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Abstract Mushrooms possess various bioactivities

and are used as nutritional supplements and medicinal

products. Twenty-nine bioactive components have

been extracted recently from mushrooms grown in

Nepal. In this study, we evaluated the ability of these

mushroom extracts to augment SIRT1, a mammalian

SIR2 homologue localized in cytosol and nuclei. We

established a system for screening food ingredients

that augment the SIRT1 promoter in HaCaT cells, and

identified a SIRT1-augmenting mushroom extract

(number 28, Trametes versicolor). UVB irradiation

induced cellular senescence in HaCaT cells, as

evidenced by increased activity and expression of

cellular senescence markers including senescence-

associated b-galactosidase, p21, p16, phosphorylated
p38, and cH2AX. Results clearly showed that the

mushroom extract (No. 28) suppressed the ultraviolet

B irradiation-induced cellular senescence in HaCaT

cells possibly through augmenting SIRT1 expression.
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Introduction

Accumulating evidence has demonstrated that ultra-

violet radiation (UV) is the most common environ-

mental factor that damages the human skin, leading to

conditions such as sunburn, solar erythema, inflam-

mation, skin carcinogenesis, and premature senes-

cence (Pillai et al. 2005). In particular, UVB (a

wavelength range of 280–320 nm) has been shown to

permeate through the epidermis into the dermis and

induce reactive oxygen species (ROS) production in

the skin and cultured skin cells, thus contributing to

gene mutations, abnormal cellular proliferation, and

skin aging (Lavker et al. 1995; Hattori et al. 1996;

Ahmed et al. 1999).
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Sirtuins, a family of NAD?-dependent enzymes,

are well-known modulators of lifespan in many

species (Kaeberlein et al. 1999). Sirtuin1 (SIRT1),

the closest homologue to yeast Sir2, is the most widely

studied of the seven sirtuin family members (Frye

2000). Evidence has shown that SIRT1 is involved in

cardiovascular disease, neurodegenerative diseases

such as Alzheimer’s disease and amyotrophic lateral

sclerosis, and inflammatory diseases (Lavu et al.

2008). Furthermore, several lines of evidence have

shown that SIRT1 prevents cellular senescence in

endothelial cells and fibroblasts via various mecha-

nisms (Huang et al. 2008; Zu et al. 2010; Yamashita

et al. 2012). However, experimental evidence regard-

ing the role of SIRT1 in stress-induced fibroblast

senescence is sparse, particularly with respect to the

protective effect of SIRT1 against UVB-induced

premature cell senescence.

Mushrooms, as one of the potential sources of

dietary antioxidants, have been valued not only for

their nutritional properties (Barros et al. 2008), but

also for various medicinal benefits (Lindequist et al.

2005; Ajith and Janardhanan 2007). Around 140,000

species of mushrooms are believed to exist (Wasser

2002); among these, wild mushrooms from Nepal are

report to be diverse and play vital roles in many local

communities (Adhikari et al. 2006). However, few

studies of the pharmacological potential or bioactivity

of mushrooms grown in Nepal have been published.

Recently, Hai Bang and colleagues described the

antioxidant activity of 29 mushrooms collected from

the mountainous areas of Nepal (Hai Bang et al. 2014;

Tamrakar et al. 2016). To our knowledge, the effects

of such mushroom extracts on cellular senescence

have not been investigated to date. In this study, we

evaluated the protective effects of these twenty-nine

mushroom extracts on UVB-induced cellular senes-

cence in human keratinocytes.

Materials and methods

Cell culture and reagents

The HaCaT human keratinocyte cell line (Riken

Bioresource Center, Tsukuba, Japan) was cultured in

Dulbecco’s modified Eagle’s medium (DMEM; Nis-

sui, Tokyo, Japan) supplemented with 10% fetal

bovine serum (Life Technologies, Gaithersburg, MD,

USA) at 37 �C in an atmosphere containing 5% CO2.

Screening system for foods that activate the SIRT1

promoter

We amplified the human SIRT1 promoter (- 1593 to

- 1) by PCR using human genomic DNA as the

template; the amplified fragment was cloned into the

promoter-less pEGFP-C3 (Takara, Shiga, Japan) and

designated pSIRT1p-EGFP (Harada et al. 2016).

HaCaT cells transduced with pSIRT1p-EGFP (HaCaT

(SIRT1p-EGFP)) were treated with mushroom

extracts, and human SIRT1 promoter activity was

then evaluated. Changes in the EGFP fluorescence

derived from pSIRT1p-EGFP were monitored using

an IN Cell Analyzer 1000 (GE Healthcare, Amersham

Place, UK) (Udono et al. 2012).

Ultraviolet B (UVB) irradiation

The medium was removed and cells were exposed to

UVB (Integrated Irradiance Level: 10 mJ/cm2; CL-

1000 Ultraviolet Crosslinker, UVP, Upland, CA,

USA). This exposure was repeated at an interval of

24 h. Soon after UVB irradiation, the medium in

which cells were cultured was replaced with fresh

medium.

Mushroom samples

Mushrooms were collected from several forests in

various parts of Nepal. Scientific names, locations, and

accession numbers of the mushrooms are provided in

Table S1. Mushroom samples were identified on the

basis of morphological features and/or genetic anal-

ysis, as described previously (Tamrakar et al. 2016).

The samples were dried in an air-ventilated oven at

35 �C for 10 h, followed by at 45 �C for 1 h. The dried

samples were ground to a fine powder and extracted

with ethanol. The ethanol extracts were rotary-evap-

orated at 45 �C.

Fluorescence senescence-associated

b-galactosidase (SA-b-Gal) assay

Fluorescence SA-b-Gal assay was carried out, as

described previously (Udono et al. 2012). Briefly,

HaCaT cells were fixed with 2% formaldehyde/0.2%
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glutaraldehyde, then stained with 33 lM ImaGene

Green C12FDG (Life Technologies) and 1 lg/mL

Hoechst 33342 solution (Dojin, Kumamoto, Japan).

Image acquisition and analysis of imaging data was

performed using an IN Cell Analyzer 1000 (GE

Healthcare), as described previously. The imaging

data were reported as SA-b-Gal intensity (mean

fluorescence intensity per cell) and the SA-b-Gal-
positive/negative cells by setting the threshold inten-

sity of the SA-b-Gal staining. The threshold of SA-b-
Gal intensity was set to the point at which about 75%

of total cells were negative in the control cells. The

data collected using Developer were analyzed by

Spotfire DecisionSite Client 8.2 (PerkinElmer, Wal-

tham,MA, USA) software to visualize the results. This

experiment was repeated at least 3 times, and the

representative data are shown.

Immunofluorescence

Immunofluorescence was performed as described

previously (Udono et al. 2012). Briefly, HaCaT cells

were seeded onto a lClear Fluorescence Black plate

(Greiner Bio-One, Tokyo, Japan). After fixing the

cells with 4% paraformaldehyde, cells were blocked

with 5% goat serum and 0.3% Triton-X100. After

washing the cells, specific antibodies (anti-p16INK4a

(ab81278, Abcam, Cambridge, UK), anti-p21 (2947,

Cell Signaling, Danvers, MA, USA), anti-phospho

p38 (4511, Cell Signaling), and anti-phospho histone

H2A.X (9718, Cell Signaling) were added. After

washing the cells, secondary antibody (Alexa Fluor

555 F(ab’) fragments of goat anti-rabbit IgG (Life

Technologies) were added. After washing the cells,

Hoechst 33342 solution was added, and an image of

each well was acquired using an IN Cell Analyzer

1000. Imaging data were analysed using the Multi

Target Analysis tool and visualized using Spotfire

DecisionSite Client 8.2 software. This experiment was

repeated at least 3 times, and the representative data

were shown.

Quantitative RT-PCR (qRT-PCR)

RNA was isolated using the High Pure RNA Isolation

Kit (Roche, Mannheim, Germany). cDNA was gener-

ated from the isolated RNA using the ReverTra Ace

(Toyobo, Osaka, Japan). qRT-PCR was performed

using the KAPA SYBR Fast qPCR Kit (KAPA

Biosystems, Woburn, MA, USA) and the Thermal

Cycler Dice Real Time System TP-800 instrument, as

described previously (Udono et al. 2012). The samples

were analyzed in triplicate, and the SIRT1 level was

normalized to the corresponding b-actin level. The

PCR primer sequences used were as follows: SIRT1

forward primer 50-GCCTCACATGCAAGCTCTAG
TGAC-30 and reverse primer 50-TTCGAGGATCT
GTGCCAATCATAA-30; b-actin forward primer 50-
TGGCACCCAGCACAATGAA-30 and reverse pri-

mer 50-CTAAGTCATAGTCCGCCTAGA AGCA-30.

Retrovirus production and transduction

Viral supernatants were produced after transfecting

293 T cells with pGag-pol, pVSV-G, and individual

expression vectors (pBABE-puro, pBABE-puro-

SIRT1) using the HilyMax reagent (Dojindo), as

previously described (Udono et al. 2012). The cells

were cultured at 37 �C in DMEM supplemented with

10% FBS for 24 h. Medium was then replaced with

fresh DMEM supplemented with 2% FBS and incu-

bated for an additional 24 h. Viral supernatant was

collected and supplemented with 10 mg/mL poly-

brene (Merck Millipore, Billerica, MA, USA). The

target cells were infected with this viral supernatant

for 24 h at 37 �C. After infection, the cells were

selected using 3 lg/mL puromycin (Enzo Life

Sciences, Farmingdale, NY, USA) for 3 days.

Statistical analysis

All experiments were performed at least 3 times. The

results are presented as mean ± SD. Statistical sig-

nificance was determined using a two-sided Student’s

t test. Multiple comparisons between groups were

made by one-way ANOVA with Turkey’s post hoc

test. Statistical significance was defined as p\ 0.05.

Result and discussion

SIRT1 overexpression protects HaCaT cells

from UVB-induced senescence

Although UVB irradiation is known to induce apop-

tosis in HaCaT cells (Li et al. 2017), keratinocytes

possess the ability to completely repair DNA damage

induced by low-energy UVB (Integrated Irradiance
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Level: 5 mJ/cm2) exposure and maintain normal

cellular function (Kim et al. 2016). In the present

study, we repeatedly treated HaCaT cells with low-

energy UVB, and evaluated the induction of cellular

senescence by measuring SA-b-Gal activity, a bio-

marker of cellular senescence, using an IN Cell

Analyzer 1000 (Udono et al. 2012). Cellular senes-

cence induction was evaluated by analyzing cell size

(x-axis) as well as the percentage of SA-b-Gal-
positive/negative cells (y-axis) (Fig. 1a). In compar-

ison with that observed in non-treated HaCaT cells,

the percentage of SA-b-Gal-positive cells markedly

increased among the UVB-irradiated population

(Fig. 1a; pie chart). In addition, as shown in Fig. 1a,

an increase in the size of UVB-exposed HaCaT cells

was observed (Fig. 1a; pie chart). These data indicate

that repeated irradiation with low-energy UVB radi-

ation induced cellular senescence in HaCaT cells.

SIRT1, popularly known as the longevity gene, has

been expressed in cultured skin keratinocytes; the

activity of this gene was shown to be downregulated

by both UV and H2O2 treatment in a time- and dose-

dependent manner (Cao et al. 2009). To investigate the

effects of SIRT1 on UVB-induced senescence in

Fig. 1 Effects of SIRT1 on UVB-induced cellular senescence

in HaCaT cells. a Effects of UVB on SA-b-Gal activity in

HaCaT cells. Cells (9 9 105 cells) were seeded on to culture

dish (u 35 mm), and cultured for 24 h. Medium was removed

and cells were irradiated with UVB (Integrated Irradiance

Level: 10 mJ/cm2) and cultured in DMEM supplemented with

10% serum. Next day this UVB irradiation procedure was

repeated, and cells were cultured for 1 day, followed by

detection of SA-b-Gal activity using an IN Cell Analyzer

1000. Cellular SA-b-Gal (y-axis) and cell size (x-axis) were

plotted on a scatter plot. The relative number of cells with high

SA-b-Gal activity are shown in the pie chart. Statistical

significance was determined using a two-sided Student’s t test.

Significant difference is denoted by $$$ p\ 0.001. b Effects of

SIRT1 on UVB-induced cellular senescence in HaCaT cells.

Recombinant HaCaT cells with ectopic SIRT1 expression or

mock expression were irradiated with UVB (10 mJ/cm2).

Senescence-related biomarkers, including SA-b-Gal activity,

cH2AX, p16, p21, and phospho-p38MAP kinase, were detected

using an IN Cell Analyzer 1000. The relative number of cells

with high activity or expression of senescence biomarkers is

shown in black in the pie chart. The size of the pie

chart demonstrates the average cellular size. Multiple compar-

isons against non-treated mock-transfected HaCaT (#) or

against UVB-treated mock-transfected HaCaT (*) were calcu-

lated by one-way ANOVA with Turkey’s post hoc test.

Significant differences are denoted by ###, *** p\ 0.05
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HaCaT cells, we first established recombinant HaCaT

cells with ectopic expression of SIRT1. Senescence-

related biomarkers, such as SA-b-Gal activity,

cH2AX, p16, p21, and phospho-p38 (p-p38), were

examined in HaCaT cells irradiated with UVB using

an IN Cell Analyzer 1000. Figure 1b clearly shows

that UVB induced cellular senescence in HaCaT cells,

and, further, that SIRT1 attenuated UVB-induced

cellular senescence. Taken together, these data sug-

gest that SIRT1 protects HaCaT cells from UVB-

induced cellular senescence.

Identification of mushrooms that augment SIRT1

transcription in HaCaT cells

Previously, we established a system for screening

foods/food ingredients that augment SIRT1 and

SIRT3 expression in Caco-2 cells, and identified

Lactobacillus brevis T2102 and pomegraniin A as

SIRT1- and SIRT3-activating food components (Zhao

et al. 2016; Harada et al. 2016). Here, we established a

similar system for screening foods/food ingredients

that activate SIRT1 expression using HaCaT cells that

express EGFP under the control of the SIRT1

promoter. We tested the SIRT1-augmenting activity

of twenty-nine extracts of mushrooms grown in Nepal

using this cell line (Table S1). As shown in Fig. 2a,

extract numbers 9, 27, and 28 significantly augmented

SIRT1 promoter activity in HaCaT cells. In this assay,

EGFP fluorescence intensity depends on promoter

activity of SIRT1 and cell condition. Thus, we tested

whether these mushroom extracts augment endoge-

nous SIRT1 expression in HaCaT cells by qRT-PCR

(Fig. 2b). Results showed that extract number 28

significantly augmented endogenous SIRT1 expres-

sion in HaCaT cells.

Mushroom extract inhibits UVB-induced

senescence in HaCaT cells

Next, we tested whether mushroom extract number 28

inhibited UVB-induced senescence in HaCaT cells.

UVB induced cellular senescence in HaCaT cells, as

evidenced by the activation of SA-b-Gal activity and

increase in cellular senescence markers (Fig. 2c).

Extract number 28 (Trametes versicolor) markedly

attenuated UVB-induced cellular senescence in

HaCaT cells; however, resveratrol, which is a known

SIRT1-activating polyphenol, had no effects on UVB-

induced cellular senescence.

Trametes versicolor, also known as Yunzhi, is

known to possess a wide range of beneficial medical

properties such as protective effects against oxidative

damage, cancer, and bacterial/viral infection as well as

immune-potentiating activity; further, this mushroom

has been shown to elicit improvement in bone

properties in diabetic rats (Lindequist et al. 2005;

Chen et al. 2015; Jhan et al. 2016). The best-known

commercial polysaccharopeptide preparations derived

from T. versicolor are polysaccharopeptide Krestin

(PSK) and polysaccharopeptide (PSP). PSPs, which

are among the main bioactive constituents of

T. versicolor, are recognized as biological response

modifiers that are useful adjuncts to conventional

therapy. PSPs have been reported to increase the

activity and gene expression of antioxidant enzymes

and reduce lipid peroxidation in senescence-acceler-

ated mice (Li et al. 2007), as well as exert

immunomodulatory effects on blood lymphocytes

and the breast cancer cell line MCF-7 (Kowalczewska

et al. 2016). Until now, several responsible bioactive

compounds in mushrooms including polysaccharides,

triterpenoids, proteins, phenolic compounds have been

reported (Hai Bang et al. 2014). We need to identify

active compounds in the extract in the future study. In

the present study, we identified novel activity of

extracts derived from T. versicolor, which is expected

to be of value in applications related to skin mainte-

nance and repair of skin damage induced by UVB, as

well as in the production of novel cosmetics targeting

skin aging.

UVB-exposed edible white button mushrooms have

been proven to be a safe and effective source of

vitamin D2, which supports bone growth and regulates

the immune response (Kalaras et al. 2012; Calvo et al.

2013). In the present study, mushrooms were collected

from high-altitude regions in Nepal, and therefore

considered to possess strong pharmacological poten-

tial as a result of UV exposure.

ROS production represents the main source of

damage in UVB-irradiated cells. Numerous bioactive

components protect HaCaT cells from UVB-induced

photo-damage through ROS clearance (Zheng et al.

2016; Oh et al. 2016; Yuan et al. 2017; Zhu et al. 2017;

Li et al. 2017). Furthermore, it has been reported that

SIRT1 expression is downregulated by UV irradiation

through ROS-mediated JNK activation (Cao et al.
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2009), and that SIRT1 overexpression prevents UVB-

induced fibroblast senescence by suppressing oxida-

tive stress via the deacetylation of FOXO3a and p53

(Chung et al. 2015). However, mushroom extract

number 28 (T. versicolor) with strong SIRT1-aug-

menting ability has been previously reported to

possess limited antioxidant activity (Hai Bang et al.

2014), suggesting that this mushroom extract inhibited

UVB-induced cellular senescence via a ROS-

independent pathway. Further studies aimed at eluci-

dating the underlying mechanisms are therefore

warranted.
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A C

B

Fig. 2 Effects of mushroom extract number 28 on UVB-

induced senescence in HaCaT cells. a Identification of

mushroom extracts that augment SIRT1 transcription in HaCaT

cells. HaCaT cells transduced with vector expressing EGFP

under the control of the SIRT1 promoter (2.0 9 104 cells) were

seeded on to 96-well lClear Fluorescence Black plate and

cultured for 24 h. Mushroom extracts (10 lg/mL) were added

and changes in EGFP fluorescence were monitored using an IN

Cell Analyzer 1000. b Effects of mushroom extracts on the

expression of endogenous SIRT1 in HaCaT cells. HaCaT cells

were treated with 10 lg/mL of mushroom extracts. Next day,

RNA was prepared and quantitative RT-PCR was conducted.

The results are expressed as mean ± SD. Statistical significance

was defined as *p\ 0.05, ***p\ 0.001. c Effects of mushroom

extract number 28 on UVB-induced senescence in HaCaT cells.

Cells were firstly treated with resveratrol and mushroom extract

number 28 (10 lg/mL) every 3 days, irradiated with 10 mJ/cm2

UVB in the presence of extract, and cultured for 3 days.

Senescence-related biomarkers, including SA-b-Gal activity,

cH2AX, p16, p21, and phospho-p38MAP kinase, were detected

using an IN Cell Analyzer 1000. Resveratrol (5 lM)was used as

a positive control. The relative number of cells with high activity

or expression of senescence biomarkers is shown in black in the

pie chart. Multiple comparisons against non-treated HaCaT (#)

or against UVB-treated HaCaT ($) were calculated by one-way

ANOVAwith Turkey’s post hoc test. Significant differences are

denoted by ###, $$$ p\ 0.001
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