
Alzheimer’s & Dementia: Translational Research & Clinical Interventions 4 (2018) 46-53
Featured Article

A simulation study comparing slope model with mixed-model repeated
measure to assess cognitive data in clinical trials of Alzheimer’s disease
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Abstract Introduction: In clinical trials ofAlzheimer’s disease, amixed-model repeatedmeasure approach often
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serves as the primary analysis when evaluating disease progression; a slope model may be secondary.
Methods: Longitudinal change from baseline (14-item version of Alzheimer’s Disease Assessment
Scale–Cognitive Subscale) was simulated for treatment/placebo from multivariate normal distribu-
tions with the variance-covariance matrix estimated from solanezumab trial data. Type I error, power,
and biaswere based on 18-month treatment contrast. Sample sizes included 500 and1000patients/arm.
Results: The slope model was more powerful in most scenarios. Mixed-model repeated measure was
relatively unbiased in parameter estimation. The slope model yielded unbiased estimates whenever the
underlying trajectory was not detectably different from linear. Both methods led to similar type I error.
Discussion: In clinical trials of Alzheimer’s disease, mixed-model repeated measure analysis with
relaxed assumptions on disease progression seems to be preferred. The slope model might be
more powerful if the trajectory has little departure from linearity.
� 2018 Eli Lilly and Company. Published by Elsevier Inc. on behalf of the Alzheimer’s Association.
This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
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1. Background

Progression of a chronic disease such as Alzheimer’s dis-
ease (AD), by definition, involves kinetics or dynamics of
cognitive change relative to time, or the trajectory and shape
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of a curve. In clinical trials of drugs intended for the treatment
of AD, comparing mean changes (baseline to endpoint) be-
tween treatment groups using a mixed-model repeated mea-
sure (MMRM) approach often serves as the primary analysis.

The MMRM analysis is a “semiparametric” approach,
which treats time as a factor, or a categorical variable, and
estimates the mean change from baseline in the outcome
in each group treating baseline performance as a covariate
[1]. The primary efficacy analysis is pivoted against a single
endpoint (e.g., 18 months). Mallinckrodt et al. demonstrated
that mixed-effects models, particularly the MMRMwith un-
structured mean and within-subject error correlation, pro-
vide more accurate estimates of treatment effect and its
standard error than last observation carried forward analysis
of covariance when data are missing at random [2]. Slope
model, in contrast, assumes a linear progression model and
may often serve as an alternative secondary analysis, which
compares the slopes between treatment groups and treats
time as a continuous variable.
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The objective of this simulation study is to investigate the
fixed (treatment) effect via MMRM and slope model using
the same unstructured variance-covariance matrix. Herein,
to make a fair comparison with the MMRM model, we use
the term “slope model” to refer to a linear mixed-effects
model that is linear in time without adding random slope
or intercept in the model. The slope model described in
this analysis uses a single parameter and is based on a simple
and intuitive parametric trajectory model that can capture
dynamics based on data from multiple visits. Several related
types of slope models could also be considered, and similar
inferences could be obtained by modeling unadjusted (not
change from baseline) scores, using a model with patient-
level random effects for slope and intercept. When changes
from baseline are modeled, baselineMini–Mental Status Ex-
amination and/or baseline Alzheimer’s Disease Assessment
Scale–Cognitive Subscale (ADAS-Cog) are important cova-
riates for rate of progression [3].

In AD, it is often hypothesized that for a disease-
modifying drug assumed to slow disease progression, the
treatment group compared with the placebo group should
shift the slope of decline on a given clinical outcome. It is
important to note, however, that this is only one hypothesis
among many regarding the accrual of treatment benefit that
might be observed under an efficacious disease-modifying
therapy. The gradual accrual of apparent treatment benefit
(e.g., aswould arisewith diverging slopes)may be suggestive
of permanent benefit, but continued and gradual accrual of
apparent treatment benefit is neither sufficient nor necessary
to establish the permanency of the benefit [4]. With this in
mind, it can be interpreted that a slope model may provide
a more intuitive and clinically meaningful way of demon-
strating a disease-modifying effect than MMRM. Although
MMRM analysis is an approach accepted by regulatory
agencies to examine treatment efficacy, the slope model is
required by the European Medicines Agency and has been
proposed as an alternative approach, given its usefulness in
consideration of possible disease-modifying effects [5].

Typically, a disease-modifying intervention is considered to
be one that can slow disease progression by altering the neuro-
biology of the disease. While AD placebo trajectories are
generally nonlinear becauseof an evident placeboeffect occur-
ring in the first 12 weeks or a finer time resolution assessment
(e.g., every 6 weeks) [3], the disease trajectory often appears
linear after the 1- to 2-year time course of initial improvement
[6]. An expert group advocated the use of longer trials for dis-
ease modification coupled with slope models and biomarkers,
specifically recommending that trials of 18-month duration be
used [7]. This group also suggested that slope models be used
from the perspective that diverging slopes of decline between
drug and placebo groups can provide evidence for disease
modification. The merits of slope model include it being a
simpler model with a clear clinical interpretation, pertinent
to the disease progression and modification concept, and po-
tential efficiency gain. As is typical of more parsimonious
models, a more favorable bias-variance trade-off may poten-
tially be obtained, whereby the negative consequences of
increased model bias are offset by the benefit of stabilized
(reduced variance) estimation. One risk of the slope model is
an incorrect model specification due to a strong linear assump-
tion that could lead to a bias in estimation.

Due to the nature of AD, clinical trials are often plagued
with high rates of missing data and highly variable clinical
assessments underscoring the importance of efficient study
design and analysis. In a chronic condition like AD, a linear
model for progression is probably not an unreasonable
approximation within a short window. Given the value of a
slope model as a secondary analysis, it would be valuable
to benchmark against the more general MMRM analysis
and evaluate the trade-off, as well as the risk, of bias under
varying degrees of departure from linearity. Here, we con-
ducted a simulation study to compare the slope model and
MMRM analysis based on various scenarios to better under-
stand the performance of each method.
2. Methods

2.1. Study design

The design of EXPEDITION2 (NCT00904683) has been
described previously [8]. Briefly, EXPEDITION2 was a
multinational, randomized, double-blind, placebo-
controlled, phase 3 study of solanezumab, an immunoglob-
ulin G subclass 1 anti-amyloid monoclonal antibody that
binds to the mid-domain of the amyloid-b peptide and is
thought to increase clearance of soluble amyloid-b. Solane-
zumab was given intravenously 400 mg every 4 weeks into
outpatients with mild-to-moderate AD dementia. Patients
were at least 55 years of age and met criteria for probable
AD dementia based on National Institute of Neurological
and Communicative Disorders and Stroke/Alzheimer’s Dis-
ease and Related Disorders Association criteria [9]. Patients
with Mini–Mental Status Examination [10] scores of 16 to
26 were allowed to participate. Mild AD dementia was
defined as screening visit Mini–Mental Status Examination
scores of 20 to 26; moderate AD dementia was defined as
screening visit scores of 16 to 19. Randomization to treat-
ment was stratified by AD severity to ensure a balance of
treatment assignment within both the mild and moderate
AD dementia patient groups. Patients were allowed to
continue treatment with stable doses of standard-of-care
AD treatments (e.g., acetylcholinesterase inhibitors and
memantine) throughout the studies.

Institutional review boards at all participating sites
approved the study. The study was conducted in accordance
with ethical principles of Good Clinical Practice and the
Declaration of Helsinki and its guidelines.

2.2. Statistical methods

Simulations were performed to compare the statistical
properties of the slope model and MMRM analysis. Longi-
tudinal change from baseline of the ADAS-Cog 14 for six
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postrandomization visits (up to 18 months) were simulated
for both treatment and placebo groups from multivariate
normal distributions with the variance-covariance matrix
estimated from the solanezumab EXPEDITION2 trial data.

To assess the performance of both methods under varying
degrees of departure from linear trajectories for disease pro-
gression, various models for the mean profiles were used to
generate the longitudinal data. Table 1 details the experi-
mental factors that comprised these models. Sample sizes
included 500 and 1000 patients per arm. Linear, quadratic,
and integrated two-component prediction models [11] with
varying shape parameters corresponding to gradual depar-
ture from linearity were simulated (Fig. 1) based on Monte
Carlo sampling of 500. Data simulation was executed with
no missing data and a 20% dropout. The integrated two-
component prediction model equation used was

yijk 5
�
qi 1 sij 1 εijk

� 1 2 epitijk

1 2 epid

In this equation, yijk represents an observation (change
from baseline) from subject j in the treatment arm i at time
k. Parameter qi is the ith treatment mean effect by the end
of time d, where d represents the treatment duration. Param-
eter pi determines the shape of the ith treatment time course,
and tijk is the time covariate. The parameter ij is an
individual-level random effect, and the parameter εijk is the
residual error. Based on EXPEDITION2 data in patients
with mild AD, the true between-treatment difference (treat-
ment minus placebo) at 18 months was set to be a common
Table 1

Experimental factors involved in simulation models

Experiment factor* Levels

Sample size/arm � 500

� 1000

Placebo_18 month_change � 7

Trt_18 month_change � 7 (NULL case, for type 1 error)

� 5.5

Variance-covariance matrix � Estimated variance matrix from

EXPEDITION2

Trajectory models 1. Linear

2. Quadratic

3. ITP model (P 5 .01, almost lineary)
4. ITP model (P 5 .05)

5. ITP model (P 5 .1)

6. ITP model (P 5 .2, quite curvy)

7. ITP model (P 5 .3, .4, .5)

8. ITP model (P 5 2.01, close to

linear)

9. ITP model (P 5 2.05)

10. ITP model (P 5 20.1)

11. ITP model (P 5 2.2, quite curvy)

Missing data � No missing data

� 20% dropout

Monte Carlo samples � 500

Abbreviations: ITP, integrated two-component prediction; Trt, treatment.

*Not a full factorial design.
yITP standards for integrated two-component predictionmodel;P value is

the shape parameter.
value of21.5 for all disease progression models. Both treat-
ment and placebo arms were simulated using the same shape
parameter for integrated two-component prediction models.

Type I error, power,mean squared error, and bias (difference
between estimation and the truth) were summarized based on
the estimand of the treatment contrast at 18 months to compare
the performance of the slopemodel as comparedwithMMRM.
Both models included simulated ADAS-Cog 14 change from
baselinedata for sixpost-randomizationvisits as dependent var-
iables, and treatment, time, and treatment and time interaction
terms as independent variables, where time was considered a
categorical variable in MMRM and a continuous variable for
the slope model. This estimand was chosen for bias evaluation
to examine longitudinal change based on previous guidance
[12].

All statistical analyses were conducted using SAS,
version 9.2.
3. Results

Fig. 2A–D displays model-fitted and true treatment disease
progression trajectories for the placebo and treatedgroupsover
the course of 18months with various scenarios using the slope
modelmethod.When the true trajectorywas close to linear, the
estimates at the end of 18 months were close to the true value
for each placebo and treated group. When the true trajectory
deviated from linearity, more bias was introduced as the esti-
mates from slope model departed from the true values at the
end of 18 months for both groups. Disease progression trajec-
tories for the MMRMmethod (not shown) were unbiased and
did not deviate from the true values.

Using the effect size and variance component estimates
from the longitudinal models, clinical trials were simulated
to reflect the changes observed over time in the EXPEDI-
TION2 study. Holding the sample size constant at 500 par-
ticipants per arm (Fig. 3), the slope model was more
powerful than the MMRM analysis in most scenarios
(70% vs. 57% for a shape parameter of 20.05, 73% vs.
59% for a shape parameter of20.2, 62% vs. 59% for a shape
parameter of 0.05, and 38% vs. 59% for a shape parameter of
0.2), although the power advantage was moderate.

The MMRM analysis was relatively unbiased in param-
eter estimation in all scenarios, whereas the slope model
yielded unbiased estimates whenever the underlying trajec-
tory was not detectably different from linear (see the relative
bias table in Fig. 3). For shape parameters ranging from
20.4 to 20.05, the slope model was more powerful than
MMRM analysis, but resulting bias increased. However,
compared to MMRM, the slope model was increasingly
biased when the true underlying progression departed from
linearity.

The type I error rates at the nominal level, a5 0.05, were
compared between MMRM and slope model. Simulations
showed that the type I error for both MMRM and slope
model are comparable within a maximum deviation of
0.02 from the nominal level.



Fig. 1. ITP trajectories with various shape parameters. Abbreviations: BL, baseline; ITP, integrated two-component prediction.
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While sample size increased from 500 to 1000 patients per
arm, the power increased for both MMRM analysis and slope
model, although the power advantage for slope model
Fig. 2. (A–D) Fitted and true treatment (LY2062430 [solanezumab]) disease progre

0.2 (D), over the course of 18 months for the slope model method. Abbreviations:

14; BL, baseline; Chg, change; LY, LY2062430 (solanezumab); Param, paramete
decreased. A simulation examplewith the linear trajectory sce-
nario in comparingpower, relative bias, andmean squared error
using500versus 1000participants per armwas shown inFig. 3.
ssion trajectories, at shape parameters of20.05 (A),20.2 (B), 0.05 (C), and

ADAS-Cog 14, Alzheimer’s Disease Assessment Scale–Cognitive Subscale

r; PL, placebo; Trt, treatment.



Fig. 3. Power and relative bias comparison betweenMMRM and slope model. Abbreviations: ITP, integrated two-component prediction; LIN, linear; MMRM,

mixed-model repeated measure; MSE, mean squared error; QUA, quadratic.
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In comparison between no missing data and 20% dropout
data using 500 patients per arm, the power decreased moder-
ately with 20% dropout for both MMRM and slope model
(see Fig. 4 for selected scenarios). MMRM remained stable
in power performance across various scenarios, whereas slope
model varies the power performance. Similarly, the relatively
bias and mean squared error increased moderately for both
MMRM analysis and slope model with 20% dropout data.
4. Discussion

Type I error rates and power based on the simulations were
evaluated to determine the optimal method of analysis. Simu-
lations showed that both MMRM and slope model led to
similar type I error around the nominal level, but that slope
model had amoderate power advantageoverMMRManalysis.
The slope model is based on a stronger model assumption and
therefore suffered increased bias when the true disease pro-
gressionmodel is nonlinear.TheMMRManalysiswith relaxed
assumptions on disease progression seems to be a preferred
approach with more general applicability, whereas the slope
model ismore powerful if the truemodel is linear or near linear.

Reporting outcomes in terms of slope (rate of decline) may
be more appropriate for emphasizing long-term outcomes in
degenerativediseases, since slowing rateofdecline canbe clin-
ically meaningful to patients and physicians. However, the
specification of the statistical model for the slope model is
not always straightforward. The natural progression of AD
may be approximated with a linear model typically within a
period of 18 months (e.g., length of clinical trial). However,
it is still unclear whether this linearity assumption remains
true in a clinical trial in which a potentially disease-



Fig. 4. Comparison of missing data and 20% dropout betweenMMRM and slope model. Abbreviations: ITP, integrated two-component prediction; LIN, linear;

MMRM, mixed-model repeated measure; MSE, mean squared error; pow 5 power (comparison); QUA, quadratic; relbias, relative bias (comparison).
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modifying treatment effect is also a variable, and it is unknown
whether the linearity assumption is constant over the course of
treatment [13]. Importantly, there are both individual and
aggregate aspects to the correctness or incorrectness of the
linearity assumption. The simulation model considered here
doesnot reflect the boundedness of theADAS-Cog instrument,
as some patients will progress toward the ceiling of the instru-
Fig. 5. Proposed analysis roadmap. Abbreviations:
ment (90 for ADAS-Cog 14) over an 18-month duration in a
population that is mild-to-moderate at baseline. This is likely
to influence the statistical properties being assessed.

An analysis roadmap (Fig. 5) may be a useful tool to deter-
mine which type of analysis to use when examining clinical
data, to perform a model assumption check, to adapt a final
analysis plan based on interim data, and to use separate trial
MMRM 5 mixed-model repeated measure.
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data to inform method selection. In principle, when the
amount of prior data information is substantial in either sup-
porting linear or nonlinear trajectories (e.g., from a phase II or
interim study), investigators can plan to use either a slope or
MMRM model in the corresponding phase III studies. While
planning the analysis for phase III AD studies, investigators
often utilize a sample size that is quite large. For benefit
and risk trade-off, although a linear trajectory was suggested
from prior information, MMRM might be a preferred choice
because it can provide an unbiased estimate to eliminate po-
tential risk with a small trade-off in power performance when
compared to a slope model. When the amount of available
data information is minimal to provide sufficient evidence
of linear or nonlinear trajectories, MMRM analysis might
be a more conservative approach than the slope model.
Conversely, when investigators are planning for a phase II
data analysis with a smaller number of patients, the slope
model might be a more practical option that can be used to
enhance the study power with the risk of increased bias.

The analysis roadmap and general guidance given in this
article may also be complemented in the context of particular
development programs by routine simulation-based assess-
ment of trial design options. An extensively qualified quanti-
tative simulation tool that allows researchers to model clinical
trials in mild-to-moderate AD is publicly available and can be
used by researchers to optimize the design of new trials [14].

Some limitations to this study should be considered. Data
in this simulation are limited to a single drug in a population
selected to specifically assess an anti-amyloid treatment ef-
fect for a specific mechanism of action and disease. In addi-
tion, this study only assessesmild-to-moderateADdementia,
and resultsmay not be consistent with findings in other stages
of AD, with potential variation in disease progression and
treatment effects. Therefore, this analysis may not be gener-
alizable to all clinical trial populations and has inherent
cohort biases. Replication in other cohorts, disease states,
and treatment trials will be important. Finally, the longitudi-
nal shape of AD treatment effect was not explored in this
study. A potential direction for future research would be a
fixed linear trajectory for placebo while allowing the
nonlinear variations in the treatment arm.

In conclusion,MMRManalysiswas shown to performwell
under various AD disease progression trajectories. The slope
model has a modest power advantage over MMRM in linear
progression models. However, further research is needed to
test linearity and to further quantify the degree of departure
from linearity to determine an optimal method of analysis to
examine disease progression.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional (e.g., PubMed) sources,
meeting abstracts, and presentations regarding the
comparison of a slope model and endpoint analysis.
Although this type of comparison is not yet widely
studied, there have been some recent publications
examining it; these relevant citations have been
appropriately cited.

2. Interpretation: The results of the slope model and
mixed-model repeated measure analysis of the
EXPEDITION2 study suggest that mixed-model
repeated measure analysis with relaxed assump-
tions on disease progression seems to be the
preferred approach with more general applicability
to clinical trial design, whereas a slope model might
be applicable only if the true model has very little
departure from linearity.

3. Future directions: Further research is needed to test
linearity and to quantify the degree of departure
from linearity observed in this analysis to provide a
more detailed comparison of mixed-model repeated
measure and a slope model and the application of the
two methods in clinical research.
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