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Abstract

BACKGROUND—With the global increase in life span expectancy, neurodegenerative disorders 

continue to affect an ever increasing number of individuals throughout the world. New treatment 

strategies for neurodegenerative diseases are desperately required given the lack of current 

treatment modalities.

METHODS—Here we examine novel strategies for neurodegenerative disorders that include 

circadian clock genes, non-coding ribonucleic acids (RNAs), and the mammalian forkhead 

transcription factors of the O class (FoxOs).

RESULTS—Circadian clock genes, non-coding RNAs, and FoxOs offer exciting prospects to 

potentially limit or remove the significant disability and death associated with neurodegenerative 

disorders. Each of these pathways have an intimate relationship with the programmed death 

pathways of autophagy and apoptosis and share a common link to the silent mating type 

information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) and the mechanistic 

target of rapamycin (mTOR). Circadian clock genes are necessary to modulate autophagy, limit 

cognitive loss, and prevent neuronal injury. Non-coding RNAs can control neuronal stem cell 

development and neuronal differentiation and offer protection against vascular disease such as 

atherosclerosis. FoxOs provide exciting prospects to block neuronal apoptotic death and to activate 

pathways of autophagy to remove toxic accumulations in neurons that can lead to 

neurodegenerative disorders.

CONCLUSIONS—Continued work with circadian clock genes, non-coding RNAs, and FoxOs 

can offer new prospects and hope for the development of vital strategies for the treatment of 

neurodegenerative diseases. These innovative investigative avenues have the potential to 

significantly limit disability and death from these devastating disorders.
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1. Introduction

According to the World Health Organization, non-communicable diseases (NCDs) are on the 

rise and can be attributed to more than sixty percent of the annual fifty-seven million global 

deaths (1). The rise in NCDs parallels an observed increase in life expectancy of the world’s 

population. The age of the global population continues to increase with life expectancy 

approaching eighty years of age (2). In addition, the number of individuals over the age of 

sixty-five has doubled during the previous fifty years (3). It is expected that the number of 

elderly individuals in large developing countries such as India and China also will increase 

from five percent to ten percent over the next several decades (4, 5). There are a number of 

reasons that may account for the increased lifespan, but improvements in effective 

treatments for multiple disorders (6–10) and broader access to preventive care are believed 

to have contributed to the increased life span of the world’s population. For NCDs, greater 

than ten percent of the population under sixty years of age is affected in high-income 

countries (1). In contrast, NCDs affect a much larger proportion of the population in in low 

and middle-income countries with at least one-third of the population under the age of 60 

suffering from NCDs.

Interestingly, neurodegenerative disorders form a significant component of NCDs (11). 

Neurodegenerative disorders include more than six hundred disease entities and 

progressively lead to nervous system dysfunction (12). Acute and chronic neurodegenerative 

disorders lead to disability and death for greater than thirty million individuals worldwide 

(13). Improvements in clinical care that have fostered an increased life span of the global 

population are also believed to have produced a continual rise in the presentation of 

neurodegenerative disorders. Neurodegenerative disorders also may be on the rise as a result 

of other disorders that can severely impair the peripheral and central nervous system (CNS) 

(14). One example is the contribution of other NCDs such as diabetes mellitus (DM) (15). 

DM affects the global population (16, 17) such that approximately three hundred and fifty 

million individuals suffer from DM (18–22). Another eight million individuals also have 

metabolic disorders but remain undiagnosed at present (23–25). Impaired glucose tolerance 

in the young (5, 26) and the presence of obesity increases the risk of developing DM in these 

individuals (19).

DM is a multi-system disease that results in progressive deterioration of the body (16, 24, 

27, 28) and the nervous system (29). In the nervous system, it leads to visual impairment 

(24, 30–32), stroke (4, 33–37), peripheral nerve disease (28, 38), and cognitive loss that may 

be associated with Alzheimer’s disease (AD) (4, 39–43).

In addition to DM, vascular disease also contributes significantly to the onset and 

progression of disorders within the nervous system. Vascular disorders rank high among 

NCDs and fall within the five leading causes of death that include cardiac disease, cancer, 
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chronic lower respiratory disease, stroke, and traumatic accidents (44). Within vascular 

disorders, hypertension and associated elevated serum lipids are significant risk factors for 

stroke. Ischemic and hemorrhagic disorders of the brain affect at least fifteen million 

individuals every year and lead to an annual cost of seventy-five billion dollars in the United 

States (2, 13, 45–47).

2. Novel Nervous System Strategies

As noted, it is estimated that the incidence of neurodegenerative disorders will continue to 

increase as a result of the advancing age of the global population and the progressive 

increase in life span. On example of a nervous system disorder that is expected to increase is 

AD. The incidence of sporadic cases of AD is expected to significantly increase throughout 

the globe (13, 48, 49). Healthcare resources will be impacted to a large extent (29, 50). In 

the United States (US) alone, more than five million individuals are diagnosed with sporadic 

AD and at least four million are under treatment at an annual cost of four billion US dollars. 

AD is not the result of a single etiology (42). Multiple mechanisms may lead to cognitive 

impairment and involve cellular injury from β-amyloid (Aβ), tau, excitotoxicity, 

mitochondrial damage, acetylcholine loss, astrocytic cell injury, oxidative stress, and cellular 

metabolic dysfunction with DM (14, 51–57). Yet, there is a growing arsenal of novel 

therapeutic strategies directed against AD and other neurodegenerative disorders that include 

circadian rhythm clock genes (9), non-coding ribonucleic acids (RNAs), and the mammalian 

forkhead transcription factors of the O class (FoxOs) (56, 58, 59). These pathways share 

common signal transduction mechanisms with the silent mating type information regulation 

2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) and the mechanistic target of rapamycin 

(mTOR). Each of these pathways can influence the onset and progression of 

neurodegenerative disorders and oversee critical pathways of programmed cell death that 

involve apoptosis and autophagy.

3. Autophagy and Apoptosis

Programmed cell death includes two vital pathways that involve apoptosis and autophagy 

(60–62) (Figure 1). Although apoptosis and autophagy are involved in programmed cell 

death, each pathway has unique characteristics that can differentiate apoptosis from 

autophagy (63). Apoptosis has two distinct phases that consist of an early phase that 

involves the loss of plasma membrane phosphatidylserine (PS) asymmetry and a subsequent 

later phase that leads to genomic DNA degradation (64–66). Apoptosis is the result of a 

series of cascade activation of nucleases and proteases that involve caspases (67, 68). These 

processes impact both the early phase of apoptosis with the loss of plasma membrane PS 

asymmetry and a later phase that leads to genomic DNA degradation. Loss of membrane PS 

asymmetry activates inflammatory cells to target, engulf, and remove injured cells (69–72). 

However, if the engulfment of inflammatory cells can be prevented, functional cells 

expressing membrane PS residues can be rescued and not be removed from the nervous 

system (24, 73–75). In contrast, once the destruction of cellular DNA occurs, it is usually 

not considered to be completely reversible (59). Apoptosis in the nervous system can be 

involved in retinal degeneration (24, 76), pain sensitivity and neuronal injury (77), Aβ injury 
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(13, 78–82), epilepsy (83, 84), Parkinson’s disease (11, 41, 85–87), diabetic injury (14, 17, 

26, 88–90), traumatic brain injury (41, 91–93), and autism (94).

Autophagy recycles components of the cytoplasm in cells for tissue remodeling and seeks to 

eliminate non-functional organelles (60, 62, 89, 95, 96). Macroautophagy is a classification 

of autophagy that recycles organelles and consists of the sequestration of cytoplasmic 

proteins and organelles into autophagosomes. Autophagosomes then combine with 

lysosomes for degradation and recycling (13, 97). Microautophagy is the invagination of the 

lysosomal membranes for the sequestration and digestion of cytoplasmic components (5). 

Chaperone-mediated autophagy (58) relies upon cytosolic chaperones to transport 

cytoplasmic components across lysosomal membranes (98). Autophagy can be linked to 

aging pathways. Studies with Drosophila demonstrate that neural aggregate accumulation 

observed with aging is linked to a reduction in the autophagy pathway. These neural 

aggregates lead to behavior impairments that can be resolved with the maintenance of 

autophagy pathways in neurons (99). In addition, autophagy is involved in a number of 

degenerative disorders such as cognitive decline (14, 56, 100), AD (40, 48, 83, 101, 102), 

Parkinson’s disease (11, 87, 98, 103), Huntington’s disease (59, 104, 105), DM (14, 17, 40, 

89, 106, 107), and aging processes (8, 40, 85, 91, 108–111). Autophagy also may be 

required to preserve metabolic homeostasis with mTOR (112).

4. Circadian Clock Genes

Circadian rhythm clock genes have a significant role in the nervous system and with 

programmed cell death (9, 113) (Figure 1). The mammalian circadian clock resides in the 

suprachiasmatic nucleus (SCN) located above the optic chiasm and receives light input from 

photosensitive ganglion cells in the retina. The SCN depends upon the pineal gland, 

hypothalamic nuclei, and vasoactive intestinal peptide to control a number of processes that 

involve the release of hormones cortisol and melatonin, oxidative stress responses (114), and 

the regulation of body temperature (115).

In the clock gene family, members of the basic helix-loop-helix -PAS (Period-Arnt-Single-

minded) transcription factor family, such as CLOCK and BMAL1 (116), oversee the 

expression of the genes Cryptochrome (Cry1 and Cry2) and Period (Per1, Per2, and Per3). 
Feedback is provided by PER:CRY heterodimers that can translocate to the nucleus to 

inhibit and block the transcription of CLOCK:BMAL1 complexes. Additional regulatory 

loops consist of retinoic acid-related orphan nuclear receptors REV-ERBα, also known as 

NR1D1 (nuclear receptor subfamily 1, group D, member 1), and RORα that are activated by 

CLOCK:BMAL1 heterodimers. The REV-ERBα and RORα receptors bind retinoic acid-

related orphan receptor response elements (ROREs) present in the BMAL1 promoter to 

control transcription with RORs that can promote transcription and REV-ERBs that can 

repress transcription to result in circadian oscillation of BMAL1 (117, 118).

In the nervous system, rhythmic methylation of BMAL1 has been found to be changed in the 

brains of patients with AD, suggesting that alterations in the DNA methylation of clock 

genes may contribute to cognitive loss and behavior changes (53). Animal models of 

Parkinson’s disease with 6-hydroxydopamine (6-OHDA) have shown decreased BMAL1 
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and RORα persisted with levodopa treatment, indicating that long-term levodopa treatment 

may impair circadian rhythm function (119). Interestingly, clock genes also impact lifespan 

that is related to neurodegeneration. In studies with Drosophila melanogaster, lifespan was 

reduced in three arrhythmic mutants involving ClkAR, cyc0 and tim0. ClkAR mutants had 

significant faster age-related locomotor deficits. Restoring Clk function was able to rescue 

Drosophila from the locomotor deficits. An increase in oxidative stress was noted with the 

mutant phenotypes, but deficits appeared to correlate best with loss of dopaminergic neurons 

rather than directly to the presence of oxidative stress in this case (120).

Circadian rhythm dysfunction during cognitive loss and aging can be associated with 

autophagy induction (121). In animal models of AD, a basal circadian rhythm that controls 

macroautophagy may be necessary to limit cognitive decline and Aβ deposition (122). It has 

been noted that mild changes in the external environment that affect circadian rhythm may 

alter cognition. Chronic sleep fragmentation has been shown to affect autophagy proteins in 

the hippocampus (123) that may affect memory and cognition (48, 56, 102, 124, 125). 

Autophagy in the hippocampus also is depressed during the absence of the PER1 circadian 

clock protein that may worsen the pathology of cerebral ischemia (126).

Circadian pathways are intimately linked to not only autophagy, but also the mechanistic 

target of rapamycin (mTOR) (127, 128). mTOR also is known as the mammalian target of 

rapamycin and the FK506-binding protein 12-rapamycin complex-associated protein 1. 

mTOR controls multiple functions that determine the transcription of genes, proliferation 

and senescence of cells, protein formation, cellular metabolism, and cellular longevity (9, 

57, 77, 129, 130). Melatonin, a pineal hormone that controls circadian rhythm, relies upon 

autophagy pathways and mTOR to control processes of aging and neurodegeneration (131). 

Loss of mTOR activation can be involved with altered circadian rhythm and cognitive 

decline during prolonged space flight (130). Furthermore, cerebral ischemic infarction may 

be influenced by an alteration in circadian rhythm genes and fluctuations in mTOR activity 

(126, 132).

Circadian rhythm and mTOR pathways are also dependent upon SIRT1 (14, 133, 134). 

SIRT1, a member of the sirtuin family, is a histone deacetylase (4, 56, 59, 67, 135–138) that 

can transfer acetyl groups from ε-N-acetyl lysine amino acids on the histones of DNA to 

control transcription. Seven identified mammalian homologues of Sir2 exist that include 

SIRT1 through SIRT7. These histone deacetylases control post-translational changes of 

proteins and oversee cellular proliferation, survival, and senescence. SIRT1 is dependent 

upon nicotinamide adenine dinucleotide (NAD+) as a substrate (138–142). SIRT1 is 

involved in neurodegenerative disorders (4, 143, 144) that require the modulation of 

autophagy and apoptosis (14, 58, 145, 146). SIRT1 can control stem cell survival by 

modulating autophagic flux (147). SIRT1 also can have an inverse relationship with mTOR 

in embryonic stem cells (20, 110) and block mTOR to promote autophagy and protect 

embryonic stem cells during oxidative stress (148). In regards to apoptotic pathways, SIRT1 

activation can block external membrane PS exposure during the early phases of apoptosis in 

mature cells (70, 149–151). SIRT1 also can counteract apoptosis initiated by tumor necrosis 

factor-α (TNF-α) in endothelial progenitor cells (152). Loss of SIRT1 expression in 
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endothelial progenitor cells leads to apoptotic cell death that can occur in smokers and 

chronic obstructive disease patients (153).

SIRT1 has been associated with altered circadian rhythm function that affects the 

development of disorders such as AD (113). SIRT1 control of circadian rhythm and 

melatonin also may affect glucose tolerance and DM (115) as well as inflammation during 

obesity (154). Increased SIRT1 activity with a disruption in circadian rhythm also leads to 

additional disorders such as increased susceptibility to mammary carcinogenesis (155). Yet, 

SIRT1 may be beneficial under specific circumstances to regulate circadian rhythm gene 

expression that can foster hepatocellular proliferation and liver regeneration following liver 

resection (156). More recent work also suggests an important role for SIRT1 targets with 

aging and circadian gene expression in the liver (157).

5. SIRT1 and Non-coding RNAs

Given the critical importance of vascular disease in affecting the nervous system, SIRT1 and 

its ability to oversee small non-coding ribonucleic acids (RNAs), termed microRNAs 

(miRNAs) (134, 158–160), have become exciting targets for vascular disease and the 

nervous system (Figure 1). SIRT1 pathways are involved in vascular survival and senescence 

(88, 152, 161), atherosclerosis (162–166), lifespan extension (4, 167–169), diabetic 

retinopathy (170), cellular metabolism and DM (14, 17, 20, 115, 145, 171, 172), oxidative 

stress pathways (58, 148, 173–179), and neuronal survival and cognition (11, 113, 180–183).

MiRNAs are composed of 19-25 nucleotides and can control gene expression by silencing 

targeted messenger RNAs (mRNAs) translated by specific genes. Non-coding ribonucleic 

acids play an important role with SIRT1 to control stem cell development and differentiated 

cell survival. Under some conditions, increased SIRT1 activity is beneficial. Silencing of 

miR-195 in old mesenchymal stem cells promotes stem cell proliferation by increasing 

SIRT1 activity to restore anti-aging factors expression that include telomerase reverse 

transcriptase, the forkhead transcription factor FOXO1 (59), and protein kinase B (Akt) 

(160). Stem cell proliferation also may require increased SIRT1 activity in combination with 

the inhibition or dysfunction of mTOR signaling that is controlled by miRNAs (184). 

Vascular cell maintenance during DM appears to need SIRT1 activity controlled by 

miRNAs. Diabetic endothelial vascular dysfunction that occurs during hyperglycemia with 

the release of elevated free fatty acids can occur during the up-regulation of miR-34a that 

depresses the expression of SIRT1. During periods of hyperglycemia, angiogenesis is 

impaired as a result of suppressed SIRT1 expression and the up-regulation of miR-34a 

expression (185). The retinal microvasculature also can be impacted by miRNAs. Studies in 

rats demonstrate that an up-regulation of senescence-associated markers that include 

miR-34a depress SIRT1 expression and accelerate aging and oxidative stress injury in the 

retinal vasculature (176). Despite these studies, it should be noted that a reduction in SIRT1 

activity controlled by miRNAs may at times offer a benefit to neuronal stem cell 

populations. Neuronal differentiation can occur through miR-34a that leads to decreased 

SIRT1 expression and DNA-binding of p53 in mouse neural stem cells (186).
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Other forms of non-coding RNAs also impact vascular disease. Circular ribonucleic acids 

(circRNAs) are non-coding RNAs of approximately 100 nucleotides in length that were 

initially identified as being circular in nature (187–189). CircRNAs have covalent bonds that 

maintain their circular structure, have both cis and trans regulation, regulate gene expression 

through the sponging of microRNAs (miRNAs) (190), function as biomarkers, and control 

apoptotic pathways (60, 62). Circular antisense non-coding RNA in the INK4 locus 

(circANRIL) in vascular smooth muscle cells and macrophages prevents exonuclease-

mediated pre-ribosomal RNA processing, ribosome biogenesis, and proliferation of cells that 

may lead to atherosclerosis through the onset of apoptosis (191). However, circRNAs may 

not always be protective against programmed cell death and apoptosis. Up-regulation of 

specific circRNAs may foster apoptotic cell injury during cell models of ischemic-

reperfusion injury (192).

6. FoxO Transcription Factors

Given the scope of the world’s population affected by neurodegenerative disorders, it is of 

particular concern that cognitive disorders such as AD can affect greater than 5 million 

individuals in the US alone (48, 193). Furthermore, approximately fifty million million 

people suffer from some form of dementia with approximately sixty percent of these cases 

resulting from AD (4, 12, 48, 194). Unfortunately, the availability of definitive treatments to 

resolve or prevent the onset of cognitive loss is limited and to the most extent such definitive 

treatments are non-existent (9, 50).

Mammalian forkhead transcription factors are a novel strategy to consider for 

neurodegenerative disorders, especially those that involve dementia and cognitive loss (59, 

83, 195, 196) (Figure 1). Greater than one hundred forkhead genes and nineteen human 

subgroups that range from FOXA to FOXS have been identified since the original discovery 

of the Drosophila melanogaster gene forkhead (197). For neurodegenerative disorders, the 

mammalian FOXO proteins of the O class have significant relevance and have the members 

FOXO1, FOXO3, FOXO4, and FOXO6 (198). Previous terminology for forkhead proteins 

included forkhead in rhabdomyosarcoma (FKHR) (FOXO1), FKHRL1 (forkhead in 

rhabdomyosarcoma like protein 1) (FOXO3a), the Drosophila gene fork head (fkh), 

Forkhead RElated ACtivator (FREAC)-1 and -2, and the acute leukemia fusion gene located 

in chromosome X (AFX) (FOXO4) (199, 200). With the current nomenclature, an Arabic 

number is provided with the designation of “Fox”, then a subclass or subgroup letter is 

provided, and finally the member number is listed within the subclasses of the Fox proteins 

(201). All letters are capitalized for human Fox proteins. For the mouse, only the initial letter 

is listed as uppercase and for all other chordates the initial and subclass letters are in 

uppercase (200, 202, 203).

FoxO proteins are transcription factors that bind to deoxyribonucleic acid (DNA) through 

the FoxO-recognized element in the C-terminal basic region of the forkhead DNA binding 

domain (204, 205). Following forkhead binding to DNA, target gene expression is repressed 

or activated through fourteen protein-DNA contacts with the primary recognition site located 

at α-helix H3 (206). Phosphorylation or acetylation that can block FoxO activity may alter 

the binding of the C-terminal basic region to DNA to prevent transcriptional activity (207).
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FoxO transcription factors may impact neurodegenerative disorders through apoptosis and 

autophagy (60, 62). Inhibition or loss of FoxO activity usually improves cell survival during 

apoptotic cell injury. Blockade of FoxO transcription factor activity can protect against 

microglial cell demise during oxidative stress (71) and Aβ exposure (208), foster the 

protective effects of metabotropic glutamate receptors (209), increase neuronal cell survival 

through nicotinamide adenine dinucleotide (NAD+) precursors (210), raise survival with 

growth factors (211), such as erythropoietin (EPO) (150, 212–214) and neurotrophins (215–

217), and lessen metabolic and vascular disease (218). Antipsychotics, such as clozapine, 

may function through FoxO inhibition to protect against apoptotic neuronal cell loss (219). 

Pathways involving SIRT1 also can affect FoxO modulation of apoptotic cell death. SIRT1 

can increase neuronal survival through modulation of FoxO activity (67, 140, 142, 220, 

221). In addition, under some conditions, sirtuins and FoxO transcription factors may 

function synergistically to increase neuronal cell survival (4, 142). FoxO proteins in 

conjunction with SIRT1 pathways may offer protection against Aβ toxicity (181) and 

forkhead transcription factors, such as FoxO3a, may be dependent upon SIRT1 to reduce 

oxidative stress and cell injury during exposure to Aβ (222).

FoxO proteins may offer protection with neurons during autophagy induction. Increased 

FoxO activity, such as with FoxO1, can function to increase basal autophagy and reduce 

atherogenesis (56, 223). Ectopic expression of FoxO1 enhances autophagy and increases 

toxic Huntington’s disease Huntingtin (mHtt) protein clearance in neuronal cell cultures 

(224). In addition, loss of FoxO and SIRT1 activity with a reduction in autophagy activity in 

models with Drosophila can lead to neuronal accumulation of Aβ (225).

Given the close ties of mammalian forkhead transcription factors with the programmed 

death pathways of apoptosis and autophagy, FoxOs are considered as vital targets to treat 

neurodegenerative disorders. For example, FoxO transcription factors play a significant role 

in inflammation and can affect vascular inflammatory pathways (203) and cardiac injury 

(201). Calcineurin and FoxO3 can interact in astrocytes during Aβ exposure that results in 

pro-inflammatory cytokines and injury to neurons (226). Since nuclear translocation of 

FoxO3 is tied to apoptotic neuronal DNA damage (59, 227, 228), FoxO transcription factors 

could be considered a therapeutic strategy to prevent excessive Aβ production and suppress 

the onset of AD. Under some conditions, Aβ exposure can result in the dephosphorylation 

and mitochondrial translocation of FoxO3a that leads to mitochondrial dysfunction (196). 

Furthermore, increased FoxO activity can function in concert with tribbles pseudokinase 3 to 

result in apoptotic and autophagic Aβ induced neuronal cell death (79). Inhibition of FoxO 

activity under such conditions can protect against oxidative stress and Aβ toxicity (208, 

229).

7. Considerations for the Future

NCDs are increasing in prevalence throughout the world that parallels a rise in life 

expectancy in the global population. As a result, the prevalence of neurodegenerative 

disorders also has been impacted by acute and chronic neurodegenerative disorders resulting 

in disability and death for greater than thirty million individuals worldwide. 

Neurodegenerative disorders also may be on the rise as a result of other disorders that can 
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impair the peripheral and CNS that include DM and vascular disease. Present strategies to 

treat neurodegenerative disorders as well as associated disorders are extremely limited and 

warrant novel investigative pathways. In this respect, great enthusiasm is present for new 

therapies for neurodegenerative disorders that include circadian clock genes, non-coding 

RNAs, and FoxOs. Each of these pathways is able to modulate critical pathways of 

programmed cell death that involve autophagy and apoptosis. An intact circadian rhythm 

and expression of clock genes appear necessary to modulate autophagy, limit cognitive loss, 

and prevent neuronal injury. Non-coding RNAs can oversee neuronal stem cell development 

and differentiation, but also may be protective against vascular diseases, such as 

atherosclerosis. Mammalian forkhead transcription factors of the O class also offer exciting 

prospects for new therapies to prevent neuronal apoptotic death and to also employ pathways 

of autophagy to remove toxic accumulations in neurons that can lead to neurodegenerative 

disorders. Interestingly, the pathways of circadian clock genes, non-coding RNAs, and 

FoxOs are intimately dependent upon SIRT1 as well as mTOR pathways. Further 

investigation into each of these novel pathways should provide necessary insight into not 

only the treatment of neurodegenerative disorders, but also the ability to prevent the onset of 

disease in the nervous system.
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Figure 1. Innovative Strategies for Neurodegenerative Disorders
As global life span expectancy increases, non-communicable diseases (NCDs) and 

neurodegenerative disorders will impact a greater number of individuals throughout the 

world. New treatment strategies for neurodegenerative diseases are desperately warranted 

especially with the lack of current treatment modalities. Circadian clock genes, non-coding 

ribonucleic acids (RNAs), and the mammalian forkhead transcription factors of the O class 

(FoxOs) offer the potential to eliminate the disability and death associated with 

neurodegenerative disorders as well as address related disorders such as diabetes mellitus 

(DM) and vascular disease. These pathways have a close relationship with autophagy and 

apoptosis and share common links to the silent mating type information regulation 2 

homolog 1 (Saccharomyces cerevisiae) (SIRT1) and the mechanistic target of rapamycin 

(mTOR).
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