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Abstract

Objective—Functions ascribed to the hippocampal sub-regions for encoding episodic memories 

include the separation of activity patterns propagated from the entorhinal cortex (EC) into the 

dentate gyrus (DG) and pattern completion in CA3 region. Since a direct assessment of these 

functions is lacking at the level of specific axonal inputs, our goal is to directly measure the 

separation and completion of distinct axonal inputs in engineered pairs of hippocampal sub-

regional circuits.

Approach—We co-cultured EC-DG, DG-CA3, CA3-CA1 or CA1-EC neurons in a two-chamber 

PDMS device over a micro-electrode array (MEA60), inter-connected via distinct axons that grow 

through the micro-tunnels between the compartments. Taking advantage of the axonal 

accessibility, we quantified pattern separation and completion of the evoked activity transmitted 

through the tunnels from source into target well. Since pattern separation can be inferred when 

inputs are more correlated than outputs, we first compared the correlations among axonal inputs 

with those of target somata outputs. We then compared, in an analog approach, the distributions of 

correlation distances between rate patterns of the axonal inputs inside the tunnels with those of the 

somata outputs evoked in the target well. Finally, in a digital approach, we measured the spatial 

population distances between binary patterns of the same axonal inputs and somata outputs.

Main Results—We found the strongest separation of the propagated axonal inputs when EC was 

axonally connected to DG, with a decline in separation to CA3 and to CA1 for both rate and 

digital approaches. Furthermore, the digital approach showed stronger pattern completion in CA3, 

then CA1 and EC.

*Correspondence should be addressed to D.P. (daniele.poli@centropiaggio.unipi.it) or G.J.B. (gjbrewer@uci.edu). 
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Significance—To the best of our knowledge, these are the first direct measures of pattern 

separation and completion for axonal transmission to the somata target outputs at the rate and 

digital population levels in each of four stages of the EC-DG-CA3-CA1 circuit.
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Introduction

Three main sub-regions of the mammalian hippocampus, the dentate gyrus (DG), CA3 and 

CA1, are used to encode episodic memories (Rolls 1996). Separate functions are postulated 

for each of these subregions. A function of pattern separation is proposed to allocate 

memorable features of environmental stimuli for downstream identification of familiarity or 

novelty in memory. A function of pattern completion is thought to occur by recognition of 

prior similar experience. In particular, the dentate gyrus (DG) is postulated to specifically 

function in pattern separation (Marr 1971, Rolls 1989a, Rolls 1989b, Treves and Rolls 1994) 

and the CA3 in pattern completion (Gold and Kesner 2005, Leutgeb S and Leutgeb J K 

2007, Rolls 2013). The main levels of evidence for these concepts come from the anatomy, 

behavioral paradigms with in vivo recordings in individual sub-regions in the rat, human 

EEG and fMRI and computational modeling. Anatomically, the larger number of DG 

neurons than the primary inputs from layer II of the entorhinal cortex (EC) suggests a fan-

out of information needed for pattern separation (Andersen et al 2006). Conversely, the 

recurrent collateral anatomy of the CA3 suggests a coding mechanism involved in pattern 

completion (Lebovitz et al 1971). Carefully designed in vivo shifts in visual inputs or 

changes to the rat physical environment (Leutgeb S and Leutgeb J K 2007, Leutgeb et al 
2004, Leutgeb et al 2005, Neunuebel and Knierim 2014), and small changes in visual inputs 

in macroscopic human EEG or fMRI studies (Bakker et al 2010, Kirwan and Stark 2007, 

Yassa and Stark 2011, Santoro 2013) further support pattern separation in DG and 

completion in CA3. Finally, computational models also suggest a role for these hippocampal 

sub-regions in pattern separation and completion (Marr 1971, Treves and Rolls 1994, Myers 

and Scharfman 2009, 2011, Renno-Costa 2014, Faghihi and Moustafa 2015, Chavlis 2017). 

However, little in vivo or in vitro evidence exists for the computational properties among 

small neural populations needed in EC and DG to perform these processes. Moreover, 

because of the sub-micrometer caliber of axons (Bartlett and Banker 1984), no evidence 

exists for the nature of information transmitted by the axons between these hippocampal 

subregions. Santoro (2013) urged a reassessment of pattern separation in the dentate gyrus as 

a computational digital-spatial ensemble code in contrast to analog rate coding, because no 

study has directly confirmed the existence of this mechanism at the cell population level in 

the EC-DG-CA3-CA1 circuit. Furthermore, most in vivo studies use behavioral conditions 

as categorical inputs (behavioral discrimination), which are of uncertain scaling since their 

changes are usually qualitative.

Therefore, to monitor samples of the actual inputs as scaled measures of the communicating 

axons between co-cultured hippocampal networks and to specifically describe functions of 

pattern separation and completion, we were inspired by Richard Feynman’s 1988 advice 
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“What I cannot create, I do not understand”. We isolated rat neurons from each hippocampal 

sub-region and cultured them in pairs in a two-chamber device over a multi-electrode array 

(MEA) with interconnected micro-fluidic tunnels for axon transmission (Taylor et al 2005, 

Dworak and Wheeler 2009, Pan et al 2011, Brewer et al 2013). This system was designed to 

complement in vivo models, providing useful new strategies for elucidating complex 

biological systems, with more precise inputs, multiple stimulation sites and better access to 

individual axons than in vivo recordings (Brewer et al 2013, Poli et al 2015). Furthermore, 

the micro-tunnels allowed robust axonal connection between chambers because of a strong 

dependence of the network functional strength of connectivity on the number of tunnels 

inputs (Pan et al 2015, DeMarse et al 2016). We applied paired-pulse stimulation at 22 

electrode sites in this model system to promote native feed-forward information 

transmission, facilitating evoked network responses that correlated between the source and 

the axons in the tunnels, as well as between the transmitted axonal activity and target 

subregion (Poli et al 2017a). Pattern separation can be inferred when inputs are more similar 

than outputs. In pattern completion, the outputs are more similar than the inputs. In order to 

investigate these phenomena, we employed Pearson coefficients and Jaccard coefficients in 

either an analog or binary approach, respectively. Specifically, we determined how well 

pattern separation could be quantified by these two widely used similarity measures as 

follows: 1) The analog approach compared the distributions of correlation distances between 

rate patterns among axonal inputs (i.e., spike rates in the tunnels) versus those among 

somata outputs (i.e., spike rates in the target well). This comparison was based on Pearson 

coefficients because of their robustness for continuous variables such as spike rates. 2) 

Conversely, the second approach, termed binary or digital, measured the spatial population 

distances between binary patterns distinguishing active (1) and silent electrodes (0) in the 

tunnels and target well. Since the Jaccard coefficient is a better measure of similarity with 

binary data (Chavlis et al 2017), 1-Jaccard coefficient was used to assess dissimilarity.

After statistical evaluation, both rate and binary approaches showed the strongest separation 

of the propagated axonal inputs for the case when EC axons connected to DG, with a decline 

in separation to CA3 and to CA1. Furthermore, using the binary metric, there was strong 

evidence of pattern completion for DG projecting to CA3, then to CA1 and EC. Finally, the 

methods and metrics used in this paper showed broad agreement with published results 

regarding pattern completion and separation for these brain subregions.

To the best of our knowledge, these are the first direct measures of pattern separation and 

completion of distinct axonal inputs transmitted through micro-tunnels into somata target 

outputs at the rate and digital population levels in an engineered EC-DG-CA3-CA1 circuit.

Methods

Dissection of hippocampal sub-regions for in vitro neuronal cultures

All experimental procedures and animal care have been approved by the Institutional Animal 

Care and Use Committee of the University of California Irvine in accordance with relevant 

guidelines and regulations. A detailed description of the dissection procedure of rat 

hippocampal sub-regions is described in our earlier work (Brewer et al 2013) and others 

(Mattson and Kater 1989, Baranes et al 1996, Zhao et al 2001, Lein et al 2004). Briefly, the 
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intact hippocampus was extracted from the overlying neo-cortex of each hemisphere of 

postnatal day 3 rats. The entorhinal cortex (EC), dentate gyrus (DG), CA3 and CA1 neurons 

(figure 1(a)) were isolated under the dissecting microscope (Olympus CKX41), plated at 

different densities on a two-well polydimethylsilxane (PDMS) device over a micro-electrode 

array (MEA60, figure 1(b)) and inter-connected via micro-tunnels (figure 1(c)). Specifically, 

we used 1000 cells/mm2 for DG, 330 cells/mm2 for CA3, 410 cells/mm2 for CA1 and 330 

cells/mm2 for EC within one specific chamber in order to mimic the regional density ratios 

of neurons in vivo (Braitenberg 1981), i.e. EC-DG 1:3, DG-CA3 3:1, CA3-CA1 1:1.25 and 

CA1-EC 1.25:1. To increase spontaneous spike rates and greater synapse density, the cells 

were maintained in culture in NbActiv4 medium in a humidified incubator with 5% CO2 and 

9% O2 at 37°C (BrainBits, Springfield, IL, USA) (Brewer et al 2008, Bhattacharya et al 
2016). The MEA60 amplifier recorded electrophysiological activity at constant temperature 

of 37°C and in a humidified atmosphere of 5% CO2 and 9% O2 (custom gas mixture, 

balance N2; Airgas, Santa Ana, CA). Our previous works with two chambers (Brewer et al 
2013; Poli et al 2017a) demonstrated not only excellent neuron survival equivalent to the 

original cell plating densities, but also strong axonal polarity consistent with the 

hippocampal anatomy. Polarity was determined from delay times as an axonal spike traveled 

from one electrode to the next in a micro-tunnel. These delay times showed more than 60% 

of spikes spontaneously travel in the “natural” direction (Brewer et al 2013). Structural 

specificity from stimulation of our co-cultures compared to the homogeneous pairings (e.g., 

DG-DG) showed spontaneous propagation in the native direction of over 80% of the activity 

(Bhattacharya et al 2016).

Experimental set-up

We placed a PDMS device (Pan et al 2011, Poli et al 2017a) over 59 TiN3 micro-electrodes 

(MEA60, Multichannel System, Reutlingen, Germany), creating two different wells in 

which we co-cultured hippocampal neurons in pairs (figure 1(b)). The chambers were 

separated by 51 micro-channels, 3 μm tall, 10 μm wide, 400 μm long, and spaced 40 μm 

apart (center-to-center). Micro-electrodes (30 μm in diameter on 200 μm spacing) were 

positioned so that 15 underlie the tunnels and 22 lie within each of the two chambers (figure 

1(c)). The micro-tunnels allowed passage of axons but not somata, structural connectivity 

and information transmission between both chambers (Pan et al 2015, Bhattacharya et al 
2016). Furthermore, 7 of 8 monitored micro-tunnels overlaid 2 electrodes. For each pair of 

these tunnel electrodes we choose one with the higher spike rates due to better axon to 

electrode coupling. A more detailed description of the fabrication of this device can be 

found in Pan et al (2011).

Spike detection

During the third week in vitro, we recorded the electrophysiological activity of our co-

cultured hippocampal networks at 25 kHz sampling frequency, with 1100x amplification. To 

detect spikes, we used the peak-to-peak algorithm described in Maccione et al (2009), based 

on a differential threshold set at 8 times the standard deviation of the estimated baseline per 

channel noise levels. Peaks were detected within a 2 ms window with a subsequent 1 ms 

dead-time between peaks.
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Stimulation Protocol

We used a paired-pulse stimulation protocol described in detail in Bouteiller et al (2010) and 

in Poli et al (2017a, 2017b) to increase the efficacy of stimulation and promote native feed-

forward information transmission (e.g., from EC to DG) between our co-cultures through 

micro-tunnels (Bhattacharya et al 2016). Preliminary studies with single stimuli at 1 Hz or 

less confirmed their depressive effect compared to the paired pulse stimulation that was 

characterized by pulses biphasic with 30 μA amplitude, 100 μs duration beginning positive 

and 50 ms between stimuli (figure 1(d)) (Ide et al 2010). We applied this paired-pulse 

stimulus at one site in one well followed by another site in the opposite chamber to induce 

more efficient information transmission over the multi-synaptic network (Poli et al 2017a; 

2017b). This alternation was repeated 25 times for all electrodes in both chambers. A wait 

period of 5 s was inserted between the pairs to minimize the plasticity effects of the 

electrical stimulation. We avoided electrical artifacts produced by saturation of the 

amplifiers during stimulation by using a blanking period of 5 ms after each stimulus 

(Wagenaar and Potter 2002, Wagenaar et al 2004). Furthermore, stimulation generally 

evoked action potentials whose rate returned to baseline levels after 40–45 ms (Ide et al 
2010). Hence, we focused on the activity that began at 5 ms and ended at 45 ms post each 

stimulus (Poli et al 2017a). Examples of this evoked activity during a specific stimulation 

trial are shown in figure 1(e). Stimulation at some source electrodes may directly evoke 

axonal activity, but this activity would be propagated to the tunnels in less than a 

millisecond, a time not accessible because of the stimulus artifact. Therefore, we could not 

evaluate occasions when the source stimulus directly activated tunnel axons. Furthermore 

this protocol is classically known to facilitate pre-synaptic transmitter release and increase 

the efficacy of stimulation. However, if the pre-synaptic terminal is inhibitory or synapses 

onto an inhibitory neuron, the effect could be a reduction in spike counts. Therefore, 

pathways could change with repetition of a stimulus from excitatory to inhibitory.

Baseline was assessed by the activity in a 3 min. recording immediately prior to the 

stimulation protocol and also by the number of spikes recorded during the pre-trigger period 

(5 ms before each paired-pulse stimulus). In both cases the regional baseline rates were 4–5 

times lower than the evoked firing rates (Poli et al 2017a). This baseline set at 22% of the 

evoked rate was similar to the 20% spontaneous threshold used by Chiappalone et al (2008) 

to discriminate the evoked responses from the spontaneous fluctuations of cortical activity 

level. However, the relevance of this discrimination may decrease due to the power law 

distribution of inter-spike intervals (ISI = 1/spike rate), where an average may not accurately 

summarize the distribution (Poli et al 2017a). Furthermore, if the stimulation protocol 

activates inhibitory neurons, a single-sided evaluation above baseline would exclude some 

sites with less evoked spikes.

Pattern separation by comparing the distributions of the correlation distances between 
analog input and output rate patterns

We hypothesized that if neural cultures derived from dentate gyrus act as a pattern separator 

of inputs from the entorhinal cortex (Yassa and Stark 2011, Santoro 2013), then similar 

axonal inputs transmitted via micro-tunnels from EC into DG would produce dissimilar DG 

outputs (figure 1(f)). As an experimentally accessible rate measure, we expected correlations 
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among evoked firing rates from the distinct EC axons grown through the tunnels (the axonal 

inputs to the DG) would be greater than the correlations among the DG somata target 

outputs recorded in the chamber. To test this hypothesis, we first evaluated the spike rates > 

12.5 Hz, i.e. the responses evoked in the tunnels and target well by paired-pulse stimulation 

with more than one spike in 80 ms (40 ms x 2 pulses). This protocol was applied 25 times at 

each of 22 sites in the EC chamber to promote the feed-forward native information 

transmission from source to target through the tunnels (i.e., from EC to DG in EC-DG 

networks) (Poli et al 2017b). We then estimated the correlation (Pearson) between rate 

patterns quantified as vectors containing spike rates evoked at each recording site by all 

possible combinations of trials and stimulus locations (i.e., (22 stimulus sites x 25 trials)2 = 

302,500 correlation values). These rate patterns represented 1) the axonal inputs when 

described by the log spike rates evoked at each of 8 axonal recording sites, 2) the target 

somata outputs when described by the log spike rates evoked at each of 22 sites in the target 

well. Log spike rates were used to accommodate the large dynamic range of activity. Figure 

2 shows examples of two scatter plots depicting possible correlations between these rate 

patterns, one for the axonal inputs (figure 2(a.i)) and another one for the target somata 

outputs (figure 2(a.ii)), both evoked by the same combination of trial and stimulus location. 

Finally, we compared the distributions of the correlations between transmitted axonal inputs 

with those of the target somata outputs. To facilitate the comparison between these 

distributions, to smooth the effects of low frequency noise (Newman 2005) and to account 

for the sparseness of the responses, we aggregated any non-zero correlations of inputs in one 

cumulative curve and output correlations in another (figure 2(b)) with asymptotes below 1 

for both. We used the area between these two curves to quantify the degree of pattern 

separation on those occasions where the aggregated correlations among inputs were greater 

than the correlations among outputs; otherwise, we quantified pattern completion as the area 

of excess output over input correlations in the graph of correlation density.

Pattern separation based on spatial population distances between digitized input and 
output patterns

In order to quantify the separation and completion of the distinct axonal inputs transmitted 

through the tunnels into the target well, we also used an approach based on the spatial 

population distances among different binary patterns or cell assemblies (Chavlis et al 2017). 

The active responses in each subregion to each stimulation electrode were transformed from 

a spatial distribution of electrodes into a one-dimensional vector with active elements coded 

as 1’s and inactive elements as 0’s. The difference between different spatial population 

responses was calculated from these vectors, adjusted for sparseness and normalized 

according to established methods for calculation as Jaccard distances (Jaccard 1912, Chavlis 

et al 2017). Specifically, these binary patterns were described as binary vectors where each 

element corresponded to one of the 8 tunnel or 22 chamber recording sites spatially 

distributed in the tunnels or in the target well, respectively. We considered recording sites as 

“active” (1 in the binary vector) when at least one spike was evoked during 25 trials of one 

specific paired pulse stimulus location (1 spike in 40 ms x 2 pulses x 25 trials=1 spike/2 

sec), or “silent” otherwise (0 in the binary vector) (Myers and Scharfman 2009). We 

evaluated the Jaccard Distances (JD) adjusted for sparseness (Jaccard 1912, Chavlis et al 
2017) to quantify the input variations (Δ Inputs) between the spatial binary patterns evoked 
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in the tunnels by all possible combinations of the stimulation sites in the source chamber. In 

the same way, we defined the output variations (Δ Outputs) among the spatial binary patterns 

evoked in the target well. Figure 3 shows an example of this approach applied to two binary 

input or output patterns evoked by two specific stimulation sites. Formally, X was the spatial 

binary pattern evoked by the stimulation site i and Y was the spatial binary pattern evoked 

by the stimulation site i+1. We first defined JD as:

JD =
J01 + J10

J01 + J10 + J11
(1)

where J01 is the total number of times in which X is equal to 0 when Y is equal to 1, J10 

when X is equal to 1 and Y equal to 0, J11 when X and Y both have value of 1. Then we 

adjusted this distance for sparseness between these two spatial binary patterns (Chavlis et al 
2017), defining Δ Inputs and Δ Outputs as follows:

ΔInputs or ΔOutputs = JD
2 1 − Rin, out Nin, out

(2)

where the in and out denote the axonal inputs transmitted through the tunnels and the target 

somata outputs, respectively. The factor of 2 limits the metric to zero, N denotes the number 

of all recording sites (8 in the tunnels, 22 in the target well) and R the ratio of the total 

number of silent electrodes (S) to N. Since one electrode could be silent during only one of 

the two stimuli i and i+1, we defined S as follows:

S =
Si + Si + 1

2 (3)

where Si and Si+1 are the total number of silent electrodes during the comparison of these 

stimuli i and i+1, respectively. Finally, we evaluated all Δ Inputs and Δ Outputs values from 

all possible combinations of the stimulation sites in the source chamber. Since a network 

performs separation of the inputs when the similarity among them is greater than outputs, 

the condition for pattern separation was Δ Outputs > Δ Inputs, the reverse for pattern 

completion (Δ Outputs < Δ Inputs) (figure 3(b)). We also allocated the Δinput values into 

constant bins of 0.005. We did this to facilitate the comparison among different hippocampal 

pairs showing different distance values.

Statistical Analyses

We performed one and two-tailed t-tests or one-way ANOVA whenever the data were 

normally distributed (confirmed by the Kolmogorov-Smirnov test for normality). When the 

normality assumption failed, we applied non-parametric tests (Wilcoxon Rank Sum test). 

These statistical analyses were applied to all metrics (rate and spatial population distances) 

extracted from 4 EC-DG, 5 DG-CA3, 5 CA3-CA1 and 5 CA1-EC co-cultured networks 

(total number of co-cultures=19) and controls (5 DG-DG, CA3-CA3, CA1-CA1 and EC-EC, 
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total n=20). Error bars represent s.e.m. when not specified and p values less than 0.05 are 

considered significant. Data analyzed during the current study are available from the 

corresponding authors by on reasonable request.

Results

Site-specific stimulation in EC strongly evoked axonal transmission in connecting micro-
fluidic tunnels correlated to activity in DG target cells

In this study we created in vitro neural populations from distinct hippocampal regions in 

order to improve our understanding of the multi-step processing occurring in regions of the 

hippocampus. We reconstituted pair wise components of the rat hippocampus and their 

entorhinal cortical (EC) inputs, around the loop returning to the EC as output (figure 1(a)) in 

a uniform co-culture system (figure 1(b)) over multi-electrode arrays (figure 1(c)). In 

addition to application of specific stimuli at different electrodes with access to neuronal 

activity in each of two chambers, these engineered networks allowed electrical monitoring of 

the activity of individual axons that grew through the tunnels between two compartments 

(Bhattacharya et al 2016, Narula et al 2017, Poli et al 2017a). To test for functional axonal 

transmission, we correlated axonal activity to that of the source and the target well by 

averaging the evoked responses over 25 stimulation trials applied at each of 22 EC 

electrodes. A correlation less than r=1 was likely due to the need for a coding transformation 

to occur (Hopfield 1982).

We found strong axonal activity propagated through the tunnels from EC into DG and 

significant correlations of the activity between these two hippocampal sub-regions (figure 4). 

Firing rates evoked in the stimulated EC source network were positively correlated with 

axonal responses in the tunnels (figure 4(a), r=0.81; 4 arrays), indicating a strong positive 

input-output relationship. The shift above the diagonal was indicative of axonal spike rates 

that were inherently higher than those evoked in the source chamber. Similarly, the axonal 

firing rates in the tunnels were positively and strongly correlated with DG target rates (figure 

4(b), r=0.87), again with the axonal rates higher than those of somata in the target well. 

Furthermore, these correlations between EC axonal inputs propagated through the tunnels 

into DG and DG somata outputs measured in the apposing chamber were much higher than 

the direct correlation between the somata responses in EC and in DG (figure 4(c), r=0.67). 

For this reason we considered the axonal transmission between EC and DG via micro-

tunnels as a more informative and perhaps a more direct method for decoding network input-

output functions than activity of the somata in the separate compartments of EC and DG.

Supplementary figure S1 shows the log spike rates of these EC axons propagated through 

the tunnels (panel (a)) and DG target neurons (panel (b)) in one array example at each of the 

8 tunnel and 22 target recording electrodes. These firing patterns were evoked by paired-

pulse stimuli applied at each of the 22 electrodes in the EC source well (rows in both panels) 

and repeated 25 times (columns in both panels). Since pattern separation can be inferred 

when inputs are more correlated than outputs, based on this axonal activity transmitted 

through the tunnels from source into target well, we first compared the correlations among 

axonal inputs with those of target somata outputs. We then compared, in an analog approach, 

the distributions of correlation distances between rate patterns of the axonal inputs inside the 
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tunnels with those of the somata outputs evoked in the target well. Finally, in a digital 

approach, we measured the spatial population distances between binary patterns of the same 

axonal inputs and somata outputs (Chavlis et al 2017).

Correlations among axonal inputs propagated from EC into DG through micro-tunnels 
were greater than correlations among the DG somata outputs

In order to evaluate DG target as a pattern separator of its transmitted axonal inputs from EC 

cells, we first analyzed the reproducibility of the correlations between the responses evoked 

in the tunnels and DG target well by 25 repeated paired-pulse stimulation trials applied at 

each of 22 sites in the EC well (supplementary figure S2). Contrary to our expectation that 

correlations would be reproducible across trials, we found weak reproducibility of the 

correlations not only between EC somata inputs and transmitted axonal outputs 

(supplementary figure S2(a), r=0.18), but also between the separate EC and DG somata 

(Supplementary figure S2(c), r=0.12). Better reproducibility of the correlations during the 

stimulation trials was found between the propagated axonal inputs from EC to DG and DG 

target somata outputs (supplementary figure S2(b), r=0.4). Furthermore, the correlated 

axonal inputs transmitted from EC into DG through the tunnels and the correlated DG target 

outputs did not consistently distribute around a fixed Pearson coefficient (supplementary 

figure S3(a) and S3(b), respectively), indicating a weak reproducibility of the correlations 

during the trials not only among the axonal inputs but also among the somata outputs. 

Supplementary figure S3(c) supports this result analyzing 4 arrays and showing high 

variability of the coefficients of variation (CV) of the Pearson correlations for the evoked 

responses in the tunnels and DG target well. Because of this weak reproducibility of the 

correlation values, we first considered the spiking activity evoked by each of the 25 paired-

pulse stimulation trial applied at each of 22 sites in the EC well. We then evaluated the 

Pearson correlations between the rate patterns evoked by all possible combinations of trials 

and stimulus locations (i.e., (22 source stimulation sites x 25 trials)2 = 302,500 correlation 

values) for the axonal inputs and the target somata outputs. The rationale of this analysis was 

to test the separation of the axonal inputs propagated via micro-tunnels into DG target 

outputs, demonstrating inputs more correlated than outputs. To facilitate the comparison of 

these symmetric Pearson correlations, we assembled in a matrix the correlations extracted 

from the non-repeated combinations trials/stimuli ((302,500 /2)-275=150,975 non-repeated 

combinations). The process of assembling the matrix is shown in panel 5(a) (for correlation 

among axonal inputs) and 5(b) (for correlation among somata outputs). The larger matrix in 

figure 5 shows correlations among axonal inputs (below diagonal) and those among somata 

outputs (above diagonal) for one array example and for the same set of stimuli and trials in 

EC. Information transmission in this EC-DG couple provided evidence of pattern separation 

as Pearson correlations among the axonal inputs (more red below diagonal; zoom in 5(a)) 

were greater than those obtained among the DG somata outputs (more green above diagonal; 

zoom in 5(b)). Specifically, the averages of non-zero absolute values of the correlation 

coefficients (r) among these axonal inputs were two-fold higher (0.5±0.0007) than the 

correlations among DG target outputs (0.26±0.0008) (p<10−6 by two-tailed t-test). We also 

provided a further qualitative evidence of pattern separation observing that 55% 

(82,710/150,975) of these Pearson coefficients in DG target well were equal to zero 
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(uncorrelated outputs), 2.6x times more than the 21% (32,147/150,975) in the tunnels 

(uncorrelated inputs).

Analog approach based on correlation distances between input and output rate patterns 
showed strong pattern separation in dentate gyrus and CA3, but evidence for pattern 
completion in CA1 and EC

To further quantify the relative amounts of pattern separation and pattern completion we 

compared the distributions of the correlation distances between the transmitted axonal inputs 

and target somata outputs. For this comparison, we aggregated these correlations into a 

cumulative sum, obtaining one curve for the inputs and one for the outputs. We then 

quantified any separation and completion of the transmitted axonal inputs as differences 

between these input and output cumulative distributions of correlation values (see Methods). 

Figure 6 shows the input (solid line) and output (dashed line) cumulative distributions from 

multiple arrays. Evidence for pattern separation was inferred when the cumulative 

distribution of the correlations among axonal inputs was greater than the cumulative 

distribution of the correlations among somata outputs. Therefore, the magnitude of the area 

difference between these two distributions indicated the correlation distance between inputs 

and outputs. We found strong pattern separation not only for the EC axonal inputs 

propagated through the tunnels into DG (figure 6(a); area of 0.15, n=4 arrays) but also for 

the DG axonal inputs transmitted into CA3 (figure 6(b); area of 0.13, n=5 arrays), 

suggesting two successive stages of pattern separation. CA3 axonal inputs propagated into 

CA1 target well showed evidence of pattern completion (figure 6(c); area of 0.08, n=5 

arrays), while a balance between pattern separation and completion was found for CA1 

axonal inputs transmitted into EC target well (figure 6(d); n=5 arrays). Statistics of these 

results are shown in figure 6(e) where we compared pattern separation and completion 

degree in each set of sub-regions. We found pattern separation significantly greater than 

completion in EC-DG and DG-CA3 networks, confirming the separation of the axonal 

inputs in these co-cultures and, therefore, the successive stages of pattern separation shown 

in panel (a) and (b). We also confirmed a preference for pattern completion in CA3 to CA1 

link, as well as the pattern completion at low correlation values and pattern separation at 

high correlations in the CA1 to EC link.

We also created homologous controls consisting of DG-DG, CA3-CA3, CA1-CA1 and EC-

EC to evaluate and compare the specificity of pattern separation and completion with co-

cultures of the same region alone. DG axonal inputs transmitted through the tunnels into DG 

target outputs provided the strongest evidence for pattern separation (figure 7(a); area 

between curves for separation equal to 0.18), compared to the other configurations (area 

between curves=0.02 for CA3-CA3 in panel (b), 0.16 for CA1-CA1 in panel (c) and 0.08 for 

EC-EC in panel (d)). Figure 7(e) shows the statistics from multiple arrays indicating pattern 

separation in DG-DG networks greater than zero and statistically different not only from the 

pattern completion in the same networks but also from the degree of separation of the other 

regions. This strong pattern separation with DG-DG networks, similar to that of EC-DG and 

DG-CA3 in figure 6, may relate to the high levels of inhibitory neurons in DG networks and 

in the hilus in vivo compared to CA3 networks (Brewer et al 2013). It suggests that DG 

pattern separation is more inherent in the DG networks than from the fan-out of axons into a 
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more numerous DG target. Without DG or CA1 paired to CA3, CA3-CA3 co-cultures 

showed evidence of both pattern separation and completion, consistent with CA3 as an auto-

association network (Rolls 2015). We also found evidence of pattern separation in CA1-CA1 

and EC-EC networks.

Finally in this analog rate approach, we compared the above measured spike rates evoked by 

both pulses in 80 ms (40 ms x 2 pulses) with the ratio of the relative rates evoked by the 

second pulse to those evoked by the first pulse (i.e., potentiation ratio). We first found both 

facilitation and substantial depression with lower spike rates after the second pulse 

(supplementary figure S4). Then, contrarily to the separation of EC somata inputs into DG 

somata outputs, we observed that this facilitation or depression did not influence the 

separation of the EC axonal rate patterns transmitted through the tunnels into DG 

(supplementary figure S5).

Digital approach based on spatial population distances between binary input and output 
patterns showed the contribution of the dentate gyrus as separator of its EC axonal inputs

Since we applied an analog approach based on the correlation distances between input and 

output rate patterns, we also sought additional support from an alternative digital approach 

based on spatial population distances between binary input and output patterns using the 

Jaccard distance (JD, see Methods). This approach evaluated the differences among the 

binary inputs evoked in the tunnels by all stimulation sites (Δ Inputs) and compared them to 

the differences among all somata outputs evoked in the target well (Δ Outputs). JD measured 

the variations between two binary vectors distinguishing active (1) and silent electrodes (0). 

These distances were normalized over the number of active units to control the sparseness of 

the responses (Chavlis et al 2017). The property of pattern separation requires that similar 

inputs produce more dissimilar outputs. Hence we expected the change in somata target 

outputs (Δ Outputs) to be greater than the change in axonal inputs (Δ Inputs) during pattern 

separation and the reverse for pattern completion (Δ Outputs < Δ Inputs). Figure 8 compares 

these input and output variations of the input and output spatial binary patterns evoked by all 

possible non repeated combinations of 22 stimuli applied in EC in EC-DG (a), in DG in DG-

CA3 (b), in CA3 in CA3-CA1 (c) and in CA1 in CA1-EC (d) networks. We found not only 

strong evidence of DG as a separator of its EC axonal inputs transmitted through the tunnels 

((a); black area above diagonal equal to 0.002) but also evidence for pattern completion 

(gray area below diagonal equal to 0.001) in CA3 (b), CA1 (c) and EC (d) target regions. 

The average of the excess distances represented in the previous panels of Δ Outputs > 

ΔInputs above the diagonal (black bars) and the average of the excess distances of ΔOutputs 

< ΔInputs below the diagonal (gray bars) are shown in figure 8(e). Pattern separation of the 

axonal inputs propagated through the tunnels into target well was statistically significant in 

EC-DG, DG-CA3 and CA1-EC, but not in CA3-CA1. Pattern completion, measured by 

using the distances from the diagonal of the Δ Outputs lower than Δ Inputs, was significant 

for DG-CA3, CA3-CA1 and CA1-EC, but not for EC-DG. Furthermore, pattern separation 

and completion were significantly different in EC-DG, DG-CA3, CA3-CA1 and CA1-EC. 

Also, pattern separation in EC-DG and DG-CA3 (i.e., when DG is involved) was 

significantly different from CA3-CA1 and CA1-EC. Pattern completion was significantly 

greater than zero in DG-CA3, CA3-CA1 and CA1-EC networks. Finally, we found a 
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significant decrease in pattern separation starting from EC to DG to CA3 and to CA1 (one-

way ANOVA, p=0.0009), and evidence for completion from the other target regions (one-

way ANOVA, p=0.026) (statistics not shown in the figure).

The subregion-specific events were controlled by evaluation of networks with homologous 

subregions in each compartment, as above. Figure 9 shows the input and output variations 

between all possible non-repeated couples of binary input or output spatial patterns evoked 

by 44 stimuli (22 stimulation sites in each well) in DG-DG, CA3-CA3, CA1-CA1 and EC-

EC networks. Statistics and comparisons are shown in panel (e) where pattern separation 

was significant in DG-DG, CA1-CA1 and EC-EC. Pattern completion was strongest in CA3-

CA3, but also seen in DG-DG and EC-EC. Notably, pattern separation decreased by 50% in 

DG-DG compared to levels in EC-DG (figure 9(e) vs. 8(e)), suggesting the importance for 

this digital approach of the “kind of inputs” and not just the number of neurons. The strong 

pattern completion in CA3-CA3 was consistent with the role of recurrent collaterals in CA3. 

Finally, evidence for pattern completion was nearly absent in CA1-CA1 and EC-EC 

compared to the heterologous networks.

Discussion

A clear distinction in the hippocampus of the separation or completion mechanism both in 

rate coding changes and binary engagement is lacking at neuronal population levels in vivo. 

Modeling results favor a population mechanism, while in vivo data has been largely 

analyzed for rate codes with less consideration of populations (Santoro 2013). Here we 

discuss the historical underpinnings of these mechanisms and how our approaches provide 

the first direct measures at the scale of small neural populations.

Historically, the property of pattern separation was pioneered in the visual system 

(Kulikowski 1978). The hippocampal studies have been largely in vivo with behavioral 

inputs and recording from one hippocampal sub-region, at the macro level by using fMRI 

and EEG measures, or in silica, all inspired by hippocampal anatomy. The sub-regional 

anatomy of the hippocampus provides a basis for differential coding schemes. For example, 

the number of DG neurons in the rat (1.2 million) exceeds by 11-fold those in the primary 

inputs from layer II of the EC (Amaral et al 2007). Human numbers are a much larger at 18 

million DG neurons, a 27-fold increase from those in the human layer II of the EC. This 

anatomy alone suggests a fan-out flow of information needed for pattern separation, but does 

not establish the functional relationship. Carefully designed in vivo shifts in visual inputs or 

changes to the rat physical environment evoke pattern separation as de-correlations in 

coincidence patterns in the dentate gyrus and recruitment of distinct cell assemblies in the 

rat CA3 (Leutgeb S and Leutgeb J K 2007, Leutgeb et al 2004, Leutgeb et al 2005, 

Neunuebel and Knierim 2014). However, the nature of activity in the EC producing effects 

in DG as well as the axonal transmission after EC processing remain unknown by this 

approach. Macroscopic human EEG or fMRI studies also indicate a role for the DG in 

behavioral discrimination of small changes in visual inputs (Bakker et al 2010, Kirwan and 

Stark 2007, Yassa and Stark 2011, Santoro 2013), but again without knowledge of the 

specific input patterns or the axonal transmission involved. Early computational modeling 

(Marr 1971) proposed a role for the hippocampus in pattern separation that was better 
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specified by more recent modeling, including feedback from hilar inhibitory neurons (Myers 

and Scharfman 2009), feedback from CA3 to DG (Myers and Scharfman 2011, Faghihi and 

Moustafa 2015) and dendritic branching (Chavlis et al 2017). Our live model will enable 

monitoring the development of these proposed inhibitory neurons and the need for back 

propagation in this EC-DG-CA3 function of pattern separation.

The recurrent collateral anatomy of the CA3 (Lebovitz et al 1971) suggests a coding 

mechanism involved in pattern completion (Leutgeb et al 2005). Evidence for pattern 

completion is clear even within slices of the rat hippocampus (Jackson 2013). Pattern 

completion dependent on recurrent collaterals has been modeled based on recurrent 

excitation to mediate auto-association (Treves and Rolls 1994) with attractor dynamics 

(Renno-Costa et al 2014), but again without knowledge of the distinct input patterns or the 

axonal transmission involved.

To better understand the computation transmitted between sub-regions, in this study, we 

focused on the measurement of axonal communication that occurred through micro-tunnels 

between hippocampal sub-regions. Our engineered networks uniquely allowed electrical 

monitoring of the activity of individual axons that pass through the tunnels and connect each 

neural population, in addition to equal access to neuronal activity at 22 electrodes in each of 

two wells (Brewer et al 2013, Poli et al 2015, Bhattacharya et al 2016, Poli et al 2017a). This 

improved access to multiple sites has also facilitated identification of spatial-temporal motifs 

for transmission (Bhattacharya et al 2016), dependence of transmission fidelity on tunnel 

density (DeMarse et al 2016), sparse coding (Poli et al 2017a) and stimulation at different 

locations. Transitions from potentiation to inhibition indicated frequent inhibition resulting 

in reduced output transmission in axons and in the target. This inhibition could be due to 

alternative routing (Jimbo et al 1999, Ide et al 2010, Poli et al 2016) or related to stimulation 

applied during off states of the network (Lee and Dan 2012).

Taking advantage of the axonal accessibility, we tested the hypothesis that DG co-cultured 

neurons separated patterns of the distinct EC axonal inputs transmitted through axons in the 

tunnels better than the other subregions at a continuous analog and/or discrete digital level. 

Based on an analog rate approach, the strong axonal spike rates evoked in the tunnels by 

different EC stimulation sites correlated more strongly than the DG somata outputs, 

consistent with pattern separation. Moreover, target outputs showed more dissimilar 

responses than their axonal inputs not only in EC-DG but also in DG-CA3 networks i.e., 

when DG neurons were involved. For this analog approach, we found pattern completion in 

CA3 surprisingly weaker than in the CA1 as target.

The sparsity of CA3 encoding (Poli et al 2017a) led us to consider possible digital encoding 

of the pattern separation and completion compared to the analog rate approach. This digital 

encoding of the pattern separation was equally robust in EC to DG, while pattern completion 

appeared more robustly encoded by the digital discrimination of spatial changes in inputs 

from DG into CA3 that continued with CA3 into CA1 and CA1 into EC. Thus, by 

considering the axonal inputs transmitted through the tunnels as digital information of the 

stimulus locations, changes in the spatial distribution of output may better describe pattern 

completion than their firing rates.
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In conclusion, this study provides the first direct measures of pattern separation and 

completion at the rate and digital population levels, focusing on axonal transmission to the 

somata target outputs in live neuronal networks representing each of four stages of the EC-

DG-CA3-CA1 circuit. This result translates the largely cognitive concepts of pattern 

separation and completion from the realm of behavioral decoding down to the level of 

intrinsic wiring and digital decoding properties of self-wired neurons in specific regions of 

the hippocampus. The reductionist approach down to a two-dimensional network with 

access to every neuron should enable functional mapping of the connections to establish 

coding mechanisms. However, our reductionist two-dimensional cultures have limitations 

for application to the in vivo 3D lamellar hippocampus. Some of these limitations have 

mitigating advantages, like the wealth of information obtained with hippocampal slices. 

While limitations of our system include a lack of behavioral inputs, advantages include 

greater control of inputs via stimulation electrodes in ways not possible with behavioral 

stimulation. Our system has reduced levels of astroglia, microglia and inputs from other 

modulating systems such as cholinergic and dopaminergic systems. As we have done 

previously, we could specifically determine the network effects of added astroglia (Chang et 
al 2006, Boehler et al 2007) or with added microglia (Viel et al 2001). Furthermore, our 

engineered network devices could possibly benefit from the higher resolution available in 

MOSFET arrays of 4096 electrodes (Ullo et al 2014).

Conclusion

Our studies have begun to fill the meso-scale gap of cell assemblies between molecular-

synaptic and macroscopic EEG or fMRI measures, assigning distinct functions of pattern 

separation to the DG and pattern completion to the CA3 neuronal assemblies without 

knowledge of individual synaptic weights or circuit changes from excitation to inhibition. 

By controlling the axonal growth inside the micro-tunnels, we were able to discriminate 

single axon signals as scaled inputs that were more specific than the categorical behavioral 

inputs of uncertain scaling (behavioral discrimination) used in several in vivo studies. 

Therefore, to the best of our knowledge, this work could be the first report of pattern 

separation and completion directly measured at the level of axons to sub-networks in the 

EC-DG-CA3-CA1 circuit. The significance of these findings is heightened by impaired 

pattern separation in aging (Paleja and Spaniol 2013), Alzheimer’s disease (Ally et al 2013) 

and in schizophrenia (Das et al 2014).

In the future we will use this in vitro electrode array technology and engineered devices to 

realize a four-chamber system in which all four different hippocampal sub-networks develop 

on the same array, interconnected via micro-tunnels for axonal communication in a 

reconstituted hippocampal loop.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hippocampal neurons harvested from 4 sub-regions shown in (a) were co-cultured in pairs 

in a two-well PDMS device (b) over a micro-electrode array. (c) Micro-fluidic tunnels (3 x 

10 x 400 um) exclude cell bodies from one well to the other, and permit axonal growth and 

propagation of axonal spikes. From the 51 communicating micro-tunnels, 7 of these tunnels 

overlaid 2 electrodes (one of the remaining tunnels had only a single electrode as the second 

was coupled to a the internal reference electrode). For each pair of tunnel electrodes we used 

the recording site reporting higher spike rate, under the assumption that the axon coupled 

more accurately to the more active electrode. (d) A paired-pulse stimulation protocol was 

applied at 22 different sites in each well and repeated 25 times to evoke activity between the 

co-cultures through the micro-tunnels. (e) Evoked responses during one stimulation trial at 

electrode 17 (column 1, row 7). (f) Illustration of pattern separation and completion (adapted 

from Yassa and Stark 2011).
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Figure 2. 
Analog pattern separation or completion from distributions of correlation distances of input 

and output rate patterns. (a) Pearson correlation between rate patterns, computationally 

described by log spike rates evoked at each tunnel (input) or target (output) electrode. 

Examples of strong Pearson correlation between two rate input patterns (r=0.77, a.i) and 

weak Pearson correlation between two rate output patterns (r=0.08, a.ii) are shown in the 

figure. (b) Hypothetical distributions of correlation distances of input and output rate 

patterns. In our method we aggregate the non-zero input correlation distances in one 

cumulative curve and the non-zero output correlation distances in another. Therefore, both 

hypothetical curves show cumulative totals less than 1 because instances of zero correlations 

are not included in the cumulative sum. The area between these two curves would quantify 

pattern separation if the inputs correlated more frequently than the outputs (black area); 

otherwise, if the outputs correlated more frequently than the inputs, this area quantified 

pattern completion (gray area).
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Figure 3. 
Digital pattern separation or completion from spatial population distances between binary 

input and output patterns. (a) Examples of spatial population distance based on Jaccard 

distance adjusted for sparseness between two binary input patterns (Δ Input, a.i) and 

between two binary output patterns (Δ Output, a.ii) are shown in the figure. (b) Model 

adapted from Yassa and Stark (2011) for pattern separation and completion based on spatial 

population distances of binary input and output patterns (Δ Inputs vs. Δ Outputs). The black 

portion describes situations in which outputs are more dissimilar than inputs (i.e. separation: 

Δ Outputs > Δ Inputs). The gray portion describes the reverse situation in which outputs are 

more similar than inputs (i.e. completion: Δ Outputs < Δ Inputs).
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Figure 4. 
The activity measured among axons correlates with the source and target evoked responses 

better than the separate EC somata with DG somata. We use a log scale to cover the large 

dynamic rage of the spike rates. (a) Strong positive correlation between EC inputs and 

axonal outputs in micro-tunnels (r=0.81, p=10−22, slope=1.05). (b) Stronger positive 

correlation between axonal inputs in the tunnels and DG somata outputs (r=0.87, p=10−28, 

slope=1.07). (c) High proportionality between EC inputs and DG outputs, consistent with 

feed-forward propagation of the information flow (r=0.67, p=10−13, slope=1.07). All points 

show the averaged log spike rate evoked at the tunnel and chamber electrodes in 80 ms (i.e., 

40 ms x 2 pulses) over 25 trials from multiple arrays. Therefore, all scatter plots show 4 

arrays x 22 stimulation sites = 88 points.
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Figure 5. 
Correlations extracted from the non-repeated combinations trials/stimuli in EC and 

assembled in one single matrix showing axonal spike rates evoked in the tunnels (below 

diagonal) more correlated than the DG target outputs (above diagonal). Note the larger 

fraction of r=0 (black) correlations among somata outputs than axonal inputs. (a) Examples 

of correlations among axonal inputs evoked by specific stimulation electrodes in EC during 

the first stimulation trial. Scatter plot (below) between two of these aforementioned axonal 

inputs: axonal inputs during trial 1, stimulation electrode 13 in EC vs. axonal inputs during 

trial 1, stimulation electrode 5 in EC). (b) Examples of correlations among somata outputs 

evoked by specific stimulation electrodes in EC during the first stimulation trial. Scatter plot 

(right) between two of these somata outputs: somata outputs during trial 1, stimulation 

electrode 13 in EC vs. somata outputs during trial 1, stimulation electrode 5 in EC.
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Figure 6. 
Comparison of the distributions of the correlation distances between input and output rate 

patterns show strong pattern separation in dentate gyrus and CA3, but evidence for pattern 

completion in CA1 and EC. The first four panels show the cumulative distribution of the 

correlations among axonal inputs in micro-tunnels (solid line; Pearson correlations in 

absolute value) vs. the cumulative distribution of the correlations among target outputs 

(dashed lines). The area between curves, evaluated for each hippocampal pair, quantifies 

pattern separation (black; Outputs < Inputs) and pattern completion (gray; Outputs > Inputs). 

(a) Distribution of correlation distances from 4 EC-DG arrays between rate patterns evoked 

by all non-repeated combinations of 22 stimulation sites and 25 trials (n = 4 x 150,975 = 

603,900 comparisons). Asymptotes are below 1 as only non-zero correlation values are used. 

(b) DG-CA3 networks (n=754,875 from 5 arrays). (c) CA3-CA1 networks (n=754,875 from 

5 arrays). (d) CA1-EC co-cultures (n=754,875 from 5 arrays). (e) Black bar heights are the 

average integrated areas for pattern separation (inputs greater than outputs) from multiple 

arrays of the same configuration of hippocampal sub-regions (n=4 for EC-DG networks, n=5 

for the other co-cultures). S.E.M. is a function of the variance for each of these 4 or 5 

replicate configurations. Similarly, gray bar heights represent the average integrated areas 

for pattern completion (inputs less than outputs). Note that some configurations contain 

evidence for both pattern separation and pattern completion. Since the normality assumption 

fails by the Kolmogorov-Smirnov test, we perform the non-parametric Wilcoxon Rank Sum 

test. Pattern separation in EC-DG and DG-CA3 is significantly greater than zero (p=0.03 

and p=0.008, respectively). In the same hippocampal sub-networks, pattern separation is 

significantly greater than the pattern completion (p=0.03 and p=0.008 for EC-DG and DG-

CA3, respectively) and different from the pattern separation observed in the other sub-

regions (p=0.01). CA3-CA1 co-cultures show a significant bias toward pattern separation 

(p=0.048) and completion (p=0.008). Furthermore, pattern separation is significantly greater 

than the pattern completion (p=0.001). CA1-EC networks also show significantly difference 

between pattern separation and completion (p=0.001) and a significant bias toward pattern 

completion (p=0.008). Finally, pattern completion in the co-cultures with CA1 involvement 

is significantly different from the co-cultures with DG neurons (p=0.02).
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Figure 7. 
Control networks show distributions of correlation distances of axonal input and somata 

output rates indicative of pattern separation in DG, CA1 and EC. (a) Cumulative 

distributions of non-zero correlation distances of input and output rate patterns evoked by all 

non-repeated combinations of 22 stimulation sites and 25 trials from 5 DG-DG arrays 

stimulated in both chambers (n=5 arrays x 150,975 correlations x 2 stimulated chambers 

=1,509,750 correlation values). (b) Five CA3-CA3 networks (n=1,509,750). (c) Five CA1-

CA1 networks (n=1,509,750). (d) Five EC-EC co-cultures (n=1,509,750). (e) Pattern 

separation in DG-DG networks is significantly greater than zero (p=0.001) and statistically 

different not only from the pattern completion in the same networks (p=0.0003) but also 

from the separation degree of the other regions (p=0.05). CA3-CA3 co-cultures show 

evidence of pattern separation and completion greater than zero (p=0.015 and p=0.027, 

respectively). CA1-CA1 networks show significant pattern separation (p=10−6) and 

completion (p=0.0085). Furthermore, pattern separation is statistically different from pattern 

completion (p=10−8). Pattern separation in EC-EC networks is significantly greater than zero 

(p=0.0028) and statistically different from pattern completion (p=0.001). Statistically 

significant differences have been assessed by one and two-tailed t-tests.
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Figure 8. 
Spatial population distances adjusted for sparseness between binary input (Δ Inputs) and 

output (Δ Outputs) patterns show pattern separation EC axonal inputs transmitted into DG 

and completion of DG axonal inputs propagated into CA3. Δ Inputs vs. Δ Outputs describe 

pattern separation (Δ Outputs > Δ Inputs) and completion (Δ Outputs < Δ Inputs). The first 

four panels depict the area above (black) and below (gray) the diagonal (Δ Outputs=Δ 

Inputs). The curves shown in these panels are obtained by evaluating the mean and S.E.M of 

Δoutputs (y axis) in constant bins of 0.005 allocated to the Δinput values of each pair. Since 

the maximum value of the spatial population distance could change from one pair to another, 

by using the same bin size we can have different numbers of bins involved. (a) Δ Outputs vs. 

Δ Inputs extracted from the spatial population distances between all non-repeated couples of 

binary patterns evoked in the tunnels and in DG by 22 stimuli in EC for 4 arrays (n = 4 x 231 

= 924 comparisons; 0.005 bin size x 13 bins). (b) DG-CA3 (n=1,155 from 5 arrays in 15 

bins). (c) CA3-CA1 (n=1,155 from 5 arrays in 12 bins). (d) CA1-EC (n=1,155 from 5 arrays 

in 13 bins). (e) Separation is measured by the sum of the excess distances of Δ Outputs > Δ 

Inputs above the diagonal (Δ Outputs=Δ Inputs), divided by the number of bins (black bars). 

Separation is significant for EC-DG (p=0.0005), DG-CA3 (p=0.023) and CA1-EC 

(p=0.023), not for CA3-CA1. Completion, similarly measured by the average of the excess 

distances of Δ Outputs < Δ Inputs (gray bars) below the diagonal, is significant for DG-CA3 

(p=0.01), CA3-CA1 (p=0.004) and CA1-EC (p=0.009), not for EC-DG. Separation is also 

different from completion for EC-DG (p=10−5), DG-CA3 (p=0.0037), CA3-CA1 (p=0.003) 

and CA1-EC (p=0.002). Separation in EC-DG and DG-CA3 (i.e., when DG is involved) is 

further different from CA3-CA1 and CA1-EC (p=0.005). Statistical analyses have been 

assessed by one and two-tailed t-tests.
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Figure 9. 
Spatial population distances adjusted for sparseness show a separation of DG axonal inputs 

in DG-DG control networks that is weaker than EC-DG co-cultures, while CA3 patterns 

appear to self-complete. (a) Δ Outputs vs. Δ Inputs extracted from the spatial population 

distances between all non-repeated couples of binary input or output patterns evoked by 44 

stimuli (22 stimulation sites in each well) in 5 DG-DG arrays (n = 5 x 2 x 231= 2,310 

comparisons; 0.005 bin size x 25 bins). (b) CA3-CA3 (n = 5 x 2 x 231= 2,310 from 5 arrays 

in 23 bins). (c) CA1-CA1 (n = 5 x 2 x 231 = 2,310 from 5 arrays in 11 bins). (d) EC-EC (n = 

5 x 2 x 231= 2,310 from 5 arrays in 14 bins). (e) Pattern separation, measured by the sum of 

the excess distances of Δ Outputs > Δ Inputs above the diagonal, divided by the number of 

bins (black bars), is significant for DG-DG (p=0.0009), as well as CA1-CA1 (p=0.0002) and 

EC-EC (p=0.0036). Pattern completion, similarly measured by the average of the excess 

distances of the Δ Outputs < Δ Inputs (gray bars) below the diagonal, is significant for DG-

DG (p=0.0015), CA3-CA3 (p=10−5) and EC-EC (p=0.02). Pattern completion is 

significantly different from separation for DG-DG (p=10−5), CA3-CA3 (p=10−5), CA1-CA1 

(p=10−5) and EC-EC (p=0.0005). Pattern completion in CA3-CA3 is also significantly 

different from the other regions (p=10−5). Statistical significance was assessed by one and 

two-tailed t-tests.
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