
EBioMedicine 32 (2018) 93–101

Contents lists available at ScienceDirect

EBioMedicine

j ourna l homepage: www.eb iomed ic ine.com
Research Paper
Multi-Omics Analysis Reveals a HIF Network and Hub Gene EPAS1
Associated with Lung Adenocarcinoma
Zhaoxi Wang a,1, Yongyue Wei b,1, Ruyang Zhang a,b,1, Li Su a, Stephanie M. Gogarten c, Geoffrey Liu d,
Paul Brennan e, John K. Field f, James D. McKay e, Jolanta Lissowska h, Beata Swiatkowska i, Vladimir Janout j,
Ciprian Bolca k, Milica Kontic l, Ghislaine Scelo e, David Zaridze m, Cathy C. Laurie c, Kimberly F. Doheny n,
Elizabeth K. Pugh n, Beth A. Marosy n, Kurt N. Hetrick n, Xiangjun Xiao o, Claudio Pikielny o, Rayjean J. Hung g,
Christopher I. Amos o, Xihong Lin p, David C. Christiani a,⁎
a Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
b Department of Epidemiology, Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
c Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
d Princess Margaret Cancer Centre, Toronto, Canada
e Genetic Cancer Susceptibility group, International Agency for Research on Cancer, World Health Organization, Lyon, France
f Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
g Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Canada
h Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
i Nofer Institute of Occupational Medicine, Department of Environmental Epidemiology, Lodz, Poland
j Department of Epidemiology and Public Health, University of Ostrava, University of Olomouc, Olomouc, Czech Republic
k Thoracic Surgery Division, "Marius Nasta" National Institute of Pneumology, Bucharest, Romania
l Clinic of Pulmonology, Clinical Center of Serbia (KCS), Belgrade, Serbia
m Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
n Center for Inherited Disease Research, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
o Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
p Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
⁎ Corresponding author at: Elkan Blout Professor
Department of Environmental Health, Harvard TH Cha
Huntington Avenue, Boston, MA 02115, USA.

E-mail address: dchris@hsph.harvard.edu (D.C. Christi
1 These authors have equal contributions.

https://doi.org/10.1016/j.ebiom.2018.05.024
2352-3964/© 2018 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 3 February 2018
Received in revised form 17 May 2018
Accepted 18 May 2018
Available online 31 May 2018
Recent technological advancements have permitted high-throughput measurement of the human genome, epi-
genome, metabolome, transcriptome, and proteome at the population level. We hypothesized that subsets of
genes identified from omic studies might have closely related biological functions and thus might interact di-
rectly at the network level. Therefore, we conducted an integrative analysis of multi-omic datasets of non-
small cell lung cancer (NSCLC) to search for association patterns beyond the genome and transcriptome. A
large, complex, and robust gene network containing well-known lung cancer-related genes, including EGFR
and TERT, was identified from combined gene lists for lung adenocarcinoma. Members of the hypoxia-inducible
factor (HIF) gene familywere at the center of this network. Subsequent sequencing of network hub geneswithin
a subset of samples from the Transdisciplinary Research in Cancer of the Lung-International Lung Cancer Consor-
tium (TRICL-ILCCO) consortium revealed a SNP (rs12614710) in EPAS1 associated with NSCLC that reached ge-
nome-wide significance (OR = 1.50; 95% CI: 1.31–1.72; p = 7.75 × 10−9). Using imputed data, we found that
this SNP remained significant in the entire TRICL-ILCCO consortium (p = .03). Additional functional studies are
warranted to better understand interrelationships among genetic polymorphisms, DNA methylation status,
and EPAS1 expression.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Lung cancer is the leading cause of cancer-related mortality world-
wide for both men and women [1]. Although advances in cancer pre-
vention, early detection, and treatment have been made in recent
decades, the general prognosis for lung cancer remains poor. The high
case–fatality ratio of lung cancer has been attributed to advanced
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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stage of disease at diagnosis, poor response to current therapies, and the
aggressive biological nature of lung cancer. Non-small cell lung cancer
(NSCLC) is the most common type of lung cancer accounting for about
85% of all lung cancers [2,3]. Histologic subtypes of NSCLC include ade-
nocarcinoma, squamous cell carcinoma, and large cell carcinoma [4].
Further, previous studies have demonstrated that heritable factors are
significantly important in lung cancer, independent of smoking history
or exposure to environmental tobacco smoke [5,6].

More recently, genome-wide association studies (GWAS) have been
used to identify multiple independent loci for most diseases, because
GWAS can identify common disease susceptibility loci without prior
knowledge of locus function or position [7,8]. Several GWAS have iden-
tified at least five loci associated with lung cancer risk—on chromo-
somes 3q28, 5p15, 6p21, 13q13.1 and 15q25—in populations with
European ancestry [9–14]. Additional loci at 22q12 and 15q15 have
been associated with lung cancer risk [15–17]. GWAS can define lung
cancer-associated genomic lociwith low tomoderate effects, but cannot
identify causal mutations given the complicated relationships among
disease-associated loci.

Recent technological advances have permitted high-throughput
measurement of the human genome, epigenome, metabolome, tran-
scriptome, and proteome at the population level. Each study can offer
complementary analyses of a certain biological function, and integrative
multi-omics analyses are needed to uncover synergistic interactions
[18]. However, because each omic study analyzes a different molecular
layer, integrative analyses comparing top-ranked genes from different
omic studies might not reveal much overlapping genes.

We hypothesized that there are subsets of genes identified from dif-
ferent omic studies that might have closely related biological functions
and thusmight directly interact at thenetwork level. Therefore, it is pos-
sible to build network(s) with direct interactions among multiple mo-
lecular layers, characterized by higher network complexity and larger
gene ratios, where network complexity is defined as the ratio of total
number of connections between genes to number of geneswithin a net-
work, and gene ratio is defined as proportion of genes within a network
to total number of genes used to build a network. In addition, incorpo-
rating biological functionality from different molecular layers, such as
RNA, proteome, andmetabolome results, can boost the power of genetic
mapping.

In this study, we conducted an integrative analysis of GWAS and
transcriptomic profiling for NSCLC using network building based on an
algorithm that searches for direct interactions fromahigh-quality,man-
ually curated database of genetic and physical interactions. To evaluate
the identified networks, we repeated network building from a large set
of randomly generated gene lists for distributions of network complex-
ity and gene ratio. We also used hub genes identified from significant
networks for targeted sequencing and further validation in the Trans-
disciplinary Research in Cancer of the Lung-International Lung Cancer
Consortium (TRICO-ILCCO) GWAS meta-analysis.

2. Materials and Methods

2.1. Study Population

This study was based on data derived from 1000 NSCLC cases and
1000 cancer-free controls, frequency-matched by age (±5 years), gen-
der, and smoking status (by packyears) as previously described [19].
All cases were recruited at Massachusetts General Hospital (MGH)
from 1992 to 2004, were N 18 years old, and had newly diagnosed, his-
tologically confirmed primary NSCLC. Controls were healthy, non-
blood-related family members and friends of patients with cancer or
with cardiothoracic conditions undergoing surgery. Histological classifi-
cation was done by two staff pulmonary pathologists atMGH according
to the International Classification of Diseases for Oncology (ICD-O3). For
histology analysis, the following codes were used: adenocarcinoma,
8140/3, 8250/3, 8260/3, 8310/3, 8480/3, and 8560/3; large cell
carcinoma, 8012/3 and 8031/3; squamous cell carcinoma, 8070/3,
8071/3, 8072/3, and 8074/3; and other non-small cell carcinomas,
8010/3, 8020/3, 8021/3, 8032/3, and 8230/3. The Institutional Review
Board of MGH and the Human Subjects Committee of the Harvard
School of Public Health approved the study, and all participants signed
consent forms.

2.2. GWAS Dataset

DNAwas extracted from peripheral white blood cells using standard
protocols and was genotyped using the Human610-Quad BeadChip
(Illumina, San Diego, CA). Before association tests, we conducted a sys-
tematic quality evaluation of raw genotyping data according to a gen-
eral quality control (QC) procedure described by Anderson et al. [20]
Briefly, unqualified samples were excluded if they fit the following QC
criteria: (i) overall genotype completion rates b95%; (ii) gender discrep-
ancies; (iii) unexpected duplicates or probable relatives (based on
pairwise identity by state value, PI_HAT in PLINK N0.185); or (iv) het-
erozygosity rates N6 standard deviations from the mean. Unqualified
SNPswere excluded if they fit the followingQC criteria: (i) overall geno-
type completion rates b95%; (ii) gender discrepancies; (iii) unexpected
duplicates or probable relatives (based on pairwise identity by state
value, PI_HAT in PLINK N0.185); (iv) heterozygosity rates N6 standard
deviations from the mean; or (v) individuals were non-Caucasians
(using the HapMap release 23, including JPT, CEPH, CEU, and YRI popu-
lations as reference). Unqualified SNPs were excluded if they fit the fol-
lowing QC criteria: (i) not mapped on autosomes; (ii) call rate b 95% in
all GWAS samples; (iii) MAF b 0.01; or (iv) genotype distributions devi-
ated from those expected by Hardy-Weinberg equilibrium (p b 1.0
× 10−6). After quality evaluation, we had a dataset of 984 cases and
970 controls with 543,697 autosomal SNPs for epistasis analysis.

2.3. Transcriptomic Profiling

FFPE tissues were obtained by surgical biopsy from patients with
NSCLC and archived. Histopathologic sections were prepared from
tumor and non-affected lung parenchyma tissue by manual microdis-
section of FFPE blocks. A pathologist who had no knowledge of the
study outcome reviewed all tissue sections. Each specimen was evalu-
ated for amount and quality of tumor cells and histologically classified
using WHO criteria. Specimens with lower than 70% cancer cellularity
were not included for transcriptomic profiling. Sectioned FFPE tissues
were sent to Q2 Solutions (formerly Expression Analysis Inc.,
Morrisville, NC) for RNA extraction, quality assessment, and
transcriptomic profiling using whole genome-DASL assay [21]. The
Whole-Genome DASL HT assay covered N47,000 annotated transcripts
(Illumina, San Diego, CA) [22]. A total of 59 FFPE transcriptomic profiles
were obained, including 39 tumor/non-involved tissues from adenocar-
cinomas, 16 tumor/non-involved tissues from squamous cell carcino-
mas, and 4 tumor/non-involved tissues from other types of lung
carcer. Among them, therewere 18 pairs of tumor andmatched non-in-
volved tissues of adenocarcinomas and 8 pairs of squamous cell carcino-
mas, which were used in the transcriptomic analysis.

2.4. External Transcriptomic Data

Two transcriptomic datasets of NSCLC were selected and raw data
were downloaded from Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo): GSE10072 and GSE18842.
GSE10072 focused on lung adenocarcinoma and included 180 paired
adenocarcinoma and non-affected tissue samples [23]. GSE18842 in-
cluded 91 samples of mainly squamous cell carcinoma [24]. GSE10072
and GSE18842 were generated from fresh snap-frozen samples from
surgical resection and profiled on Affymetrix Human Genome U133
array (Affymetrix, Santa Clara, CA).

https://www.ncbi.nlm.nih.gov/geo
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2.5. Transcriptomic Data Analysis

Although FFPE profiles and external data were generated from dif-
ferent platforms, we used DNA-Chip Analyzer 2006 (dChip, http://
www.dchip.org) software, which applied an invariant set of genes for
normalization and calculation of expression values across all microar-
rays, to normalize raw microarray signals. This analysis assumed that
a subset of genes had constant expression among all cell subtypes [25]
Only paired tumor and non-affected tissue samples were used in the
analysis, including 18 FFPE adenocarcinomas, 8 FFPE squamous cell car-
cinomas, 33 snap-frozen adenocarcinomas (GSE10072), and 32 snap-
frozen squamous cell carcinomas (GSE18842).

2.6. Integrated Analysis by Network Building

Gene lists from GWAS and/or transcriptomic profiling were
uploaded into MetaCore GeneGo database (https://portal.genego.com,
Thomson Reuters, New York, NY) for network building which has N1.7
million molecular interactions, 1600 pathway maps, and 230,000
gene-disease associations [26]. MetaCore is an integrated online soft-
ware suite for functional analysis of omics data that is based on a
high-quality, manually-curated database of molecular interactions, mo-
lecular pathways, gene–disease associations, chemical metabolism, and
toxicity information. We used direct interaction algorithms on the
MetaCore platform to build gene networks consisting only of uploaded
genes and their direct interactions, without adding other genes/objects
from the GeneGo database. Considering that GWAS and transcriptome
were differentmolecular layers andwould not revealmuch overlapping
genes, we used less stringent criteria to select top-ranked genes from
GWAS and transcriptomic profiling without correcting the multiple
comparisons.

Significant networks were identified and evaluated by two parame-
ters: network complexity and gene ratio. Network complexity was de-
fined as ratio of total number of connections among genes to number
of genes within a network. Gene ratio was defined as proportion of
genes within a network to total number of genes used to build a net-
work. These parameters allowed us to distinguish simple networks
driven by a few supergenes. In such simple networks, the majority of
networked genes only had a single connection to one or several genes,
called supergenes. Connections of supergenes usually accounted for
the majority of connections within a network, and removing super-
genes often dramatically reduced numbers of networked genes or
demolished the networks. We also explored different p-value cut offs
for the selection of genes from GWAS and transcriptomic profiling.
With more stringent cut offs, we could not build a significant network.
andwithmore relaxed cut offs, the network complexities were reduced
(data not shown).

2.7. Network Evaluation by Randomly Generated Gene Lists

SNPs of GWAS data and probes of transcriptomic profiling mapped
to a total of 24,847 genes. From these genes, we randomly generated 6
sets of gene lists, with each set containing 100 gene lists, for a total of
600 random gene lists. Lists from each set had the same number of
genes, but lists from different sets had different numbers of genes—ei-
ther 50, 100, 200, 300, 400, or 500 genes. Each random gene list was in-
dividually uploaded into MetaCore GeneGo database for network
building, and network parameters, including network complexity and
gene ratio, from the largest networks were recorded. Quantile regres-
sion at 95th percentile was performed to estimate the 95% confidence
interval.

2.8. Targeted and Whole Exome Sequencing

Targeted and whole exome sequencing was performed at the Center
for Inherited Disease Research. Ninety-nine custom regions targeted for
a total of 17.26 Mb of custom content was captured and sequenced.
BAM files were created by aligning FASTQ files to GRCh37 and joint sam-
ple variant calling and variant site filtering was performed. Genotypes for
biallelic SNPswere further refinedusing CalculateGenotypePosteriors and
allele frequency information from 1000 genomes phase 3 data as well as
the Exome Aggregation Consortium data. Further details were described
in Supplementary Methods.

2.9. Statistical Analysis

Clinical characteristics were described as mean ± standard devia-
tion (SD) for continuous variables or n (%) for categorical variables.
Student's t-test or Fisher's exact test was used for comparison between
groups for continuous or categorical variables, respectively.

We carried out gene-based analysis on GWAS data and targeted se-
quencing data using SKAT-O [27]. SKAT-O aggregates weighted vari-
ance-component score statistics for each SNP/SNV within a set using a
kernel function and tests for associations between groups of SNPs/
SNVs and a phenotype while adjusting for relevant covariates [28]. For
GWAS data, initially all SNPs that passed QC were mapped to human
genes within ±20 kb regions based on information curated in the
RefSeq database(NCBI build GRCh37.p13). Separate analyses were con-
ducted individually for all SNPs and rare SNVs with MAF b0.01. Models
were adjusted for age (years), gender, smoking status, and top signifi-
cant eigenvectors. SKAT-O analyses were carried out using the SKAT
package (R v. 2.13.0).

In meta-analysis of GWAS datasets within TRICL-ILCCO, we com-
bined imputed genotypes from 13,479 lung cancer cases and 43,218
controls undertaken by the previous TRICL-ILCCO GWAS [22,29,30].
We excluded poorly imputed SNPs defined by imputation quality Rsq
b0.3 or Info b0.4 for each study and conducted fixed effects meta-anal-
ysis with inverse variance weighting and random effects meta-analysis
from the DerSimonian-Laird method [31]. We also generated an index
of heterogeneity (I2) and p-value of Cochran's Q statistic to assess het-
erogeneity in meta-analyses. We only considered SNPs with MAF
N0.005 and that showed little evidence for effect heterogeneity between
studies (Cochran's Q statistic p N .05). Allmeta-analyses and calculations
were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC,
USA).

3. Results

3.1. Initial Screening of GWAS and Transcriptomic Profiling Data

Weproduced a genomic dataset of germline polymorphisms (GWAS
genotyping data on the Illumina 610 Quad platform) and a
transcriptomic dataset of tumor and non-affected tissue (genome-
wide expression profiling on Illumina DASL HT platform) from NSCLC
samples [29]. The GWAS dataset included 543,697 single nucleotide
polymorphisms (SNPs) from 984 NSCLC cases and 970 healthy controls
after quality assessment. Transcriptomic profiling was carried out on
formalin-fixed paraffin-embedded (FFPE) paired samples of tumor
and non-affected tissues from 30 NSCLC cases, including 18 adenocarci-
noma, 8 squamous cell carcinoma, and 2 unclassified cases. Eighteen
NSCLC cases had both GWAS and transcriptomic data. Patient character-
istics are described in Table 1.

Instead of analyzing individual SNP, we conducted gene-based anal-
ysis of GWAS data using the optimal unified sequence kernel associa-
tion test (SKAT-O) method and applied gene lists in the subsequent
network analysis [32]. Among 21,981 mapped genes of GWAS data,
there were 103 genes with p b .005 (Supplementary Table S1), 232
genes with p b .01, and 1007 genes with p b .05. The top genes associ-
ated with risk of developing NSCLC were HYKK (also known as
AGPHD1, 15q25, p = 2.30 × 10−6), CLPTM1L (5p15, p = 3.54 × 10−5),
CHRNA3 (15q25, p = 6.77 × 10−5), and DNAJC16 (1p36.1, p = 7.12

http://www.dchip.org
http://www.dchip.org
https://portal.genego.com


Table 1
Demographic distribution of study populations.

GWAS samples FFPE
samples

Case
(n = 984)

Control
(n = 970)

p Case
(n = 28)

Age (years) 65.5 ± 10.6 59.4 ± 11.6 b0.001 67.1 ± 9.6
≥65 540 (54.9%) 351 (36.2%) b0.001 20 (71.4%)

Sex (female) 477 (48.5%) 528 (54.4%) 0.010 12 (42.9%)
Smoking pack-years 49.7 ± 35.7 25.0 ± 26.7 b0.001 53.3 ± 34.8

≥30 664 (55.1%) 326 (33.6%) b0.001 22 (78.6%)
Smoking status b0.001

Never 92 (9.4%) 161 (16.6%) 2 (7.1%)
Former 502 (51.0%) 555 (57.2%) 18 (64.3%)
Current 390 (39.6%) 254 (26.2%) 8 (28.6%)

Pathology
Adenocarcinomaa 597 (60.7%) 18 (64.3%)
Squamous cell 216 (22.0%) 7 (25.0%)
Small cell 0 (0.0%) 0 (0.0%)
Other 171 (17.3%) 3 (10.7%)

a Including adenocarcinoma in situ.
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× 10−5), with 3 genes located within the two previously identified risk
loci at 5p15 and 15q25 [29].

We also screened transcriptomic data for differentially expressed
genes with N2 fold changes (FC) between tumor and non-affected
lung tissues of 18 pairs of FFPE samples (lung adenocarcinoma, includ-
ing bronchioloalveolar carcinoma) obtained by surgical biopsy. Among
20,818 genes (29,378 probesets total), there were 75 genes with p b

.001 (Supplementary Table S2), 252 genes with p b .005, 402 genes
with p b .01, and 805 genes with p b .05. Top differentially expressed
genes were PTPRB (p = 8.65 × 10−7), SEMA6A (p = 2.03 × 10−6), and
PION (p = 4.83 × 10−6).

We compared gene lists from GWAS analysis and transcriptomic
profiling and identified 46 common genes with p b .05 in both analy-
ses, which we called core genes (Table 2). Except for SEMA6A [GWAS:
p = .004; transcriptome: FC = −4.4 (tumor/non-affected tissue), p =
2.03 × 10−6] and MYLK (GWAS: p = .009; transcriptome: FC = −3.5,
p = 3.00 × 10−4), most genes were low-ranked in either GWAS or
transcriptomic profiling but high-ranked in the other analysis.
3.2. Networks Built between GWAS and Transcriptomic Profiling Data

No significant network could be built from individual or combined
lists of top-ranked genes from GWAS or transcriptomic profiling. Al-
though no significant network could be built from the list of core
genes (n = 46), small and simple networks could be built when core
genes were combined with either GWAS or transcriptomic profiling
data. Further, by combining top-ranked GWAS genes (103 genes with
p b .005), top-ranked transcriptomic profiling genes (75 genes with p
b .001), and core genes (37 non-overlapped genes out of 46 core
genes), we could build a single large complex network (Fig. 1a). The
process of integrated analysis is summarized in Supplementary Fig. S1.

Thirteen hub genes (≥5 connectionswithin the network) that signif-
icantly contributed to complexity of the network were identified and
were related to lung cancer, including FOS, EGFR, HDAC4, and TERT
(Fig. 1b). Moreover, the network was centered on important genes be-
longing to the hypoxia-inducible factor (HIF) family, including hub
genes HIF1A, ARNT (also known as HIF1B), and EPAS1 (also known as
HIF2A), which are transcription factors that respond to changes in avail-
able oxygen in the cellular environment [33]. We therefore named this
the HIFs-EGFR-HDAC4-TERT network. Similarly, using top-ranked genes
from a GWAS dataset containing only lung adenocarcinomas (597
cases and 970 controls), we built a significant network from a combined
list of GWAS genes (90 genes with p b .005), transcriptomic profiling
genes (75 genes with p b .001), and core genes.
3.3. Network Evaluation by Random Gene Lists

To examine the possibility that significant networkswere formed by
random chance of the increased number of genes from combined gene
lists, we conducted a series of network analyses using randomly gener-
ated lists with different numbers of genes (total list: n=600) and eval-
uated the largest network built from each random list. As the number of
genes for network building increased, we more frequently observed an
increased number of genes and connections within networks, resulting
in increased gene ratios. However, the complexity of these networks
remained relatively unchanged (data not shown).

Networks were better evaluated in a two-dimensional space of net-
work complexity and gene ratio than any individual parameter we
tested. As shown in Fig. 2, the large complex network built from com-
bined gene lists was located far above from a 95% upper-tail conference
interval (95% CI) curve, whereas most networks from individual gene
lists or combinations of any two listswere located either under or around
the 95% CI curve. A similar result was observed for analysis of top-ranked
genes of GWAS including only lung adenocarcinomas (data not shown).

We further examined larger gene lists of GWAS and transcriptomic
profiling data with a lower p-value cut-off. Networks for individual
gene lists were all under the 95% CI curve for both GWAS (gene list:
232 genes, p b .01; network: complexity = 1.36, gene ratio = 0.10)
and transcriptomic profiling (gene list: 252 genes, p b .005; network:
complexity = 1.30, gene ratio = 0.08) data, and the network for a com-
bination of two listswas just above the 95% CI curve (network: complex-
ity = 1.38, gene ratio = 0.24). Among points outside the 95% CI, the
results for the hypoxia network we identified had the highest gene ratio.

3.4. Network Validation by External Transcriptomic Data

An external transcriptomic dataset (GSE10072) was generated on a
different platform (Affymetrix Human Genome U133A array) using 33
fresh-frozen pairs of tumor and non-affected tissues fromNSCLC adeno-
carcinomas collected in the Lombardy region of Italy [23].We identified
85 top-ranked, differentially expressed genes (FC ≥ 2; p b 10−16). Simi-
lar to the FFPE dataset, a significant network could only be built from
combined lists of top-ranked GWAS genes, top-ranked transcriptomic
profiling genes, and a core list of 29 non-overlapping genes (Supple-
mentary Fig. S2).

This network had a complexity and gene ratio comparable with that
from the FFPE dataset and also had common hub genes (≥5 connections
within the network) shared with the FFPE dataset (Table 3). Moreover,
we identified 88 common, differentially expressed genes (FC ≥ 2; p b

.05) between FFPE and GSE10072 datasets, with 85 genes (97%) having
expression changes in the same direction between tumor and non-af-
fected tissues (Supplementary Table S3). Although only a simple and
small network could be built from this common transcriptomic list, a
significant network with the same hub genes, including HIF1A, FOS,
HDAC4, and EDN1, could be built by direct combination with the
GWAS list (Table 3).

3.5. Hub Gene Validation by Sequencing and Meta-Analysis of Genotyping
Data

As a member of the TRICL-ILCCO consortium, we submitted 13 hub
genes as candidates for next-generation targeted and whole exome se-
quencing [34], which included 1059 NSCLC cases and 900 unrelated
controls genetically enriched with young-onset or positive lung cancer
family history from four sites (Supplementary Table S4): Harvard
School of Public Health, International Agency for Research on Cancer,
University of Liverpool, and Mount Sinai Hospital-Princess Margaret
Hospital study in Toronto, Canada. Using the SKAT-O method to test
combined effects of all common and rare single nucleotide variants
(SNVs) within one gene [32], we found that EPAS1 (p= .0009) was sig-
nificantly associated with NSCLC after adjusting for multiple



Table 2
Common genes between GWAS and transcriptomic profiling (p b .05).

Gene Chr Gene ID Description Transcriptomea GWAS

Fold change p SNP p

ALDH1A1 9 216 Aldehyde dehydrogenase 1 family, member A1 −2.1 0.01294 29 0.02264
ANGPTL2 9 23,452 Angiopoietin-like 2 −2.1 0.01364 5 0.00878
BBS4 15 585 Bardet-Biedl syndrome 4 −2.1 0.01240 5 0.04792
C1orf54 1 79,630 Chromosome 1 open reading frame 54 −2.2 0.01047 3 0.03904
CANX 5 821 Calnexin −2.5 0.00366 1 0.04936
CCDC144A 17 9720 Coiled-coil domain containing 144A −2.0 0.02563 1 0.04716
CLDN18 3 51,208 Claudin 18 −2.0 0.00403 7 0.03534
CRYZL1 21 9946 Crystallin, zeta (quinone reductase)-like 1 −2.3 0.03630 3 0.03622
CTSS 1 1520 Cathepsin S −2.2 0.01058 2 0.00318
DDI2 1 84,301 DDI1, DNA-damage inducible 1, homolog 2 (S. cerevisiae) −2.4 0.00707 2 0.00074
DGKH 13 160,851 Diacylglycerol kinase, eta −2.5 0.01353 71 0.04530
DSG2 18 1829 Desmoglein 2 −2.3 0.00147 12 0.01370
EGFR 7 1956 Epidermal growth factor receptor [erythroblastic leukemia viral (v-erb-b) oncogene homolog, avian) −2.4 0.01896 1 0.01781
EPAS1 2 2034 Endothelial PAS domain protein 1 −2.6 0.04683 35 0.00262
FOS 14 2353 V-fos FBJ murine osteosarcoma viral oncogene homolog −2.9 0.02894 2 0.03475
GPR4 19 2828 G protein-coupled receptor 4 −2.2 0.02893 5 0.01226
GYPC 2 2995 Glycophorin C (Gerbich blood group) −2.9 0.00198 23 0.03402
HIF1A 14 3091 Hypoxia-inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor) −2.0 0.01108 8 0.00307
HIST1H1A 6 3024 Histone cluster 1, H1a 2.1 0.00948 1 0.01148
HSDL1 16 83,693 Hydroxysteroid dehydrogenase like 1 2.1 0.02955 1 0.01549
IFT81 12 28,981 Intraflagellar transport 81 homolog (Chlamydomonas) −2.2 0.04329 6 0.02961
KIAA1407 3 57,577 KIAA1407 −3.1 0.01488 6 0.00387
LEPR 1 3953 Leptin receptor −2.0 0.02291 1 0.03057
LYVE1 11 10,894 Lymphatic vessel endothelial hyaluronan receptor 1 −2.5 0.02175 2 0.02959
MED31 17 51,003 Mediator complex subunit 31 −2.6 0.01772 1 0.02361
MS4A6A 11 64,231 Membrane-spanning 4-domains, subfamily A, member 6A −2.0 0.04791 4 0.00202
MYLK 3 4638 Myosin, light chain kinase −3.5 0.00032 1 0.00935
NAMPT 7 10,135 nicotinamide phosphoribosyltransferase −2.1 0.01653 5 0.00979
NUP50 22 10,762 Nucleoporin 50 kDa −2.6 0.00218 4 0.03813
PAAF1 11 80,227 Proteasomal ATPase-associated factor 1 −2.0 0.00515 8 0.00595
PACRG 6 135,138 PARK2 co-regulated −2.0 0.00203 1 0.04082
PARP1 1 142 Poly (ADP-ribose) polymerase family, member 1 2.2 0.01837 8 0.02273
PDCD2 6 5134 Programmed cell death 2 −2.3 0.03616 3 0.04564
PLEKHB1 11 58,473 Pleckstrin homology domain containing, family B (evectins) member 1 −2.5 0.00524 5 0.04509
PRKAG2 7 51,422 Protein kinase, AMP-activated, gamma 2 non-catalytic subunit −2.3 0.02595 1 0.03415
PRKCQ 10 5588 Protein kinase C, theta −2.3 0.00363 83 0.02882
RBMS1 2 5937 RNA binding motif, single stranded interacting protein 1 −2.3 0.00746 26 0.01284
RRM2B 8 50,484 Ribonucleotide reductase M2 B (TP53 inducible) −2.0 0.01162 10 0.02509
S1PR5 19 53,637 Sphingosine-1-phosphate receptor 5 −2.0 0.00713 2 0.01977
SEMA6A 5 57,556 Sema domain, transmembrane domain, and cytoplasmic domain, (semaphorin) 6A −4.4 2.03E-06 60 0.00432
SMG1 16 23,049 PI-3-kinase-related kinase SMG-1 −2.1 0.01381 11 0.00747
TACC3 4 10,460 Transforming, acidic coiled-coil containing protein 3 2.2 0.03279 5 0.02719
TCIRG1 11 10,312 T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 subunit A3 −2.7 0.02007 1 0.02523
ZDHHC19 3 131,540 Zinc finger, DHHC-type containing 19 −2.6 0.01204 8 0.04905
ZNF274 19 10,782 Zinc finger protein 274 −3.1 0.00116 7 0.04410
ZRANB2 1 9406 Zinc finger, RAN-binding domain containing 2 −2.3 0.00502 4 0.00498

a Fold change indicates difference between tumor tissue and non-affected adjacent tissue. P-values are from paired t-tests.
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comparisons by Bonferroni method (p = .05/13 genes = 0.0038). Fur-
ther, there was no significant aggregation of variants with moderate to
high functional impacts (http://useast.ensembl.org/info/genome/
variation/predicted_data.html) in either NSCLC cases or controls in the
other 12 hub genes (Supplementary Table S5). In EPAS1, sequencing
identified2061 SNVs, including 1617 rare/low-frequency SNVs [minor al-
lele frequency (MAF) ≤ 0.01] and 36 SNVswithmoderate–high functional
impact. One common SNV (SNP: rs12614710) located within the first in-
tron and identified by sequencing reached genome-wide significance
(MAF = 0.45; OR = 1.50; 95% CI: 1.31–1.72; p= 7.75 × 10−9) (Fig. 3).

We further validated SNP rs12614710 in a much larger GWAS
dataset using meta-analysis. A fixed-effect model was applied to esti-
mate pooled effects of each SNP using the TRICL-ILCCO GWAS dataset,
which included 13,479 lung cancer cases and 43,218 controls (Supple-
mentary Table S6) [34]. Meta-analysis of SNP rs12614710 had a p-
value of 0.03 (imputation accuracy: R2 = 0.86).

4. Discussion

In this study, we conducted an integrative analysis of multi-omic
datasets of NSCLC to assess associations beyond the genome and
transcriptome. A large, complex, and robust gene network containing
well-known lung cancer-related genes, including EGFR and TERT, was
identified for lung adenocarcinoma from the combined gene lists. How-
ever, the framework of this network was built by key members of the
HIF gene family. Subsequent sequencing of network hub genes within
a subset of consortium samples revealed a SNP (rs12614710) in EPAS1
associated with NSCLC that reached genome-wide significance based
on whole exome sequencing data. Although this SNP was not covered
in any GWAS dataset, we used imputed data to find that this SNP is bor-
derline significant in the entire TRICL-ILCCO GWAS dataset. This dis-
crepancy could be due to differential associations among genetically
enriched individuals as those in the whole exome sequencing project.

HIFs are a family of proteins that sense and respond to oxygen defi-
ciency by acting as heterodimeric transcription factors that regulate ex-
pression ofmultiple genes involved in the adaptation and progression of
cancer. Hypoxia is a typical cancer microenvironment, particularly in
rapidly growing tumors, and activation of HIFs is the first step of
tumor cells' adaptive responses to hypoxic surroundings [33]. HIFs are
involved in every aspect of cancer development and progression, in-
cluding cell proliferation, apoptosis, metabolism, immune responses,
genomic instability, vascularization, invasion, and metastasis.

http://useast.ensembl.org/info/genome/variation/predicted_data.html
http://useast.ensembl.org/info/genome/variation/predicted_data.html


Fig. 1. Networks built from GWAS and transcriptomic profiling data. a, Significant
network built from combining top-ranked GWAS genes (103 genes with p b .005), top-
ranked transcriptomic profiling genes (75 genes with p b .001), and a core list of genes
(37 non-overlapping genes out of 46 core genes). Blue indicates genes only identified
from transcriptomic profiling; green indicates genes only identified from GWAS; and
red indicates genes from the core list. b, Network of 13 hub genes (≥5 connections
within the network).
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HIFs consist of two subunits: an oxygen-sensitive α subunit, includ-
ing HIF-1α (HIF1A), HIF-2α (EPAS1 or HIF2A), and HIF-3α (HIF3A) iso-
forms; and a ubiquitously expressed β subunit (HIF1B or ARNT).
Hypoxic conditions result in HIF-α stabilization, nuclear translocation,
and dimerization with HIF-1β to form the HIF transcription factor,
which can bind to hypoxia-response elements (A/GCGTG consensus
motif) in numerous target gene promoter regions [35].

HIFs are attractive therapeutic targets in cancer [33]. HIF-1α and
HIF-2α are the predominant regulators of hypoxic responses at both
cellular and organismal levels. Although they share highly conserved
structural features, each isoform mediates a unique set of target genes
and even oppositely influences some critical factors, such as c-Myc,
p53, and nitric oxide [36]. Expression of HIF-2α has been identified in
human lung cells, including type II pneumocytes and pulmonary endo-
thelial cells, in response to hypoxia, aswell as in epithelium andmesen-
chymal structures that give rise to the vascular endothelium [37].
Additional studies report that HIF-2α plays a vital role in malignant be-
havior. In murine models of lung cancer, increased tumor size, invasion,
and angiogenesis correlate with high levels of HIF-2α expression
cooperating with RAS [38]. Further, high levels of HIF-2α in NSCLC
tumor tissue are associated with significantly poor patient prognosis
[39,40]. However, in our transcriptomic data from FFPE samples,
tumor tissue had low EPAS1 expression comparedwith non-affected tis-
sue. A similar low EPAS1 expression profile was also observed in fresh-
frozen samples.

The most significant SNP (rs12614710, p = 7.75 × 10−9) of EPAS1
identified from sequencing was located in the first intron, and several
adjacent SNPs within this intron had p-values of 10−5–10−7. Previous
studies have reported associations of EPAS1 polymorphismswith devel-
opment of renal cell carcinoma (rs11894252, p = 1.8 × 10−8;
rs9679290, p = 5.75 × 10−8; rs4953346, p = 4.09 × 10−14) and pros-
tate cancer [40–42]. In a small study of 346 NSCLC patients and 247 con-
trols from a Japanese population, SNP rs4953354 was associated with
increased risk of lung adenocarcinoma (OR = 1.80; 95% CI, 1.16–2.79;
p = .008) [42]. In our TRICL-ILCCO GWAS dataset of 13,479 cases and
43,218 controls [34], all of these SNPs were significantly associated
with NSCLC (rs11894252, p = .043; rs9679290, p = .0011;
rs4953346, p = .0015; rs4953354, p = .025). All previously reported
SNPs are located in the first intron, except for rs4953354, which is lo-
cated in the third intron. In addition, some SNPs are not correlated
[40], including rs12614710 from our sequencing project.

Moreover, bioinformatic analyses using Genome Browser (http://
genome.ucsc.edu) suggest that most of these first intron SNPs are lo-
cated in histonemarkH3K27Ac,which is defined by a ChIP-seq assay re-
lated to enhanced gene transcription [43]. Further, analysis of ChIP-seq
datasets from ENCODE identified binding sites and binding activities for
C/EBP-β, AP-1, andMYC families of transcription factors inmany cancer
cell types within the first intron of EPAS1. Further, the A allele of
rs13419896 is associated with enhanced EPAS1 expression and poor
prognosis of 76 NSCLC patients [44]. It is likely that genetic polymor-
phism of EPAS1 may lead to varied gene expression through either
changes in binding sites and binding activities for certain transcription
factors or modification of histone epigenetic regulation. In a study of
chronic obstructive pulmonary disease, hypermethylation of EPAS1 is
correlated with decreased EPAS1 expression and is significantly associ-
ated with disease severity [45].

Although GWAS has provided useful insights into the genetic archi-
tecture of complex diseases, there isweak evidence for howGWAS find-
ings improve understanding ofmolecular pathways involved in disease,
thus bringing post-GWAS challenges to the characterization of molecu-
lar data. Therefore, it is important to assess howdiverse omic datasets at
different biological levels can be integrated to exploit the full potential
of information to identify causal genes and networks, regulatory genes
and networks, and predictive markers for complex traits. Using direct
interaction algorithms for network building, we successfully conducted
an integrated study of multi-omic data for exploration beyond GWAS.
This approach implemented a stringent criterion of only searching for
direct gene–gene interactions within a manually curated database
(MetaCore, https://portal.genego.com), while using less strict p-value
cut-offs to select gene lists from different omic datasets. Thus, we
could explore less significant genes, which often do not reach ge-
nome-wide significance, in omic datasets. The underlying hypothesis
is that, because genes are highly networked and coordinated and do
not act alone, polymorphisms of several genes in one biological process
might not reach genome-wide significance.

Initially, we could not find anymeaningful networks (with relatively
higher complexities and gene ratios) from gene lists selected from sin-
gle omic datasets. This result is reasonable in that a list of top genes
with small p-values is more likely to contain discrete genes, especially
for transcriptomic data, as differentially large expressions were often
downstream target genes in a transcription pathway and might not
have direct interactions. Only combined gene lists from both GWAS

http://genome.ucsc.edu
http://genome.ucsc.edu
https://portal.genego.com
Image of Fig. 1


Fig. 2. Distribution of networks built by randomly selected genes. From a total of 24,847 genes, we randomly generated 6 sets of gene lists, with each set containing 100 gene lists. Each
set contained 50, 100, 200, 300, 400, or 500 genes, denoted by R50, R100, R200, R300, R400, and R500, respectively. Networks were built from each gene list using MetaCore GeneGo
database and were used to calculate a 95% CI curve. GWAS denotes network from GWAS data; FFPE denotes network from transcriptomic profiling data; and GWAS+FFPE+core
denotes networks built from combining GWAS data, transcriptomic profiling data, and a core gene list.
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and transcriptomic datasets plus a core list of common genes could
build a large, complex HIFs-EGFR-HDAC4-TERT network. However,
with even less stringent p-value cut-offs, we built a large network
from genes selected from a single omic dataset. All such networks
were simple, with themajority of networked genes only having a single
connection to one or several hub genes, called supergenes. Connections
Table 3
Network evaluations.

Network 1 Network 2 Network 3 Network 4

Total genes 215 198 217 191
Genomic list GWAS GWAS-AC GWAS GWAS
Transcriptomic list FFPE FFPE GSE10072 Common

of FFPE &
GSE10072

Core list 37 33 29 −
Largest network

Genes 46 43 46 40
Connections 70 62 69 58
Complexity 1.556 1.476 1.533 1.487
Gene ratio 0.214 0.217 0.212 0.209

Hub gene of largest network
ARNT + − + −
BCL6 − + − −
CDH5 − − + −
EDN1 + + − +
EGFR + + − −
ENO1 − − + −
EPAS1 + + + −
ERG − − + −
FOS + − + +
HDAC4 + + + +
HIF1A + + + +
MMP12 − − − +

PARP1 + + − −
TERT + + − −
of supergenes usually accounted for the majority of connections within
a network, and removing supergenes often dramatically reduced num-
bers of networked genes or demolished the networks.

To distinguish from supergene networks, we evaluated the HIFs-
EGFR-HDAC4-TERT network by investigating networks built from 600
randomly selected gene lists of different sizes.We found that a genenet-
work had to be evaluated by two factors: size and complexity. Network
sizewasmeasured by gene ratio of number of networked genes to num-
ber of total genes used to build a network. Network complexity was
measured by the ratio of total number of network connections to total
number of networked genes. A supergene network always was large
in size but low in complexity. The HIFs-EGFR-HDAC4-TERT network
had a moderate size but high complexity without supergenes. From
the distribution of network properties of 600 randomly selected gene
lists plotted for network size against network complexity, the HIFs-
EGFR-HDAC4-TERT network was above the 95% CI curve, suggesting
that this network was not randomly built.

We further validated theHIFs-EGFR-HDAC4-TERT network generated
from multi-omic datasets by using different transcriptomic datasets.
The GSE10072 dataset was from a study of gene expression signatures
of cigarette smoking and its role in lung adenocarcinoma development
and survival, and it contained 33 fresh-frozen pairs of tumor and non-
affected tissues from NSCLC adenocarcinomas [23]. Combined with
our GWAS dataset, which contained a majority of NSCLC adenocarci-
nomas, and a core gene list, we also built a network with network size
and complexity comparable to the HIFs-EGFR-HDAC4-TERT network
and several shared hub genes. Different combinations of the GWAS
dataset, transcriptomic dataset, and core gene list provided similar
results.

We also analyzed a transcriptomic dataset of squamous cell carci-
noma, including our 8 pairs of tumor and non-affected tissues from
FFPE samples and 32 pairs of fresh-frozen samples from GSE18842
[24], and found that no complex networks except several supergene

Image of Fig. 2


Fig. 3.Manhattan plot of EPAS1 in targeted sequencing project.
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networks could be built (data not shown). This might be because a ma-
jority of our GWAS samples were lung adenocarcinomas (60.7%), and
squamous cell carcinomas only accounted for ~22% of samples. Mean-
while, no identified network from squamous cell GWAS transcriptomic
datasets suggests that our integrated approach of multi-omic data was
sensitive to tumor histology.

Sequencing of hub genes identified a new locus in EPAS1 that
reached genome-wide significance and was validated in the largest
lung cancer consortium, providing additional evidence that the HIFs-
EGFR-HDAC4-TERT network is associated with NSCLC adenocarcinoma.
Further, a recent study reported that EPAS1 could specifically bind to ty-
rosine kinase inhibitor (TKI)-resistant T790 M EGFR in NSCLC cell lines
and enhance amplification of MET [46]. These findings suggest that
EPAS1 is a key factor in EGFR-MET crosstalk in conferring TKI resistance
in NSCLC cases and provide in vitro support of the HIFs-EGFR-HDAC4-
TERT network.

At present, FFPE samples, which represent the greatest stock of ar-
chived disease entities, are limited mainly to investigations of a small
number of genes using quantitative real-time PCR or global micro-
RNA profiling, which is much more stable than mRNA [47,48]. The
main reason for this restriction is that RNA is often altered and degraded
within FFPE samples from the impact of collection and storage [49,50].
In our study, from the top 808 differentially expressed genes from
FFPE samples, we identified 88 common, differentially expressed
genes between FFPE and the GSE10072 dataset, with 85 genes (97%)
having expression changes in the same direction between tumor and
non-affected tissues. This common gene list could be used as a
transcriptomic list to build a network containing HIFs without incorpo-
rating a core gene list. These results demonstrate that FFPE samples
could generate a transcriptomic profile for integrated analysis, as we
found similar networks with shared hub genes as compared to fresh-
frozen samples.

During the analyses, we evaluated different network results by ex-
ploring different p-value cut offs for the selection of genes fromdifferent
omics datasets. We didn't find any significant networks as all networks
were under the 95% CI curve in randomgene list evaluation.We noticed
there was a limitation that we hadn't control this level of multiple
comparisons. Currently, we didn't have a proper analytic method to ad-
just themultiple comparisons. Therefore, we used external data to eval-
uate the network results.

Through integrated analysis and subsequent sequencing of the iden-
tified network, we identified a new locus associated with lung cancer
risk. This locus is in hub gene EPAS1, which is a key member of the HIF
family involved in every aspect of cancer development and progression.
Because this locus has potential functions related to epigenetic regula-
tion, the observation of low EPAS1 expression in tumor compared to
non-affected tissues warrants additional functional studies to further il-
lustrate interrelationships among genetic polymorphisms, DNAmethyl-
ation status, and EPAS1 expression.
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