Table 1. Overview of the used layers in the indicated deep learning CNN.
layer | kernel size [px2] | subimage size [px2] |
---|---|---|
input layer | - | 90 × 90 |
conv. layer 1 | 21 × 21 | 70 × 70 |
reLU layer | - | 70 × 70 |
max pooling layer | 2 × 2, stride 2 | 35 × 35 |
conv. layer 2 | 14 × 14 | 22 × 22 |
reLU layer | - | 22 × 22 |
max pooling layer | 2 × 2, stride 2 | 11 × 11 |
conv. layer 3 | 6 × 6 | 6 × 6 |
reLU layer | - | 6 × 6 |
max pooling layer | 2 × 2, stride 2 | 3 × 3 |
output layer, regression type | - | 1 × 1 |