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ABSTRACT Murepavadin (formerly POL7080), a 14-amino-acid cyclic peptide, and com-
parators were tested by the broth microdilution method against 1,219 Pseudomonas
aeruginosa isolates from 112 medical centers. Murepavadin (MIC50/90, 0.12/0.12 mg/liter)
was 4- to 8-fold more active than colistin (MIC50/90, 1/1 mg/liter) and polymyxin B
(MIC50/90, 0.5/1 mg/liter) and inhibited 99.1% of isolates at �0.5 mg/liter. Only 4 isolates
(0.3%) exhibited murepavadin MICs of �2 mg/liter. Murepavadin was equally active
against isolates from Europe, the United States, and China.
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Murepavadin (formerly POL7080) is a 14-amino-acid cyclic peptide for intravenous
administration that represents the first member of a novel class of outer-

membrane-protein-targeting antibiotics (OMPTAs) being developed for the treatment
of serious infections caused by Pseudomonas aeruginosa (1–3). Murepavadin targets the
lipopolysaccharide transport protein D (LptD). Through binding to LptD in the outer
membrane of the bacterium, murepavadin causes lipopolysaccharide alterations and
ultimately kills the bacterium (4–6). Murepavadin is under development for hospital-
acquired pneumonia and ventilator-associated pneumonia caused by P. aeruginosa
(https://clinicaltrials.gov/ct2/results?term�POL7080).

P. aeruginosa is the second leading cause of hospital-acquired pneumonia and
ventilator-associated pneumonia and one of the major causes of health care-associated
bloodstream infections, urinary tract infections, and skin and skin structure infections
(7–9). This organism is intrinsically resistant to a wide range of antimicrobials and has
an extraordinary capacity for developing resistance to commonly used antimicrobials
through the selection of mutations in chromosomal genes or by horizontal acquisition
of resistant determinants (10, 11). In the United States, approximately 15% of health
care-associated P. aeruginosa infections are caused by multidrug-resistant (MDR) or-
ganisms (9, 12); whereas in Europe, the MDR phenotype is reported in �10% of clinical
P. aeruginosa isolates in many countries, including Portugal (11.8%), France (12.0%),
Spain (14.2%), Italy (20.0%), Greece (28.4%), and various eastern European countries
(13).

The increasing prevalence of MDR strains is a cause for concern because it com-
promises the selection of appropriate empirical and definitive antimicrobial treatments
(14). In the present study, we evaluated the activity of murepavadin and many
comparator agents against a large collection of clinical isolates of P. aeruginosa from
the United States, Europe, and China.

Organisms tested originated from the SENTRY Antimicrobial Surveillance Program.
Bacterial isolates were consecutively collected from medical centers according to the
site of infection. Only 1 isolate per patient episode was included in the study. Isolate
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identity was confirmed at the species level by the monitoring reference laboratory (JMI
Laboratories, North Liberty, IA, USA). The isolates were collected from 62 medical
centers in the United States (n � 417), 40 medical centers in 22 European nations (n �

491), and 10 medical centers in China (n � 311). Sites of infection from which isolates
were obtained included pneumonia in hospitalized patients (48%), skin and skin
structure infections (29%), bloodstream infections (10%), urinary tract infections (6%),
and others (7%). The isolates from the United States and Europe were collected in 2014,
and the isolates from China were collected in 2012 and 2013.

Isolates were categorized as MDR or extremely drug resistant (XDR) according to
criteria published by Magiorakos et al. (15), who define MDR as nonsusceptible to �1
agent in �3 antimicrobial classes, XDR as nonsusceptible to �1 agent in all but �2
antimicrobial classes, and pan-drug-resistant as nonsusceptible (CLSI criteria) to all
antimicrobial classes tested. The antimicrobial classes and drug representatives used in
the analysis were antipseudomonal cephalosporins (ceftazidime and cefepime), car-
bapenems (imipenem, meropenem, and doripenem), broad-spectrum penicillins com-
bined with a �-lactamase inhibitor (piperacillin-tazobactam), fluoroquinolones (cipro-
floxacin and levofloxacin), aminoglycosides (gentamicin, tobramycin, and amikacin),
and the polymyxins (colistin and polymyxin B).

Isolates were tested against murepavadin and comparator agents by the reference
broth microdilution method (16) using cation-adjusted Mueller-Hinton broth. CLSI (17)
and EUCAST (18) interpretive criteria were used to determine susceptibility/resistance
rates for comparator agents. Quality control was tested daily, and inoculum density was
monitored by colony counts. The quality control strains were P. aeruginosa ATCC 27853
and PA3140.

Among all isolates, murepavadin (MIC50/90, 0.12/0.12 mg/liter) was the most active
agent and inhibited 99.1% of isolates at �0.5 mg/liter (Table 1). Only 4 isolates
exhibited murepavadin MIC values of �2 mg/liter, including 3 isolates from the United
States with MIC values of �32 mg/liter (Gilbert, AZ), 16 mg/liter (Los Angeles, CA), and
8 mg/liter (Jacksonville Beach, FL) and 1 isolate with an MIC value of 8 mg/liter from
Milan, Italy. Importantly, murepavadin retained potent in vitro activity against MDR
(MIC50/90, 0.12/0.25 mg/liter) and XDR (MIC50/90, 0.12/0.0.25 mg/liter) isolates (Table 1).

Among the comparators, the polymyxins colistin (MIC50/90, 1/1 mg/liter) and poly-
myxin B (MIC50/90, 0.5/1 mg/liter) were roughly 4- to 8-fold less active than murepa-
vadin. Polymyxin B (100.0% susceptible) was slightly more active than colistin (98.9%
susceptible) (Tables 1 and 2).

Among other comparators, amikacin (MIC50/90, 4/16 mg/liter; 90.6/87.4% susceptible
by CLSI/EUCAST criteria) was the most active agent, followed by tobramycin (MIC50/90,
0.5/�16 mg/liter; 87.9% susceptible by both criteria), cefepime (MIC50/90, 2/16 mg/liter;
79.8% susceptible by both criteria), ceftazidime (MIC50/90, 2/�32 mg/liter; 79.1% sus-
ceptible by both criteria), ciprofloxacin (MIC50/90, 0.12/�8 mg/liter; 77.4/73.0% suscep-
tible by CLSI/EUCAST criteria), meropenem (MIC50/90, 0.5/16 mg/liter; 74.7% susceptible
by both criteria), and piperacillin-tazobactam (MIC50/90, 4/128 mg/liter; 73.9% suscep-
tible by both criteria) (Table 2).

MDR and XDR isolates exhibited high resistance rates to all comparator agents
except the polymyxins (colistin and polymyxin B). Amikacin and tobramycin were active
(CLSI criteria) against 66.0% and 56.0% of MDR P. aeruginosa isolates, respectively, and
against only 48.5% and 35.3% of XDR P. aeruginosa isolates, respectively; whereas
cefepime was active against 32.3% of MDR and 12.6% of XDR isolates (Table 2).

Murepavadin was equally active against isolates from the United States, Europe, and
China (MIC50/90, 0.12/0.12 mg/liter for all 3 geographic regions). Isolates from China
exhibited slightly higher MIC values for colistin (MIC50/90, 1/2 mg/liter) and polymyxin
B (MIC50/90, 1/1 mg/liter) than the United States and Europe (MIC50/90 of 1/1 mg/liter for
colistin and 0.5/1 mg/liter for polymyxin B, respectively) (Table 2). Additionally, sus-
ceptibility rates for the aminoglycosides, �-lactams, and ciprofloxacin were slightly
higher among isolates from the United States than among those from Europe and
China (Table 2).
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TABLE 2 Activity of murepavadin and comparator antimicrobial agents tested against P.
aeruginosa

Antimicrobial agent (no. of isolates) MIC50

CLSIa EUCASTa

MIC90 %S %R %S %R

All (1,219)
Murepavadin 0.12 0.12
Colistin 1 1 98.9 1.1 98.9 1.1
Polymyxin B 0.5 1 100.0 0.0
Amikacin 4 16 90.6 6.1 87.4 9.4
Aztreonam 8 32 69.1 15.2 4.2 15.2
Cefepime 2 16 79.8 8.8 79.8 20.2
Ceftazidime 2 �32 79.1 16.9 79.1 20.9
Ciprofloxacin 0.12 �8 77.4 18.1 73.0 27.0
Meropenem 0.5 16 74.7 18.2 74.7 11.6
Piperacillin-tazobactam 4 128 73.9 13.3 73.9 26.1
Tobramycin 0.5 �16 87.9 11.3 87.9 12.1

MDR (300)
Murepavadin 0.12 0.25
Colistin 1 1 99.0 1.0 99.0 1.0
Polymyxin B 0.5 1 100.0 0.0
Amikacin 8 �64 66.0 22.3 59.0 34.0
Aztreonam 16 64 24.0 45.0 2.7 45.0
Cefepime 16 �32 32.3 34.0 32.3 67.7
Ceftazidime 32 �32 32.7 55.0 32.7 67.3
Ciprofloxacin 8 �8 25.3 64.3 21.3 78.7
Meropenem 8 �16 16.3 68.3 16.3 45.3
Piperacillin-tazobactam 64 �128 21.3 45.3 21.3 78.7
Tobramycin 2 �16 56.0 42.0 56.0 44.0

XDR (167)
Murepavadin 0.12 0.25
Colistin 1 1 99.4 0.6 99.4 0.6
Polymyxin B 1 1 100.0 0.0
Amikacin 32 �64 48.5 34.1 43.7 51.5
Aztreonam 32 �64 14.4 51.5 0.6 51.5
Cefepime 16 �32 12.6 49.1 12.6 87.4
Ceftazidime �32 �32 13.8 73.1 13.8 86.2
Ciprofloxacin �8 �8 9.0 85.0 5.4 94.6
Meropenem 16 �16 1.8 86.8 1.8 67.7
Piperacillin-tazobactam 128 �128 5.4 57.5 5.4 94.6
Tobramycin �16 �16 35.3 62.9 35.3 64.7

United States (417)
Murepavadin 0.12 0.12
Colistin 1 1 99.3 0.7 99.3 0.7
Polymyxin B 0.5 1 100.0 0.0
Amikacin 4 8 95.7 2.4 91.6 4.3
Aztreonam 8 32 71.5 13.7 5.3 13.7
Cefepime 2 16 84.4 6.2 84.4 15.6
Ceftazidime 2 32 84.2 10.8 84.2 15.8
Ciprofloxacin 0.12 8 81.1 14.4 77.7 22.3
Meropenem 0.5 8 80.6 13.9 80.6 6.5
Piperacillin-tazobactam 4 64 79.4 8.6 79.4 20.6
Tobramycin 0.5 2 92.6 7.0 92.6 7.4

Europe (491)
Murepavadin 0.12 0.12
Colistin 1 1 99.0 1.0 99.0 1.0
Polymyxin B 0.5 1 100.0 0.0
Amikacin 4 32 86.8 7.3 84.3 13.2
Aztreonam 4 32 69.7 12.0 3.5 12.0
Cefepime 2 16 79.4 9.0 79.4 20.6
Ceftazidime 2 �32 77.8 18.3 77.8 22.2
Ciprofloxacin 0.12 �8 75.8 21.2 70.7 29.3
Meropenem 0.5 16 72.9 19.3 72.9 14.5

(Continued on next page)
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P. aeruginosa represents a serious therapeutic challenge, and selecting the appro-
priate antimicrobial agent to initiate therapy is essential to optimize the clinical
outcome (19). However, treatment decisions are difficult due to the high rates of
resistance exhibited by this organism and its ability to develop resistance to multiple
classes of antimicrobial agents, even during the course of treating an infection (11, 19).
Among the antimicrobial agents evaluated in this investigation, murepavadin was the
most active compound, followed by the polymyxins colistin and polymyxin B, and the
aminoglycosides amikacin and tobramycin. All other comparator agents exhibited
limited activity (�80% susceptibility) against this collection of clinical P. aeruginosa
isolates. Furthermore, only murepavadin and the polymyxins exhibited good activity
against MDR and XDR isolates.

Commonly used broad-spectrum antimicrobial agents can cause major collateral
damage to the human microbiome, with complications ranging from antibiotic-
associated colitis to the spread of antimicrobial resistance through horizontal gene
transfer (20). Thus, the concept of applying narrow-spectrum or pathogen-specific
antibiotics has been developed with the aim of minimizing collateral damage to the
microbiome, and murepavadin development is based on this concept of antimicrobial
usage. Murepavadin is highly active against P. aeruginosa and largely inactive against
other Gram-negative and Gram-positive species (4, 5).

The data from the present investigation document the in vitro activity of murepa-
vadin against P. aeruginosa isolates from the United States, Europe, and China. In
addition to demonstrating potent activity against a large collection of organisms,
murepavadin retained activity against MDR and XDR isolates. Furthermore, no cross-
resistance was observed with current standard-of-care antimicrobial agents. The results
of this study and the good safety profile observed in the phase 1 study (21), combined
with results from ongoing clinical studies, support continued clinical development of
murepavadin for treating serious P. aeruginosa infections.
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