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Abstract

Machine Learning has been a big success story during the AI resurgence. One particular stand out 

success relates to learning from a massive amount of data. In spite of early assertions of the 

unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge 

whenever it is available or can be created purposefully. In this paper, we discuss the indispensable 

role of knowledge for deeper understanding of content where (i) large amounts of training data are 

unavailable, (ii) the objects to be recognized are complex, (e.g., implicit entities and highly 

subjective content), and (iii) applications need to use complementary or related data in multiple 

modalities/media. What brings us to the cusp of rapid progress is our ability to (a) create relevant 

and reliable knowledge and (b) carefully exploit knowledge to enhance ML/NLP techniques. 

Using diverse examples, we seek to foretell unprecedented progress in our ability for deeper 

understanding and exploitation of multimodal data and continued incorporation of knowledge in 

learning techniques.
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1 INTRODUCTION

Recent success in the area of Machine Learning (ML) for Natural Language Processing 

(NLP) has been largely credited to the availability of enormous training datasets and 

computing power to train complex computational models [12]. Complex NLP tasks such as 

statistical machine translation and speech recognition have greatly benefited from the Web-

scale unlabeled data that is freely available for consumption by learning systems such as 

deep neural nets. However, many traditional research problems related to NLP, such as part-

of-speech tagging and named entity recognition (NER), require labeled or human-annotated 

data, but the creation of such datasets is expensive in terms of the human effort required. In 

spite of early assertion of the unreasonable effectiveness of data (i.e., data alone is 

sufficient), there is an increasing recognition for utilizing knowledge to solve complex AI 

problems. Even though knowledge base creation and curation is non-trivial, it can 

significantly improve result quality, reliability, and coverage. A number of AI experts, 

including Yoav Shoham [37], Oren Etzioni, and Pedro Domingos [8, 9], have talked about 

this in recent years. In fact, codification and exploitation of declarative knowledge can be 

both feasible and beneficial in situations where there is not enough data or adequate 

methodology to learn the nuances associated with the concepts and their relationships.

The value of domain/world knowledge in solving complex problems was recognized much 

earlier [43]. These efforts were centered around language understanding. Hence, the major 

focus was towards representing linguistic knowledge. The most popular artifacts of these 

efforts are FrameNet [29] and WordNet [22], which were developed by realizing the ideas of 

frame semantics [11] and lexical-semantic relations [6], respectively. Both these resources 

have been used extensively by the NLP research community to understand the semantics of 

natural language documents.

The building and utilization of the knowledge bases took a major leap with the advent of the 

Semantic Web in the early 2000s. For example, it was the key to the first patent on Semantic 

Web and a commercial semantic search/browsing and personalization engine over 15 years 

ago [33], where knowledge in multiple domains complemented ML techniques for 

information extraction (NER, semantic annotation) and building intelligent applications1. 

Major efforts in the Semantic Web community have produced large, cross-domain (e.g., 

DBpedia, Yago, Freebase, Google Knowledge Graph) and domain specific (e.g., Gene 

Ontology, MusicBrainz, UMLS) knowledge bases in recent years which have served as the 

foundation for the intelligent applications discussed next.

The value of these knowledge bases has been demonstrated for determining semantic 

similarity [20, 42], question answering [30], ontology alignment [14], and word sense 

disambiguation (WSD) [21], as well as major practical AI services, including Apple’s Siri, 

Google’s Semantic Search, and IBM’s Watson. For example, Siri relies on knowledge 

extracted from reputed online resources to answer queries on restaurant searches, movie 

suggestions, nearby events, etc. In fact, “question answering”, which is the core competency 

1http://j.mp/15yrsSS
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of Siri, was built by partnering with Semantic Web and Semantic Search service providers 

who extensively utilize knowledge bases in their applications2. The Jeopardy version of 

IBM Watson uses semistructured and structured knowledge bases such as DBpedia, Yago, 

and WordNet to strengthen the evidence and answer sources to fuel its DeepQA architecture 

[10]. A recent study [19] has shown that Google search results can be negatively affected 

when it does not have access to Wikipedia. Google Semantic Search is fueled by Google 

Knowledge Graph3, which is also used to enrich search results similar to what the Taalee/

Semagix semantic search engine did 15 years ago4 [33, 34].

While knowledge bases are used in an auxiliary manner in the above scenarios, we argue 

that they have a major role to play in understanding real-world data. Real-world data has a 

greater complexity that has yet to be fully appreciated and supported by automated systems. 

This complexity emerges from various dimensions. Human communication has added many 

constructs to language that help people better organize knowledge and communicate 

effectively and concisely. However, current information extraction solutions fall short in 

processing several implicit constructs and information that is readily accessible to humans. 

One source of such complexity is our ability to express ideas, facts, and opinions in an 

implicit manner. For example, the sentence “The patient showed accumulation of fluid in his 
extremities, but respirations were unlabored and there were no use of accessory muscles” 
refers to the clinical conditions of “shortness of breath” and “edema”, which would be 

understood by a clinician. However, the sentence does not contain names of these clinical 

conditions – rather it contains descriptions that imply the two conditions. Current literature 

on entity extraction has not paid much attention to implicit entities [28].

Another complexity in real-world scenarios and use cases is data heterogeneity due to their 

multimodal nature. There is an increasing availability of physical (including sensor/IoT), 

cyber, and social data that are related to events and experiences of human interest [31]. For 

example, in our personalized digital health application for managing asthma in children5, we 

use numeric data from sensors for measuring a patient’s physiology (e.g., exhaled nitric 

oxide) and immediate surroundings (e.g., volatile organic compounds, particulate matter, 

temperature, humidity), collect data from the Web for the local area (e.g., air quality, pollen, 

weather), and extract textual data from social media (i.e., tweets and web forum data 

relevant to asthma) [1]. Each of these modalities provides complementary information that is 

helpful in evaluating a hypothesis provided by a clinician and also helps in disease 

management. We can also relate anomalies in the sensor readings (such as spirometer) to 

asthma symptoms and potential treatments (such as taking rescue medication). Thus, 

understanding a patient’s health and well-being requires integrating and interpreting 

multimodal data and gleaning insights to provide reliable situational awareness and 

decisions. Knowledge bases play a critical role in establishing relationships between 

multiple data streams of diverse modalities, disease characteristics and treatments, and in 

transcending multiple abstraction levels [32]. For instance, we can relate the asthma severity 

2https://en.wikipedia.org/wiki/Siri
3http://bit.ly/22xUjZ6
4https://goo.gl/A54hno
5http://bit.ly/kAsthma
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level of a patient, measured exhaled nitric oxide, relevant environmental triggers, and 

prescribed asthma medications to one another to come up with personalized actionable 

insights and decisions.

Knowledge bases can come in handy when there is not enough hand-labaled data for 

supervised learning. For example, emoji sense disambiguation, which is the ability to 

identify the meaning of an emoji in the context of a message in a computational manner [40, 

41], is a problem that can be solved using supervised and knowledge-based approaches. 

However, there is no hand-labeled emoji sense dataset in existence that can be used to solve 

this problem using supervised learning algorithms. One reason for this could be that emoji 

have only recently become popular, despite having been first introduced in the late 1990s 

[40]. We have developed a comprehensive emoji sense knowledge base called EmojiNet [40, 

41] by automatically extracting emoji senses from open web resources and integrating them 

with BabelNet. Using EmojiNet as a sense inventory, we have demonstrated that the emoji 

sense disambiguation problem can be solved with carefully designed knowledge bases, 

obtaining promising results [41].

In this paper, we argue that careful exploitation of knowledge can greatly enhance the 

current ability of (big) data processing. At Kno.e.sis, we have dealt with several complex 

situations where:

1. Large quantities of hand-labeled data required for unsupervised (self-taught) 

techniques to work well is not available or the annotation effort is significant.

2. The text to be recognized is complex (i.e., beyond simple entity - person/

location/organization), requiring novel techniques for dealing with complex/

compound entities [27], implicit entities [25, 26], and subjectivity (emotions, 

intention) [13, 38].

3. Multimodal data – numeric, textual and image, qualitative and quantitative, 

certain and uncertain – are available naturally [1, 2, 4, 39].

Our recent efforts have centered around exploiting different kinds of knowledge bases and 

using semantic techniques to complement and enhance ML, statistical techniques, and NLP. 

Our ideas are inspired by the human brain’s ability to learn and generalize knowledge from a 

small amount of data (i.e., humans do not need to examine tens of thousands of cat faces to 

recognize the next “unseen” cat shown to them), analyze situations by simultaneously and 

synergistically exploiting multimodal data streams, and understand more complex and 

nuanced aspects of content, especially by knowing (through common-sense knowledge) 

semantics/identity preserving transformations.

2 CHALLENGES IN CREATING AND USING KNOWLEDGE BASES

Last decade saw an increasing use of background knowledge for solving diverse problems. 

While applications such as searching, browsing, and question answering can use large, 

publically available knowledge bases in their current form, others like movie 
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recommendation, biomedical knowledge discovery, and clinical data interpretation are 

challenged by the limitations discussed below.

Lack of organization of knowledge bases—Proper organization of knowledge bases 

has not kept pace with their rapid growth, both in terms of variety and size. Users find it 

increasingly difficult to find relevant knowledge bases or relevant portions of a large 

knowledge base for use in domain-specific applications (e.g., movie, clinical, biomedical). 

This highlights the need to identify and select relevant knowledge bases such as the linked 

open data cloud, and extract the relevant portion of the knowledge from broad coverage 

sources such as Wikipedia and DBpedia. We are working on automatically indexing the 

domains of the knowledge bases [17] and exploiting the semantics of the entities and their 

relationships to select relevant portions of a knowledge base [18].

Gaps in represented knowledge—The existing knowledge bases can be incomplete 

with respect to a task at hand. For example, applications such as computer assisted coding 

(CAC) and clinical document improvement (CDI) require comprehensive knowledge about a 

particular domain (e.g., cardiology, oncology)6. We observe that although the existing 

medical knowledge bases (e.g., Unified Medical Language System (UMLS)) are rich in 

taxonomical relationships, they lack non-taxonomical relationships among clinical entities. 

We have developed data-driven algorithms that use real-world clinical data (such as EMRs) 

to discover missing relationships between clinical entities in existing knowledge base, and 

then get these validated by a domain-expert-in-the-loop [24]. Yet another challenge is 

creating personalized knowledge bases for specific tasks. For example, in [35], personal 

knowledge graphs are created based on the content consumed by a user, taking into account 

the dynamically changing vocabulary, and this is applied to improve subsequent filtering of 

relevant content.

Inefficient metadata representation and reasoning techniques—The scope of 

what is captured in the knowledge bases is rapidly expanding, and involves capturing more 

subtle aspects such as subjectivity (intention, emotions, sentiments), spatial and temporal 

information, and provenance. Traditional triple-based representation languages developed by 

Semantic Web community (e.g., RDF, OWL) are unsuitable for capturing such metadata due 

to their limited expressivity. For example, representation of spatio-temporal context or 

uncertainty associated with a triple is ad hoc, inefficient, and lacks semantic integration for 

formal reasoning. These limitations and requirements are well-recognized by the Semantic 

Web community, with some recent promising research to address them. For example, the 

singleton-property based representation [23] adds ability to make statements about a triple 

(i.e., to express the context of a triple) and probabilistic soft logic [15] adds ability to 

associate the probability value with a triple and reason over them. It will be really exciting to 

see applications exploiting such enhanced hybrid knowledge representation models that 

perform ‘human-like’ reasoning on them.

6https://goo.gl/nXDY8x
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Next, we discuss several applications that utilize knowledge bases and multimodal data to 

circumvent or overcoming some of the aforementioned challenges due to insufficient 

manually-created knowledge.

Application 1: Emoji sense disambiguation

With the rise of social media, “emoji” have become extremely popular in online 

communication. People are using emoji as a new language on social media to add color and 

whimsiness to their messages. Without rigid semantics attached to them, emoji symbols take 

on different meanings based on the context of a message. This has resulted in ambiguity in 

emoji use (see Figure 1). Only recently have there been efforts to mimic NLP techniques 

used for machine translation, word sense disambiguation and search into the realm of emoji 

[41]. The ability to automatically process, derive meaning, and interpret text fused with 

emoji will be essential as society embraces emoji as a standard form of online 

communication. Having access to knowledge bases that are specifically designed to capture 

emoji meaning can play a vital role in representing, contextually disambiguating, and 

converting pictorial forms of emoji into text, thereby leveraging and generalizing NLP 

techniques for processing richer medium of communication.

As a step towards building machines that can understand emoji, we have developed 

EmojiNet [40, 41], the first machine readable sense inventory for emoji. It links Unicode 

emoji representations to their English meanings extracted from the Web, enabling systems to 

link emoji with their context-specific meanings. EmojiNet is constructed by integrating 

multiple emoji resources with Babel-Net, which is the most comprehensive multilingual 

sense inventory available to-date. For example, for the emoji ‘face with tears of joy’ , 

EmojiNet lists 14 different senses, ranging from happy to sad. An application designed to 

disambiguate emoji senses can use the senses provided by EmojiNet to automatically learn 

message contexts where a particular emoji sense could appear. Emoji sense disambiguation 

could improve the research on sentiment and emotion analysis. For example, consider the 

emoji , which can take the meanings happy and sad based on the context in which it has 

been used. Current sentiment analysis applications do not differentiate among these two 

meanings when they process . However, finding the meanings of ; by emoji sense 

disambiguation techniques [41] can improve sentiment prediction. Emoji similarity 

calculation is another task that could be benefited by knowledge bases and multi-modal data 

analysis. Similar to computing similarity between words, we can calculate the similarity 

between emoji characters. We have demonstrated how EmojiNet can be utilized to solve the 

problem of emoji similarity [42]. Specifically, we have shown that emoji similarity measures 

based on the rich emoji meanings available in EmojiNet can outperform conventional emoji 

similarity measures based on distributional semantic models and also helps to improve 

applications such as sentiment analysis [42].

Application 2: Implicit entity linking

As discussed, one of the complexities in data is the ability to express facts, ideas, and 

opinions in an implicit manner. As humans, we seamlessly express and infer implicit 

information in our daily conversations. Consider the two tweets “Aren’t we gonna talk about 
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how ridiculous the new space movie with Sandra Bullock is?” and “I’m striving to be +ve in 
what I say, so I’ll refrain from making a comment abt the latest Michael Bay movie”. The 

first tweet contains an implicit mention of movie ‘Gravity’ and the second tweet contains an 

element of sarcasm and negative sentiment towards the movie ‘Transformers: Age of 

Extinction’. Both the sentiment and the movie are implicit in the tweet. While it is possible 

to express facts, ideas, and opinions in an implicit manner, for brevity, we will focus on how 

knowledge aids in automatic identification of implicitly mentioned entities in text.

We define implicit entities as “entities mentioned in text where neither its name nor its 

synonym/alias/abbreviation or co-reference is explicitly mentioned in the same text”. 

Implicit entities are a common occurrence. For example, our studies found that 21% of 

movie mentions and 40% of book mentions are implicit in tweets, and about 35% and 40% 

of ‘edema’ and ‘shortness of breath’ mentions are implicit in clinical narratives. There are 

genuine reasons why people tend to use implicit mentions in daily conversations. Here are 

few reasons that we have observed:

1. To express sentiment and sarcasm : See above examples.

2. To provide descriptive information : For example, it is a common practice to 

describe the features of an entity rather than simply list down its name in clinical 

narratives. Consider the sentence ‘small fluid adjacent to the gallbladder with 

gallstones which may represent inflammation.’ This sentence contains implicit 

mention of the condition cholecystitis (‘inflammation in gallbladder’ is 

recognized as cholecystitis) with its possible cause. The extra information (i.e., 

possible cause) in description can be critical in understanding the patient’s health 

status and treating the patient. While it is feasible to provide these extra 

information with the corresponding explicit entity names, it is observed that 

clinical professionals prefer this style.

3. To emphasize the features of an entity : Sometimes we replace the name of the 

entity with its special characteristics in order to give importance to those 

characteristics. For example, the text snippet “Mason Evans 12 year long shoot 

won big in golden globe” has an implicit mention of the movie ‘Boyhood.’ There 

is a difference between this text snippet and its alternative form “Boyhood won 

big in golden globe.” The speaker is interested in emphasizing the distinct 

feature of the movie, which would have been ignored if he had used the name of 

the movie as in the second phrase.

4. To communicate shared understanding : We do not bother spelling out everything 

when we know that the other person has enough background knowledge to 

understand the message conveyed. A good example is the fact that clinical 

narratives rarely mention the relationships between entities explicitly (e.g., 

relationships between symptoms and disorders, relationships between 

medications and disorders), rather it is understood that the other professionals 

reading the document have the expertise to understand such implicit relationships 

in the document.
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Whenever we communicate, we assume common understanding or shared-knowledge with 

the audience. A reader who does not know that Sandra Bullock starred in the movie 

‘Gravity’ and that it is a space exploration movie would not be able to decode the reference 

to the movie ‘Gravity’ in the first example; a reader who does not know about Michael 

Bay’s movie release would have no clue about the movie mentioned in the second tweet; a 

reader who does not know the characteristics of the clinical condition ‘cholecystitis’ would 

not be able to decode its mention in the clinical text snippet shown above; a reader who is 

not a medical expert would not be able to connect the diseases and symptoms mentioned in a 

clinical narrative. These examples demonstrate the indispensable value of domain 
knowledge in text understanding. Unfortunately, state-of-the-art named entity recognition 

applications do not capture implicit entities [28]. Also, we have not seen big data-centric or 

other approaches that can glean implicit entities without the use of background knowledge 

(that is already available (e.g., in UMLS) or can be created (e.g., from tweets and 

Wikipedia)).

The task of recognizing implicit entities in text demands comprehensive and up-to-date 

world knowledge. Individuals resort to a diverse set of entity characteristics to make implicit 

references. For example, references to the movie ‘Boyhood’ can use phrases like “Richard 
Linklater movie”, “Ellar Coltrane on his 12-year movie role”, “12-year long movie shoot”, 

“latest movie shot in my city Houston”, and “Mason Evan’s childhood movie”. Hence, it is 

important to have comprehensive knowledge about the entities to decode their implicit 

mentions. Another complexity is the temporal relevancy of the knowledge. The same phrase 

can be used to refer to different entities at different points in time. For instance, the phrase 

“space movie” referred to the movie ‘Gravity’ in Fall 2013, while the same phrase in Fall 

2015 referred to the movie ‘The Martian’. On the flip side, the most salient characteristics of 

a movie may change over time and so will the phrases used to refer to it. In November 2014 

the movie ‘Furious 7’ was frequently referred to with the phrase “Paul Walker’s last movie”. 

This was due to the actor’s death around that time. However, after the movie release in April 

2015, the same movie was often mentioned through the phrase “fastest film to reach the $1 
billion”.

We have developed knowledge-driven solutions that decode the implicit entity mentions in 

clinical narratives [25] and tweets [26]. We exploit the publicly available knowledge bases 

(only the portions that matches with the domain of interest) in order to access the required 

domain knowledge to decode implicitly mentioned entities. Our solution models individual 

entities of interest by collecting knowledge about the entities from these publicly available 

knowledge bases, which consist of definitions of the entities, other associated concepts, and 

the temporal relevance of the associated concepts. Figure 2 shows a snippet from generated 

entity model. It shows the models generated for movies ‘Gravity’, ‘Interstellar’, and ‘The 

Martian’. The colored (shaded) nodes (circles) represent factual knowledge related to these 

movies extracted from DBpedia knowledge base and the uncolored nodes represent the 

contextual knowledge (time-sensitive knowledge) related to entities extracted from daily 

communications in Twitter. The implicit entity linking algorithms are designed to carefully 

use the knowledge encoded in these models to identify implicit entities in the text.
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Application 3: Understanding and analyzing drug abuse related discussions on web 
forums

The use of knowledge bases to improve keyword-based search has received much attention 

from commercial search engines lately. However, the use of knowledge bases alone cannot 

solve complex, domain-specific information needs. For example, answering a complex 

search query such as “How are drug users overdosing on semi synthetic opioid 

Buprenorphine?” may require a search engine to be aware of several facts, including that 

Buprenorphine is a drug, that users refer to Buprenorphine with synonyms such as ‘bupe’, 

‘bupey’, ‘suboxone’, and ‘subbies’, and the prescribed daily dosage range for 

Buprenorphine. The search engine should also have access to ontological knowledge as well 

as other “intelligible constructs” that are not typically modeled in ontologies, such as 

equivalent references to the frequency of drug use, the interval of use, and the typical 

dosage, to answer such complex search needs. At Kno.e.sis, we have developed an 

information retrieval system that integrates ontology-driven query interpretation with 

synonym-based query expansion and domain-specific rules to facilitate analysis of online 

web forums for drug abuse-related information extraction. Our system is based on a context-

free grammar (CFG) that defines the interpretation of the query language constructs used to 

search for the drug abuse-related information needs and a domain-specific knowledge base 

that can be used to understand information in drug-related web forum posts. Our tool utilizes 

lexical, lexico-ontological, ontological, and rule-based knowledge to understand the 

information needs behind complex search queries and uses that information to expand the 

queries for significantly higher recall and precision (see Figure 3) [5]. This research [7] 

resulted in an unexpected finding of abuse of over the counter drug, which led to a FDA 

warning7.

Application 4: Understanding city traffic using sensor and textual observations

With increased urbanization, understanding and controlling city traffic flow has become an 

important problem. Currently, there are over 1 billion cars on the road network, and there 

has been a 236% increase in vehicular traffic from 1981 to 2001 [2]. Given that road traffic 

is predicted to double by 2020, achieving zero traffic fatalities and reducing traffic delays are 

becoming pressing challenges, requiring deeper understanding of traffic events, and their 

consequences and interaction with traffic flow. Sensors deployed on road networks 

continuously relay important information about travel speed through certain road networks 

while citizen sensors (i.e., humans) share real-time information about traffic/road conditions 

on public social media streams such as Twitter. As humans, we know how to integrate 

information from these multimodal data sources: qualitative traffic event information to 

account for quantitative measured traffic flow (e.g., an accident reported in tweets can 

explain a slow-moving traffic nearby). However, current research on understanding city 

traffic dynamics either focuses only on sensory data or only on social media data but not 

both. Further, we use historical data to understand traffic patterns and exploit the 

complementary and corroborative nature of these multimodal data sources to provide 

comprehensive information about traffic.

7http://bit.ly/k-FDA
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One research direction is to create and materialize statistical domain knowledge about traffic 

into a machine-readable format. In other words, we want to define and establish associations 

between different variables (concepts) in the traffic domain (e.g., association between ‘bad 

weather’ and a ‘traffic jam’). However, mining such correlations from data alone is neither 

complete nor reliable. We have developed statistical techniques based on probabilistic 

graphical models (PGMs) [16] to learn the structure (variable dependencies), leverage 

declarative domain knowledge to enrich and/or correct the gleaned structure due to 

limitations of a data-driven approach, and finally learn parameters for the updated structural 

model. Specifically, we use the sensor data collected by 511.org to develop an initial PGM 

that explains the conditional dependencies between variables in the traffic domain. Then we 

use declarative knowledge in ConceptNet to add/modify variables (nodes) and the type and 

the nature of conditional dependencies (directed edges) before learning parameters, thereby 

obtaining the complete PGM. Figure 4(a)(i) shows a snippet of ConceptNet and Figure 4(a)

(ii) demonstrates the enrichment step of the developed model using the domain knowledge 

in ConceptNet [3].

Another research direction is to characterize a normal traffic pattern derived from sensor 

observations and then detect and explain any anomalies using social media data. We used a 

Restricted Switching Linear Dynamical System (RSLDS) to model normal speed and travel 

time dynamics and detect anomalies. Using speed and travel time data from each link, plus 

our common sense knowledge about the nature of expected traffic variations, we learn the 

parameters of the RSLDS model for each link. We then use a box-plot of the log likelihood 

scores of the various average speed traces with respect to the RSLDS model to learn and 

characterize anomalies for each link in the San Francisco Bay Area traffic data [2]. Later, 

given a new traffic speed trace over a link, we can obtain its log likelihood score with respect 

to the RSLDS model for the particular day of the week and the hour of the day, to determine 

whether it is normal or anomalous. This anomalous traffic speed information is further 

correlated with traffic events extracted from Twitter data (using crawlers seeded with OSM, 

511.org and Scribe vocabularies) using their spatio-temporal context to explain the 

anomalies. Figure 4(b) demonstrates this process. This example again demonstrates the 
vital role of multi-modal data for better interpretation of traffic dynamics, synthesizing 
probabilistic/statistical knowledge, and the application of both statistical models such 
as RSLDS and complementary semantic analysis of Twitter data. Further exploration of 

different approaches to represent and exploit semantics appear in [36]. Table 1 summarizes 

the role of knowledge bases in the four applications discussed above.

3 LOOKING FORWARD

We discussed the importance of domain/world knowledge in understanding complex data in 

the real world, particularly when large amounts of training data are not readily available or it 

is expensive to generate. We demonstrated several applications where knowledge plays an 

indispensable role in understanding complex language constructs and multimodal data. 

Specifically, we have demonstrated how knowledge can be created to incorporate a new 

medium of communication (such as emoji), curated knowledge can be adapted to process 

implicit references (such as in implicit entity and relation linking), statistical knowledge can 
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be synthesized in terms of normalcy and anomaly and integrated with textual information 

(such as in traffic context), and linguistic knowledge can be used for more expressive 

querying of informal text with improved recall (such as in drug related posts). We are also 

seeing early efforts in making knowledge bases dynamic and evolve to account for the 

changes in the real world8.

Knowledge seems to play a central role in human learning and intelligence, such as in 

learning from a small amount of data, and in cognition – especially perception. Our ability to 

create or deploy just the right knowledge in our computing processes will improve machine 

intelligence, perhaps in a similar way as knowledge has played a central role in human 

intelligence. As a corollary to this, two specific advances we expect are: a deeper and 

nuanced understanding of content (including but not limited to text) and our ability to 

process and learn from multimodal data at a semantic level (given that concepts manifest 

very differently at the data level in different media or modalities). The human brain is 

extremely adept at processing multimodal data – our senses are capable of receiving 11 

million bits per second, and our brain is able to distill that into abstractions that need only a 

few tens of bits to represent (for further explorations, see [32]). Knowledge plays a central 

role in this abstraction and reasoning process known as the perception cycle.

Knowledge-driven processing can be viewed from three increasingly sophisticated 

computational approaches: (1) Semantic Computing, (2) Cognitive Computing, and (3) 

Perceptual Computing. Semantic Computing refers to computing the type of a data value, 

and relating it to other domain concepts. In the healthcare context, this can involve relating 

symptoms to diseases and treatments. Ontologies, and Semantic Web technologies provide 

the foundation for semantic computing. Cognitive computing refers to representation and 

reasoning with data using background knowledge reflecting how humans interpret and 

process data. In the healthcare context, this requires capturing the experience and domain 

expertise of doctors through knowledge bases and heuristic rules for abstracting multimodal 

data into medically relevant abstractions, insights, and actions, taking into account triggers, 

personal data, patient health history, demographics data, health objectives, and medical 

domain knowledge. For instance, “normal” blood pressure varies with factors such as age, 

gender, emotional state, activity, and illness; similarly, the “target” blood pressure, HBA1C, 

and cholesterol values a patient is advised to maintain depend on whether the patient is 

diabetic or not. In the traffic context, this can be used to interpret and label a time-series of 

traffic sensor data using a traffic event ontology. Perceptual computing, which builds on 

background knowledge created for semantic and cognitive computing, uses deductive 

reasoning to predict effects and treatments from causes, and abductive reasoning to explain 

the effects using causes, resolving any data incompleteness or ambiguity by seeking 

additional data. The knowledge itself can be a hybrid of deterministic and probabilistic rules, 

modeling both normalcy and anomalies, transcending abstraction levels. This directly 

contributes to making decisions and taking actions.

8http://bit.ly/2cVGbov
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We expect more progress in hybrid knowledge representation and reasoning techniques to 

better fit domain characteristics and applications. Even though deep learning techniques 

have made incredible progress in machine learning and prediction tasks, they are still 

uninterpretable and prone to devious attacks. There are anecdotal examples of 

misinterpretations of audio and video data through adversarial attacks that can result in 

egregious errors with serious negative consequences. In such scenarios, we expect hybrid 

knowledge bases to provide a complementary foundation for reliable reasoning. In the 

medical domain, the use of interleaved abductive and deductive reasoning (a.k.a., perception 

cycle) can provide actionable insights ranging from determining confirmatory laboratory 

tests and disease diagnosis to treatment decisions. Declarative medical knowledge bases can 

be used to verify the consistency of an EMR and data-driven techniques can be applied to a 

collection of EMRs to determine and fix potential gaps in the knowledge bases. Thus, there 

is a symbiotic relationship between the application of knowledge and data to improve the 

reliability of each other. The traffic scenario shows how to hybridize complementary 

statistical knowledge and declarative knowledge to obtain an enriched representation (See 

also [36]). It also shows how multimodal data streams can be integrated to provide more 

comprehensive situational awareness.

Machine intelligence has been the holy grail of a lot of AI research lately. The statistical 

pattern matching approach and learning from big data, typically of a single modality, has 

seen tremendous success. For those of us who have pursued brain-inspired computing 

approaches, we think the time has come for rapid progress using a model-building approach. 

The ability to build broad models (both in terms of coverage as well as variety – not only 

with entities and relationships but also representing emotions, intentions and subjectivity 

features, such as, linguistic, cultural, and other aspects of human interest and functions) will 

be critical. Further, domain-specific, purpose-specific, personalized declarative knowledge 

combined with richer representation – especially probabilistic graph models – will see rapid 

progress. These will complement neural network approaches. We may also see knowledge 

playing a significant role in enhancing deep learning. Rather than the dominance of data-

centric approaches, we will see an interleaving and interplay of the data and knowledge 

tracks, each with its own strengths and weaknesses, and their combinations performing 

better than the parts in isolation.
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Figure 1. 
Emoji usage in social media with multiple senses.
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Figure 2. 
Entity model extracted for three movies.
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Figure 3. 
(a) Use of background knowledge to enhance information extraction of diverse types of 

information. (b) Example use of diverse knowledge and information extraction for deeper 

and more comprehensive understanding of text in health and drug abuse domain. See [5] for 

more information.
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Figure 4. 
(a)(i) Domain knowledge of traffic in the form of concepts and relationships (mostly causal) 

from the ConceptNet (a)(ii) Probabilistic graphical model (PGM) that explains the 

conditional dependencies between variables in traffic domain (only a portion is shown in the 

picture) is enriched by adding the missing random variables, links, and link directions 

extracted from ConceptNet. Figure 4(b) shows how this enriched PGM is used to correlate 

contextually related data of different modalities [3].
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Figure 5. 
Interplay between Semantic, Cognitive, and Perceptual Computing (SC, CC and PC) with 

Examples.
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Table 1

Summary of knowledge-based approaches and the resulting improvements for each problem domain.

Problem Domain Use of Knowledge/Knowledge bases Nature of Improvement

Emoji Similarity and Sense 
Disambiguation

Generation and application of EmojiNet Leveraging linguistic knowledge for 
emoji interpretation

Implicit Entity Linking Adapted UMLS definitions for identifying medical 
entities, and Wikipedia and Twitter data for identifying 
Twitter entities

Recall and coverage

Understanding Drug Abuse-related 
Discussions

Application of Drug Abuse Ontology along with slang 
term dictionaries and grammar

Recall and coverage

Traffic Data Analysis Statistical knowledge extraction and using ontologies for 
Twitter event extraction

Anomaly detection and explanation; 
Multi-modal data stream correlation

Proc IEEE WIC ACM Int Conf Web Intell Intell Agent Technol. Author manuscript; available in PMC 2018 June 28.


	Abstract
	1 INTRODUCTION
	2 CHALLENGES IN CREATING AND USING KNOWLEDGE BASES
	Lack of organization of knowledge bases—Proper organization of knowledge bases has not kept pace with their rapid growth, both in terms of variety and size. Users find it increasingly difficult to find relevant knowledge bases or relevant portions of a large knowledge base for use in domain-specific applications (e.g., movie, clinical, biomedical). This highlights the need to identify and select relevant knowledge bases such as the linked open data cloud, and extract the relevant portion of the knowledge from broad coverage sources such as Wikipedia and DBpedia. We are working on automatically indexing the domains of the knowledge bases [17] and exploiting the semantics of the entities and their relationships to select relevant portions of a knowledge base [18].Gaps in represented knowledge—The existing knowledge bases can be incomplete with respect to a task at hand. For example, applications such as computer assisted coding (CAC) and clinical document improvement (CDI) require comprehensive knowledge about a particular domain (e.g., cardiology, oncology)66https://goo.gl/nXDY8x. We observe that although the existing medical knowledge bases (e.g., Unified Medical Language System (UMLS)) are rich in taxonomical relationships, they lack non-taxonomical relationships among clinical entities. We have developed data-driven algorithms that use real-world clinical data (such as EMRs) to discover missing relationships between clinical entities in existing knowledge base, and then get these validated by a domain-expert-in-the-loop [24]. Yet another challenge is creating personalized knowledge bases for specific tasks. For example, in [35], personal knowledge graphs are created based on the content consumed by a user, taking into account the dynamically changing vocabulary, and this is applied to improve subsequent filtering of relevant content.Inefficient metadata representation and reasoning techniques—The scope of what is captured in the knowledge bases is rapidly expanding, and involves capturing more subtle aspects such as subjectivity (intention, emotions, sentiments), spatial and temporal information, and provenance. Traditional triple-based representation languages developed by Semantic Web community (e.g., RDF, OWL) are unsuitable for capturing such metadata due to their limited expressivity. For example, representation of spatio-temporal context or uncertainty associated with a triple is ad hoc, inefficient, and lacks semantic integration for formal reasoning. These limitations and requirements are well-recognized by the Semantic Web community, with some recent promising research to address them. For example, the singleton-property based representation [23] adds ability to make statements about a triple (i.e., to express the context of a triple) and probabilistic soft logic [15] adds ability to associate the probability value with a triple and reason over them. It will be really exciting to see applications exploiting such enhanced hybrid knowledge representation models that perform ‘human-like’ reasoning on them.Next, we discuss several applications that utilize knowledge bases and multimodal data to circumvent or overcoming some of the aforementioned challenges due to insufficient manually-created knowledge.
	Lack of organization of knowledge bases
	Gaps in represented knowledge
	Inefficient metadata representation and reasoning techniques

	Application 1: Emoji sense disambiguation
	Application 2: Implicit entity linking
	Application 3: Understanding and analyzing drug abuse related discussions on web forums
	Application 4: Understanding city traffic using sensor and textual observations

	3 LOOKING FORWARD
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1

