Skip to main content
. 2018 Oct 15;639:657–672. doi: 10.1016/j.scitotenv.2018.05.062

Table 1.

Input material and energy flow data for the LCA study per functional unit.a

Process NMT PFT UDDT
Raw material extraction

Faeces (kg) 2.00E+001 2.00E+001 2.00E+001
 N (kg) 1.10E-022 1.10E-022 1.10E-022
 P (kg) 5.48E-032 5.48E-032 5.48E-032
 K (kg) 1.10E-022 1.10E-022 1.10E-022
Urine (kg) 1.42E+013 1.42E+013 1.42E+013
 N (kg) 8.22E-022 8.22E-022 8.22E-022
 P (kg) 8.22E-032 8.22E-032 8.22E-032
 K (kg) 3.29E-022 3.29E-022 3.29E-022
Polystyrene - toilet seat (kg) 9.39E-044 3.65E-044 3.65E-044
Polystyrene - cistern (kg) 1.64E-034 - -
Glass fibre - membrane (kg) 1.45E-055 - -
Alloy steel - combustor (kg) 3.32E-045 - -
Alloy steel – screw (kg) 4.20E-045 -




Manufacture

Injection moulding (kg) 3.33E-03 3.65E-04 3.65E-04
Sanitary ceramics - toilet bowl (kg) 8.45E-034 3.29E-034 3.29E-034
Transportation (t-km) 1.11E-02 3.43E-03 3.43E-03



Operation & Maintenance
Glass fibre (kg) 6.17E-04 - -
Water (kg) - 1.50E+02 -
Ash (kg) 8.00E-021 - -
 P (kg) 1.10E-026 - -
 K (kg) 1.21E-026 - -
NOx-emissions (kg) 1.10E-021




Waste Management

Transportation (t-km) - 3.82E+00 5.00E-02
Electricity (kWh) 6.80E-027 6.60E-0310
Diesel (kg) - - 1.11E-0210
Lime (kg) - 2.00E-038 -
Polymer (kg) - 2.14E-058 -
Iron chloride (FeCl3) (kg) - 1.42E-058 -
NH3-emissions (kg) - - 1.42E-0311
CH4-emissions(kg) - - 8.00E-0312
N2O-emissions (kg) - 7.32E-049 4.80E-0413




Product

Transportation 2.72E-03 3.60E-0414 4.80E-0115
N-Fertilizer (kg) - 1.85E-0217, 18 7.88E-0216, 19
P-Fertilizer (kg) 1.04E-0216 8.63E-0317, 18 1.33E-0216, 20
K-Fertilizer (kg) 1.21E-0216 - 4.30E-0216, 20
Electricity (kWh) 4.62E-021 - -
Treated wastewater (kg) 9.56E+001 1.50E+02 -
2

(Rose et al., 2015) for a densityUrine=1.002 g/cm3.

5

Estimations from NMT-Project.

6

P and K content estimated as a percentage of 13.7% and 15.1% of total ash, respectively (Onabanjo et al., 2017).

7

Energy consumption of 590.69 kwh/Ml for an activated sludge treatment plant (Scheepers and van Der Merwe-Botha, 2012).

8

Data adopted from a WWTP with capacity of 50,000–100,000 IE treating nitrogen and/or phosphorus for a total influent volume of 1.15E-01 m3 [massfaecal sludge = 166.21 kg; densityfaecal sludge = 1443.1 kg/m3(Niwagaba et al., 2014)] (Lassaux et al., 2007).

9

Eq. 6.8 (Doorn et al., 2006).

11

Estimated as 13% of the total input N content (Hao and Benke, 2008).

12

Estimated based on the Eq. (4.1), for an EF = 4 g CH4/kg waste treated [composting; on wet weight basis; Mi = amount of faeces expressed in Gg and R = 0 (without gas recovery)] (Pipatti et al., 2006).

13

Estimated based on the eq. (4.2), for an EF = 0.24 g N2O/kg waste treated [composting on wet weight basis and Mi = amount of faeces expressed in Gg] (Pipatti et al., 2006).

14

Estimated for a sewage sludge of 2.76E-02 kg [sewage sludge production rate of 0.24 kg·m3 of treated wastewater](Gurjar and Tyagi, 2017).

15

Estimated for a compost weight of 50% of the faecal matter (Miller and Jones, 1995).

16

N, P and K fertilizers for ash and compost application estimated as a percentage of 45%, 95% and 100% of the applied nutrient content, respectively [average value of mid-term period values] (Lazcano et al., 2014).

17

N and P content in sewage sludge estimated as a percentage of 40% and 90% of the influent nutrient content (From wastewater to eco-friendly fertilizer, 2016).

18

N and P fertilizers estimated as a percentage of 50% and 70% of the respective applied nutrient content (Hospido et al., 2008).

19

N fertilizer from urine application estimated as 90% of the urine N content (Karak and Bhattacharyya, 2011).

20

P and K fertilizers from urine application estimated as 100% of the respective urine nutrient content (Kirchmann and Pettersson, 1995).