is an increase in the heterogeneity of the fields, gener-

ally resulting in higher error variances and lower heritability estimates compared to high N levels

[7, 10, 11]. Thus, at low N, the genetic gains are usually lower than at high N. In addition, in exper-

iments with maize under contrasting N levels have shown that there are significant interactions

between genotype (G) and environment (N levels; E) for grain yield and NUE components [11,

12, 13, 14]. [10] concluded that maize breeding programs should include LN (low nitrogen level)

environments to maximize selection gains when targeting tropical, low N environments. Accord-

ing to [7], the high variance in the G x E interaction emphasizes the need for multi-environment

testing to identify N-use efficient cultivars with a broad adaptation to different N levels.

In plant breeding, the genetic evaluation of multiple traits is relevant because superior vari-

eties combine optimal attributes for several traits simultaneously. Despite the fact that data col-

lected in plant breeding studies often present a multi-trait multi-environment structure, these

data are rarely analyzed in a combined analysis [15]. Although combined analysis is a better

representation of reality, as it takes into consideration the genetic correlations and the G x E

interaction, it requires more complex models. In this context, Bayesian inference has become a

useful statistical tool to deal with complex models. In the Bayesian approach, the parameters

are interpreted as random variables, following the law of probability that reflects a priori

knowledge assumption [16]. The Bayesian approach has been successfully used due to the

reduced number of biased estimates when there are few observations and furthermore, it pro-

duces more precise estimations by intervals [17]. Some studies have shown the potential of the

Bayesian approach for genetic evaluation in plant breeding considering multi-trait or multi-

environment models [18, 19, 20, 21]. However, there are few studies combining multi-trait

models under a multi environment under a Bayesian framework. Additionally, to the best of

our knowledge, there is no study combining NUE-components in multiple environments in

the same model in maize. In the literature, generally there are investigations with single traits

(especially grain yield) in multi environments or multi traits in a single environment.

Toward this orientation, we aimed to propose a multi-trait multi-environment Bayesian

model to estimate genetic parameters for N-uptake efficiency and N-utilization efficiency
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under contrasting N levels in the soil as well as to perform comparisons with single trait mod-

els. We aimed also to identify superior maize inbred lines for N-uptake and N-utilization

efficiencies.

Materials and methods

Plant material

The genetic material consisted of 64 tropical maize inbred lines. These maize inbred lines rep-

resent a set of diverse germplasm from the maize breeding program of Universidade Federal

de Viçosa (UFV), Viçosa, Minas Gerais state, Brazil. They were obtained from different

sources of tropical maize germplasm: commercial tropical maize hybrids, maize populations

and maize open-pollinated varieties (OPV; Table 1). It is important to mention that, in Brazil,

it is allowed to use any commercial variety as germplasm source for breeding purposes and the

development of new maize inbred lines; therefore it is possible to use maize hybrids, except the

ones with transgenic events (10th article, of the third paragraph of the No. 9456 Brazilian Law

of April 25th, 1997). The genetic sources used for our program to develop new inbred lines are

conventional varieties. The 64 maize inbred lines were developed using a modified pedigree

method in the same region where they were evaluated. Most of tropical hybrids used as source

to develop the inbred lines studied in this work are recommend to tropical areas; consequently,

they are adapted to the region where the inbred lines were studied. The CMS28 is a tropical

maize population introduced in Brazil from International Maize and Wheat Improvement

Center (CIMMYT) by the Brazilian Agricultural Research Corporation (EMBRAPA), Maize

and Sorghum unit, in the 70’s [22]. The Nitroflint, CMS50 and BR106 are tropical maize popu-

lations developed by EMBRAPA Maize and Sorghum. The Nitroflint population is adapted to

low N soil and, it has been used as source germplasm for the development of new inbred lines

to tolerance to low N in soil [23]. The CMS50 is a tropical maize population produced by the

intercrossing of three single-cross and two double-crosses [24]. In addition, the BR106 is a

tropical open-pollinated variety produced by the intercrossing of three Brazilian varieties

(Maya, Centralmex and Compose Dent) and an exotic introduction (Tuxpeño 1) [25]. It is cul-

tivated by some small farmers in Brazil and used in some recurrent selection programs in pub-

lic sector.

Field experiments

The 64 tropical maize inbred lines were evaluated in 2014 at UFV Experimental Station in

Coimbra (latitude 20˚51’24’’S; longitude 42˚48’10’’W; altitude of 720 m asl), located in south-

west Minas Gerais state, Brazil. Maize inbred lines were evaluated in two independent experi-

ments under contrasting levels of N: low nitrogen (LN) and high nitrogen (HN). In this

context, there is a totally different environmental condition for plants, thus characterizing dif-

ferent environments, mainly because they are very contrasting nitrogen levels.

The design of each experiment was an 8 x 8 lattice square with two replications and two-

row plots. The plot size was 6.4 m2 (4 m long with 0.8 m row spacing and 0.2 m plant spacing).

At the LN level, 30 kg ha-1 of N was applied. At the HN level, 180 kg ha-1 was applied. Trait

management was the same for all N level experiments, employing standard agricultural

practices.

Grain yield was recorded from all ears on the plot at physiological maturity. Ears were

shelled, the grain weight and grain moisture percentage were recorded, and grain yield (kg

ha-1) was calculated at 145 g kg-1 moisture. At physiological maturity, five representative

plants were harvested from each plot by cutting them close to the soil surface. All plant stover

together with cobs (with kernels removed) at maturity were chopped and oven-dried to a
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Table 1. Name, endosperm type, pedigree/origin and source type of the 64 tropical maize inbred lines.

Entry number Inbred line Endosperm type Pedigree/Origin Source type

1 VML001 Flint GM001 Tropical Hybrid

2 VML002 Flint GM004 Tropical Hybrid

3 VML003 Flint GM013 Tropical Hybrid

4 VML004 Flint GM012 Tropical Hybrid

5 VML005 Semi-flint GM029 Tropical Hybrid

6 VML006 Flint GM007 Tropical Hybrid

7 VML007 Semi-flint GM008 Tropical Hybrid

8 VML008 Flint GM027 Tropical Hybrid

9 VML009 Dent GM020 Tropical Hybrid

10 VML010 Dent GM033 Tropical Hybrid

11 VML012 Flint BR106 OPV

12 VML013 Semi-flint GM029 Tropical Hybrid

13 VML014 Flint GM029 Tropical Hybrid

14 VML015 Flint GM032 Tropical Hybrid

15 VML016 Flint GM022 Tropical Hybrid

16 VML017 Flint BR106 OPV

17 VML018 Dent GM017 Tropical Hybrid

18 VML019 Flint GM008 Tropical Hybrid

19 VML020 Flint CMS28 Tropical Population

20 VML021 Flint GM034 Tropical Hybrid

21 VML022 Semi-flint GM035 Tropical Hybrid

22 VML023 Flint GM028 Tropical Hybrid

23 VML024 Flint CMS50 Tropical Population

24 VML025 Flint GM018 Tropical Hybrid

25 VML026 Flint GM028 Tropical Hybrid

26 VML027 Flint GM036 Tropical Hybrid

27 VML028 Flint GM007 Tropical Hybrid

28 VML029 Semi-flint GM027 Tropical Hybrid

29 VML032 Flint GM018 Tropical Hybrid

30 VML033 SemiDent GM011 Tropical Hybrid

31 VML034 Flint GM010 Tropical Hybrid

32 VML035 Flint GM026 Tropical Hybrid

33 VML036 Flint GM005 Tropical Hybrid

34 VML037 Flint GM016 Tropical Hybrid

35 VML040 Flint GM014 Tropical Hybrid

36 VML043 Flint GM012 Tropical Hybrid

37 VML045 Semi-flint GM002 Tropical Hybrid

38 VML048 Flint Nitroflint Tropical Population

39 VML050 Flint GM035 Tropical Hybrid

40 VML051 Semi-dent GM022 Tropical Hybrid

41 VML052 SemiFlint GM019 Tropical Hybrid

42 VML054 Flint GM034 Tropical Hybrid

43 VML055 Dent GM027 Tropical Hybrid

44 VML076 Flint GM031 Tropical Hybrid

45 VML077 Semi-flint GM030 Tropical Hybrid

46 VML081 Flint GM003 Tropical Hybrid

47 VML084 Dent GM001 Tropical Hybrid

(Continued)
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constant weight at 70˚C for 72 hours. The harvest ears were also oven-dried at 70˚C for 72

hours. Grain and stover samples were milled using an analytical mill and analyzed for N

according to the Kjeldahl method [26].

The components of NUE were calculated according to [3]: N-uptake efficiency was calcu-

lated as the ratio of the total N (kg ha-1) in the aboveground biomass to total N in the soil (kg

ha-1) and N-utilization efficiency was calculated as the ratio of grain yield (kg ha-1) to total N

(kg ha-1) in the aboveground biomass.

Statistical analysis

N-uptake efficiency and N-utilization efficiency were analyzed using single and multi-trait

models via the Markov Chain Monte Carlo (MCMC) Bayesian approach. The idea was to com-

pare: (i) the full model (considering the interaction between the genotypes and N levels) with

the null model (not considering the interaction); (ii) the estimates of the genetic parameters

from single- and multi-trait models at LN and HN levels.

The multi-trait multi-environment model was given by:

y ¼ Xβþ Z1rþ Z2bþ Z3uþ ε ð1Þ

Which can be rewritten as:
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Table 1. (Continued)

Entry number Inbred line Endosperm type Pedigree/Origin Source type

48 VML086 Flint GM015 Tropical Hybrid

49 VML110 Flint GM024 Tropical Hybrid

50 VML125 Flint GM009 Tropical Hybrid

51 VML182 Flint GM006 Tropical Hybrid

52 VML188 Flint CMS50 Tropical Population

53 L013 Flint GM023 Tropical Hybrid

54 L015 Dent GM012 Tropical Hybrid

55 L034 Flint GM027 Tropical Hybrid

56 L037 Flint CMS50 Tropical Population

57 L038 Flint CMS28 Tropical Population

58 L040 Flint CMS28 Tropical Population

59 L045 Flint GM007 Tropical Hybrid

60 L052 Flint GM016 Tropical Hybrid

61 L054 Flint GM028 Tropical Hybrid

62 L059 Semi-flint GM016 Tropical Hybrid

63 L061 Flint GM025 Tropical Hybrid

64 L062 Flint GM021 Tropical Hybrid

https://doi.org/10.1371/journal.pone.0199492.t001
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Where: ‘ represents low and h represents high N; 1 represents NUpE and 2 represents NUtE; y

is the vector of the phenotypic values of the traits (NUpE and NUtE); β is the vector of system-

atic effects of environment (N levels), β ~ N(μ, I
 ∑β); r is the vector of the replication inside

the environment effect, r ~ N(0, I
 ∑r); b is the vector of random effects of block inside re-

plication inside environment, b ~ N(0, I
 ∑b); u is the vector of random effects of genotypes,

u ~ N(0, I
 ∑u); ε is the vector of random residual effects, ε ~ N(0, I
 ∑ε). X is the incidence

matrix of environment (N level) effects, Z1 is the incidence matrix of replication inside the

environment effect, Z2 is the incidence matrix of block inside replication inside environment

effects and Z3 is the incidence matrix of genotype effects.

The (co)variance matrix estimates are given by:
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where: ‘ represents LN and h represents HN; 1 represents NUpE and 2 represents NUtE. We

assumed that the variance-covariance matrices follow an inverted Wishart distribution, which

was used as a priori to model the variance-covariance matrix [27].

The model was implemented in the “MCMCglmm” R package [28, 29] of R software (R

Development Core Team). A total of 1,000,000 samples were generated, and assuming a burn-

in period and sampling interval of 500,000 and 5 iterations, respectively, this resulted in a final
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total of 100,000 samples. The convergence of MCMC was checked by the criterion of [30],

which was performed using the “boa” [31] and “CODA” (convergence diagnosis and output

analysis) [32] R packages. Even though Bayesian and frequentist frameworks are not directly

compared, mainly in the field of Genetics and Breeding [17], the same models were also fitted

based on REML (Restricted Maximum Likelihood) estimation method. However, the conver-

gence was not achieved through AI (Average Information) and EM (Expectation-Maximiza-

tion) algorithms.

The full (considering the inbred lines x N levels interaction) models were compared with

the null (not considering the interaction) models by the deviance information criterion (DIC)

proposed by [33]: DIC ¼ Dð �yÞ þ 2pD, where Dð �yÞ is a point estimate of the deviance obtained

by replacing the parameters with their posterior means estimates in the likelihood function

and pD is the effective number of parameters in the model. Models with smaller DIC should be

preferred to models with higher DIC.

Variance components, broad-sense heritability per plot, coefficients of residual and genetic

variation, the variation index and the genotypic correlation coefficients between traits and

breeding values were calculated from the posterior distribution. The package “boa” [31] of R

software was used to calculate the highest posterior density (HPD) intervals for all parameters.

Posterior estimates for the broad-sense heritability of NUpE and NUtE for each interaction

were calculated from the posterior samples of variance components obtained by the model,

using the expression:

h2 ið Þ
¼

s2ðiÞ
g

s
2ðiÞ
g þ s

2ðiÞ
r þ s

2ðiÞ
b þ s

2ðiÞ
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Where: s2ðiÞ
g , s2ðiÞ

r , s
2ðiÞ
b and s2ðiÞ

ε are the genetic, replication, block inside replication and residual

variances for each iteration, respectively. The genetic association between the pairs of traits in

each environment was calculated as:

r‘ 1;2ð Þ ¼
sg‘ð1;2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

g‘ð1Þs
2
g‘ð2Þ
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and rh 1;2ð Þ ¼
sghð1;2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ghð1Þs
2
ghð2Þ

q genetic correlation between traits at HN levelð Þ:

Results and discussion

All chains achieved convergence via the criterion of [30]. According to the deviance informa-

tion criteria (DIC), there was positive evidence of interactions between inbred lines and N lev-

els for all models analyzed (Table 2). The inbred lines x N levels interaction for plant traits

indicates that the best genotypes under LN are not the same as at an HN level [34]. Thus, when

selecting maize inbred lines, the target environment must be considered.

For the full model, the average values for NUpE were 0.499 and 2.103, and for NUtE were

28.842 and 30.318, under HN and LN, respectively (Table 3). In the multi-trait multi-environ-

ment (MTME) model, NUpE at HN and LN were found to be weakly heritable with Bayesian

credible intervals (probability of 95%): h2 = 4.177x10-5 to 0.090 and h2 = 6.644x10-5 to 0.135,

posterior modes: h2 = 0.016 and h2 = 0.023, at HN and LN, respectively. Just a comment about

this, we would like to emphasize that the low heritability observed only for NUpE did not
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depend on the number of evaluated samples, since the used Bayesian framework is essentially

recommended for situations involving small sample sizes. The NUtE at HN was found to be

highly heritable whereas at LN it was moderately heritable, with credible intervals (probability

of 95%) ranging from: h2 = 0.240–0.674 and h2 = 0.084–0.396, posterior modes: h2 = 0.490 and

h2 = 0.215, respectively. The difference between mean, mode and median heritability estimates

(Tables 3 and 4) reflects some lack of symmetry in the posterior distribution estimates [21]. In

our study, we found higher heritability for NUpE at LN and higher heritability for NUtE at

HN level. In a study on maize hybrids in three N levels, [7] also found that, for NUpE, the h2

increased with a decrease in N level, whereas for NUtE, the highest heritability was estimated

at an HN level.

In the current study, the posterior mean of the genetic correlation between NUpE and

NUtE was not significantly different from zero (95% credible intervals) under both N levels

(HN: -0.330 to 0.241; LN: -0.328 to 0.338) (Table 3). Although some studies consider NUpE

and NUtE to be not independent from a statistical point of view, in the present study the oppo-

site was observed. [7] evaluated N-utilization efficiency and N-uptake efficiency in two sets of

maize hybrids, one produced from crosses among maize inbred lines selected at HN and

another set of hybrids from inbred lines selected at LN. The authors found that at LN, for

hybrids from lines selected at HN, N-utilization efficiency was positively related to NUpE,

whereas at HN, it was negatively and highly related to NUpE. However, for hybrids from lines

selected at LN, there was no correlation among components of NUE and the components of

NUE were independent. [12] also found that the genetic correlation between components of

Table 2. Deviance information criteria for the full (considering G x E interaction) and null (not considering the

interaction) models.

Model Traita Deviance information criteria (DIC)

Full model Null model

Multi-trait NUpE, NUtE 604.79 1958.81

Single-trait NUpE 102.42 197.35

Single-trait NUtE 226.89 1814.98

aNUpE (N-uptake efficiency, kg ha-1 of N absorbed/kg ha-1 of N supply); NUtE (N-utilization efficiency, kg ha-1 of

grain/kg ha-1 of N in the plant at maturity).

https://doi.org/10.1371/journal.pone.0199492.t002

Table 3. Posterior inferences for the mean and genetic variance; the mode, mean, median and higher posterior density (HPD) interval of the broad-sense heritabil-

ity; and the mode, mean, median and higher posterior density (HPD) interval of the genetic correlation, considering the proposed multi-trait multi-environment

model.

Traita N level Mean σ2
g h22 HPD (95%)

Mode Mean Median Lower Upper

NUpE HN 0.499 0.095 0.016 0.038 0.032 4.177E-05 0.090

NUpE LN 2.103 0.183 0.023 0.057 0.049 6.644E-05 0.135

NUtE HN 28.842 40.323 0.490 0.463 0.475 0.240 0.674

NUtE LN 30.318 27.534 0.215 0.233 0.229 0.084 0.396

Genotypic correlation HPD (95%)

Mode Mean Median Lower Upper

NUpExNUtE HN - - -0.052 -0.051 -0.052 -0.330 0.241

NUpExNUtE LN - - 0.018 -0.002 -0.003 -0.328 0.338

aNUpE (N-uptake efficiency, kg ha-1 of N absorbed/kg ha-1 of N supply); NUtE (N-utilization efficiency, kg ha-1 of grain/kg ha-1 of N in the plant at maturity).

https://doi.org/10.1371/journal.pone.0199492.t003
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NUE was not significant and each was approximately equally related to NUE. Results depend

on the type (and set) of genotypes (populations, hybrids, recombinant inbred lines, inbred

lines) evaluated. [35], in a review of the genetics of NUE in crop plants, stated that maize stud-

ies can be divided into two groups, the comparison studies of hybrids from different eras and

the ones related to inbred lines use or mapping populations. The authors also discussed that

remains difficult to determine whether maize hybrids respond differently than inbred lines to

fertilizer N. According to [6], if only elite hybrids are evaluated, probably specific genes for

adaptation to low nitrogen condition have been lost due to selection in favorable conditions

over the years. Thus, according to the results from the present study, for maize inbred lines

NUpE cannot be used for indirect selection of NUtE, and vice versa, and the genetic improve-

ment for NUE in maize breeding programs should consider the improvement of both NUE-

components, NUtE and NUpE.

For the single- and multi-trait models, the means estimates for NUpE and NUtE were

always higher in LN inputs than in HN (Tables 3 and 4), with a more pronounced difference

between environments for NUpE than NUtE. [6] reported that NUE is higher at LN level than

at HN level and this is due to the fact that the efficiency of N decreases as the fertilization level

increases. These authors also mentioned that quantitative trait loci (QTL) studies tend to con-

firm that variation in NUtE is greater than variation in NUpE at LN environments and the

opposite occurs at HN environments. In the present study, the genetic variance was greater for

NUpE in LN and greater for NUtE in HN (Tables 3 and 4). These different values between the

environments (N levels) may be due to the biological response of the inbred lines to the nutri-

tional N stress. [36] verified that the genes responsible for the control of NUE are expressed

according to the availability of the nutrient to the plant and consequently, the magnitude of

genetic variability is expressed differently in contrasting environments. It was noticed here

that posterior inferences for the genetic parameters obtained through the multi-trait model

were very similar to the ones obtained through the single-trait models (Tables 3 and 4), this

could be due to the lack of correlation between traits.

One of the advantages of Bayesian methods is the ability to access the posterior density

intervals of genetic parameters (Figs 1 and 2). The breeding values of the maize inbred lines

for each trait and their highest posterior density (HPD) intervals were obtained and were used

to assist in the selection of genotypes.

The relative variation index is the ratio of the coefficient of genotypic variation to the coeffi-

cient of residual variation (CVg/CVe). Relative variation indices that are greater than the unit

suggest that genetic variation is more influential than residual variation. This was observed in

this study for both traits but only in HN input, suggesting that there was a greater influence

of the residual variation under low N level than high N level. Highest CVe and CVg were

observed for NUpE in HN input, whereas lowest CVg was observed for NUtE in LN input

(Table 5).

Table 4. Posterior inferences for the mean and genetic variance; the mode, mean, median and higher posterior density (HPD) interval of the broad-sense heritabil-

ity, considering the single-trait multi-environment models.

Traita N level Mean σ2
g h2 HPD (95%)

Mode Mean Median Lower Upper

NUpE HN 0.492 0.051 0.014 0.039 0.033 1.227E-05 0.095

NUpE LN 2.111 0.156 0.067 0.092 0.084 2.064E-04 0.199

NUtE HN 28.872 40.854 0.500 0.462 0.476 0.223 0.673

NUtE LN 30.336 29.320 0.226 0.239 0.235 0.081 0.411

aNUpE (N-uptake efficiency, kg ha-1 of N absorbed/kg ha-1 of N supply); NUtE (N-utilization efficiency, kg ha-1 of grain/kg ha-1 of N in the plant at maturity).

https://doi.org/10.1371/journal.pone.0199492.t004
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We have chosen to adopt the MTME model for the inbred lines selection since a combined

analysis takes more data into consideration and consequently is often more accurate to predict

breeding values than single models [37, 38]. According to [39], the increase in accuracy with

the use of multi-trait best linear unbiased prediction (BLUP) analysis compared with single-

trait analysis is proportional to the difference between the genetic and environmental correla-

tions of the analyzed traits. In order to compare the ranking of the most efficient tropical

maize inbred lines between multi- and single-trait models for each trait in a given environ-

ment, the percentage of coincidence of the top 10 inbred lines list (not considering their order

in the list) was calculated. For NUpE the coincidence percentage between models was 80% and

70% at LN and HN, respectively. The coincidence percentage for NUtE was 100% under both

N levels. The high percentage of coincidence between rankings of the multi- and single-trait

Fig 1. Posterior density for the multi-trait multi-environment model above (left: NUpE and right: NUtE) and for each of the single-

trait multi-environment models below (left: NUpE and right: NUtE). The solid line represents the posterior density for the HN level,

while the dotted line represents the posterior density for the LN level.

https://doi.org/10.1371/journal.pone.0199492.g001
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models may be, as already mentioned, due to the fact that the genetic correlation between the

traits was not significant. Genetic merit estimates of individuals, whether or not they consider

genomic information, are in general estimated more accurately when they are based on analy-

ses that consider all the traits simultaneously–that is, under a multivariate approach [40, 41].

In a study with popcorn half-sib families, [42] found that multi-trait BLUP (Best Linear Unbi-

ased Prediction) was more accurate and efficient in family selection than single-trait BLUP.

Fig 2. Posterior density for the genotypic correlation between the traits nitrogen-uptake efficiency (NUpE) and

nitrogen-utilization efficiency (NUtE) for the multi-trait multi-environment model. The solid line represents the

posterior density for the HN level, while the dotted line represents the posterior density for the LN level.

https://doi.org/10.1371/journal.pone.0199492.g002

Table 5. Coefficient of residual variation (CVe, %), coefficient of genotypic variation (CVg, %) and relative varia-

tion index (CVg/CVe) for the multi-trait multi-environment model and the single-trait multi-environment

models.

Model Traita N level CVe (%) CVg (%) CVg/CVe

Multi-trait NUpE HN 51.36 61.66 1.20

NUpE LN 21.61 20.35 0.94

NUtE HN 19.53 22.02 1.13

NUtE LN 29.49 17.31 0.59

Single-trait NUpE HN 38.31 45.67 1.19

NUpE LN 19.18 18.74 0.98

NUtE HN 19.57 22.14 1.13

NUtE LN 29.33 17.85 0.61

aNUpE (N-uptake efficiency, kg ha-1 of N absorbed/kg ha-1 of N supply); NUtE (N-utilization efficiency, kg ha-1 of

grain/kg ha-1 of N in the plant at maturity).

https://doi.org/10.1371/journal.pone.0199492.t005
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The effect of the G x E interaction was significant, which indicates that the maize inbred lines

responded differently to N levels. In order to compare the ranking of inbred lines between the

environments (HN and LN) for each trait in a given model, the percentage of coincidence of

the top 10 inbred lines list was calculated as described above. For the trait NUpE, 20% and

30% of coincidence between N levels was observed for the multi-trait and single-trait models,

respectively, whereas for NUtE, the coincidence was 100% for both models. This result sug-

gests that the trait NUpE was more influenced by the N level than NUtE.

Superior inbred lines in a given environment (N level) for a given trait were identified

through the breeding values obtained in the MTME analysis. The superior inbred lines pre-

sented greater breeding values for the given trait. The inbred lines that stood out from the oth-

ers for NUpE were, at the HN level, VML010, VML017, VML077, VML014, VML037,

VML009, VML016, VML032, VML005, VML040, whereas at the LN level, VML017, VML051,

VML016, VML002, VML033, VML019, VML022, VML188, VML048 and VML034 presented

good performances compared to the other inbred lines. For NUtE, the most efficient maize

inbred lines were VML081, VML022, L038, VML032, VML051, VML016, VML020, VML027,

VML028 and VML013 for both N levels. Another observation that must be reported is that the

VML016 inbred line was the only one that appeared in the top 10 list for both traits in the two

considered N levels, possibly constituting an important source of genes for NUE traits.

Conclusions

We demonstrated the feasibility of the proposed multi-trait multi-environment Bayesian

model for plant breeding involving a set of genotypes that are evaluated for multiple traits

across a range of environments. The accurate estimates of genetic parameters bring new per-

spectives on the application of Bayesian methods to solve modeling problems in maize

breeding.

NUpE was not genetically correlated to NUtE in HN and LN environments. The panel of

inbred lines evaluated presents genetic variability, which is fundamental for the selection and

improvement of traits of interest. This variability is particularly important in low nitrogen

environments, which is the condition that most small farmers that grow maize in the tropics

experience. Superior inbred lines were identified for each environment (N level), thus allowing

to design selection strategies specifically for each evaluated environment.
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