
Genetic Diversity among Staphylococcus aureus Isolates
Showing Oxacillin and/or Cefoxitin Resistance Not Linked to
the Presence of mec Genes

M. Angeles Argudín,a S. Roisin,a L. Nienhaus,a M. Dodémont,a R. de Mendonça,a C. Nonhoff,a A. Deplano,a O. Denisa,b

aNational Reference Centre for Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université
Libre de Bruxelles, Brussels, Belgium

bEcole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium

ABSTRACT Methicillin-resistant Staphylococcus aureus isolates lacking mec genes
(n � 32), collected from Belgian hospitals, were characterized for their �-lactamase
production and the presence of mutations in pbp genes, the pbp4 promoter, and
genes involved in penicillin-binding protein 4 overproduction (gdpP and yjbH).
Twelve isolates were �-lactamase hyperproducers (BHPs), while 12 non-BHP isolates
might produce an incomplete GdpP protein. Most isolates showed nucleotide mis-
sense mutations in pbp genes. A few isolates also showed mutations in the pbp4
promoter.
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Methicillin-resistant Staphylococcus aureus (MRSA) strains carry penicillin-binding
protein 2a (PBP2a), a low-affinity PBP encoded by mecA and homologues (1, 2).

However, isolates with methicillin and/or oxacillin (OXA) resistance but without mec
determinants (methicillin-resistant lacking mec [MRLM] strains) have been reported
from the 1980s to recent years (3–10). Their phenotype can be caused by hyperpro-
duction of �-lactamase, which partially hydrolyzes semisynthetic �-lactamase-
resistant penicillins (5, 6). These �-lactamase hyperproducers (BHPs) recover full
susceptibility to �-lactams in the presence of �-lactamase inhibitors (5, 6). Methi-
cillin resistance has also been associated with multiple unlinked mutations in native
pbp genes that reduce the affinity of PBPs for �-lactams, as well as with mutations
in the pbp4 promoter and/or in genes (gdpP [phosphodiesterase c-di-AMP regula-
tor] and yjbH [disulfide stress effector]) that lead to PBP4 overproduction (7–9, 11,
12). BHP isolates are usually named borderline oxacillin-resistant S. aureus (BORSA)
(6), while isolates with resistance due to mutations are named modified S. aureus
(MODSA) (3, 10); however, other authors have used the term BORSA for both BHP
and MODSA isolates (4).

Data regarding the characteristics of MRLM strains are scarce (5–10), making their
nomenclature difficult. In this study, we have determined the occurrence and charac-
teristics, including �-lactamase hyperproduction and mutations in genes and regions
involved in �-lactam resistance, of MRLM strains collected at the Belgian National
Reference Centre (NRC) for Staphylococcus aureus.

The study was a retrospective analysis of 298 human S. aureus isolates that were
collected from 73 Belgian laboratories and were sent to the NRC, due to diagnostic
problems regarding their �-lactam resistance, in 2013 to 2015. The first selection identi-
fied isolates resistant to OXA and/or cefoxitin (FOX), as tested by Etest (bioMérieux),
combined with the absence of mecA and mecC (13). Selected isolates were further
tested for the presence of mecB (14) and PBP2a, by immunochromatographic assay
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after induction with OXA/FOX disks (13), using the Clearview Exact PBP2a assay (Alere).
OXA- and/or FOX-resistant, mecA-, mecB-, mecC-, and PBP2a-negative isolates were
studied further.

MICs for penicillin (PEN), ampicillin (AMP), amoxicillin (AMX), amoxicillin-clavulanic
acid (AMC), ampicillin-sulbactam (SAM), and ceftaroline (CPT) were determined by the
Etest method. MICs for PEN and CPT were interpreted according to EUCAST guidelines
(15). �-Lactamase production was determined by the penicillin disk diffusion test
(PDDT) (15). The presence of the �-lactamase gene blaZ was determined by PCR (16).
Isolates were classified as BHPs if they were PDDT and blaZ positive with �2-fold MIC
reductions for AMC and/or SAM, compared to AMX and AMP (5). The genes encoding
native PBPs (pbp1, pbp2, pbp3, and pbp4), the pbp4 promoter, gdpP, and yjbH were
amplified and sequenced by using primers described previously (see the supple-
mental material). Molecular typing was performed using multilocus sequence typ-
ing (MLST) (17).

Among the isolates in the S. aureus collection (n � 298), 32 isolates showed
resistance to OXA (n � 8), FOX (n � 6), or OXA and FOX (n � 18) (Table 1) and were
mecA, mecB, mecC, and PBP2a negative. This proportion of MRLM strains seemed high
(10.7%), compared to other studies of clinical collections (6), but is probably biased by
the sampling method (isolates were referred to the NRC because of discordance in OXA
and/or FOX resistance results). The isolates were recovered from different patients
attending 20 hospitals located in Flanders (n � 10), Wallonia (n � 4), or Brussels (n � 6). The

TABLE 1 Phenotypic and genotypic characteristics of methicillin-resistant isolates lacking mec genes

BORSA type
and strain

MIC (mg/liter)a

blaZ PDDT BHP ST/lineagebOXA FOX PEN AMP/SAM AMX/AMC CPT

BHP
001 3 4 >32 4/2 12/1 0.5 � � � ST25/CC25
002 3 4 >32 8/2 12/1 0.38 � � � ST25/CC25
003 4 4 >32 6/1.5 8/1 0.38 � � � ST25/CC25
005 8 4 >32 4/1.5 8/1 0.38 � � � ST25/CC25
006 4 3 4 3/1.5 8/0.75 0.25 � � � ST3407/CC25
007 3 3 >32 2/0.5 4/0.38 0.25 � � � ST30/CC30
008 6 4 >32 16/3 24/1 0.38 � � � ST25/CC25
009 8 4 >32 8/2 12/1 0.38 � � � ST8/CC8
010 6 6 0.75 4/2 4/2 0.38 � � � ST9/CC9
023 4 6 >32 12/6 16/1 0.38 � � � ST25/CC25
030 4 6 3 3/1.5 6/1.5 0.38 � � � ST34/CC30
032 6 6 2 4/2 12/2 0.5 � � � ST7/CC7

Non-BHP
004 12 6 4 2/2 3/1 0.38 � � � ST3405/CC8
011 4 8 1.5 1.5/2 2/1.5 0.5 � � � ST5/CC5
012 8 6 0.125 0.19/0.25 0.75/0.5 0.5 � � � ST582/CC15
013 4 6 2 2/2 3/1.5 1 � � � ST5/CC5
014 4 6 3 3/3 4/2 1 � � � ST7/CC7
015 6 6 6 2/2 3/1.5 1 � � � ST101/CC101
017 1.5 6 0.75 1/1.5 2/1 0.5 � � � ST1327/CC22
018 2 6 1.5 2/2 3/1.5 1 � � � ST45/CC45
019 4 8 0.75 1.5/1.5 2/1.5 1 � � � ST669/CC97
025 6 6 12 3/4 3/2 0.75 � � � ST3412/CC101
027 1 6 2 2/2 3/1 0.38 � � � ST3385/CC30
028 0.75 6 1.5 1/2 2/1 0.25 � � � ST109/CC9
029 0.5 6 0.75 1.5/1 2/1 0.5 � � � ST22/CC22
031 12 8 4 4/3 4/2 1 � � � ST3384/CC1
016 0.5 6 0.94 0.19/0.25 0.38/0.38 0.25 � � � ST3411/CC8
020 3 6 0.75 0.38/0.25 0.38/0.38 1 � � � ST101/CC101
021 8 6 0.38 0.38/0.19 1/1.5 0.50 � � � ST101/CC101
022 6 6 0.94 0.125/0.5 0.25/0.75 0.38 � � � ST1/CC1
024 4 6 0.19 0.50/0.75 0.75/0.75 1 � � � ST5/CC5
026 4 6 0.25 0.50/1 1/0.75 1 � � � ST398/CC398

aBold type indicates resistance values according to EUCAST (15).
bST, sequence type.
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isolates were recovered mostly from nasal/skin screening samples (n � 18) but also
from wound/skin infection (n � 8), ear, nose, and throat (n � 3), blood (n � 1), urine
(n � 1), and unknown (n � 1) samples. The carriage rates of BORSA isolates have been
the subject of only a few studies, but they have been detected colonizing the nares of
asymptomatic healthy carriers, as well as being involved in skin and soft tissue
infections, surgical wounds, and urinary tract infections in hospital and community
settings (10).

Most isolates (n � 26 [81%]) carried an active �-lactamase (blaZ), but only 12 were
PDDT positive and BHPs (Table 1). Although their �-lactam resistance phenotype may
be due �-lactamase hyperproduction, they carried mutations (Table 2) that cannot be
disregarded as influencing the resistance phenotype. The remaining 20 isolates (in-
cluding 14 blaZ-positive/PDDT-positive isolates and 6 blaZ-negative/PDDT-negative
isolates) were non-BHPs and had diverse mutations (Table 2).

The 32 isolates were associated with 13 lineages, with a predominance of clonal
complex 25 (CC25) (n � 7 [21.8%]). CC25 has been described as the most frequent
lineage with the MRLM phenotype in Canada (7), but this clone is rarely found in
Belgian hospitals (18). MRLM strains belonging to CC1, CC8, CC15, and CC45 in
clinical settings and strains belonging to CC45 and CC398 in livestock were de-
scribed previously (9, 19, 20).

Amino acid (AA) substitutions in the transglycosylase and transpeptidase domains of
native PBPs may have different effects on �-lactam resistance. Certain AA substitutions
affecting �-lactam resistance (A405V and Q629P in PBP2) were described previously (7,
9, 21). Some AA substitutions (Y336C, T371I, and H499Y in PBP1 and S364F in PBP3)
were detected previously in MRLM strains from CC1, CC8, and CC15 (9). The non-BHP
CC22 (CPT MIC of 0.5 mg/liter) showed AA substitutions (S629T and S664T in PBP1,
T691A in PBP2, and D98E in PBP4) in common with CPT-intermediate-resistant (CPT MIC
of 2 mg/liter) MRSA CC22, although the former carried additional mutations not present
in MRLM strains (17). Isolates of CC25 and CC101 showed specific mutations that may
have lineage origins.

Overexpression and/or mutations in PBP4 have been associated with low-level
methicillin resistance (11). PBP4 overexpression can be mediated via mutations in
its promoter (12) or via AA substitutions and/or loss of function of GdpP and YjbH
proteins (22–24). In our study, a few isolates showed mutations in the pbp4
promoter, although no duplications or deletions were detected. One promoter
mutation (a nucleotide change from C to T 298 bp upstream of the pbp4 start
codon) was located between the �35 and �10 promoter sequences. Only one
isolate showed AA substitutions in YjbH, but most carried AA substitutions in GdpP.
In fact, 12 of the 20 non-BHP isolates may produce an incomplete GdpP. Among
them, one isolate carried a gdpP gene interrupted by the insertion of a putative IS30
family transposase. GdpP is a phosphodiesterase that controls the intracellular
levels of the secondary messenger c-di-AMP, which influences cell wall architecture,
biofilm formation, and resistance/tolerance to �-lactams (24–26). The deletion of
gdpP results in increased levels of c-di-AMP, which increase pbp4 transcript levels
(24, 25). Moreover, mutations in this gene have been related to CPT tolerance (27,
28). Interestingly, some (n � 7) of the non-BHP isolates producing an incomplete
GdpP have a borderline CPT MIC (1 mg/liter).

The clinical importance of MRLM strains is still unclear. However, these isolates have
been involved in cases of clinical failure (29) and outbreaks (19), and they have been
observed at high incidence rates in different patient populations (5, 30, 31). In Belgium,
MRLM strains represent a heterogeneous group, with different patterns of resistance
against �-lactams. Their overall prevalence may be underestimated due to the general
use of the FOX test as a unique marker of methicillin resistance. Some isolates were
BHPs, but most may be a mixture of BHP and MODSA, underlining the difficulties in
their nomenclature.
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TABLE 2 Location of mutations in the pbp4 promoter and AA substitutions in the pbp, yjbH, and gdpP genes identified in methicillin-
resistant isolates lacking mec genesa

Lineage and
strain

Location of mutations/AA substitutions

PBP1 (pbp1) PBP2 (pbp2) PBP3 (pbp3)
Upstream of pbp4
start codon PBP4 (pbp4) YjbH (yjbH) GdpP (gdpP)

CC1
031 � � � � � � A109T, Q163b

022 � � � � R200L � R504b

CC5
011 � � � � � � D105b

013 � � � � � � D105N, P392S, A601E
024 � T284I � � � � D105N, P392S, V609b

CC7
014 � Q629P � � � � E396b

032 � Q629P � � � � I203N

CC8
004 � � � � � � V490E
009 � P10L, A405V N685K, K686N, K687b � � � F54L, P312L
016 � � P659c � � � �

CC9
010 T39I, Y336C, T371I,

H499Y
A132V, L451I S634F T¡A at 266 bp � � �

028 � � D195N � � � T307I

CC15
012 � H200Y � � � � M313I, E314b

CC22
029 S629T, S664T T439V, T691A K584N C¡T at 407 bp, C¡T

at 298 bp, G¡T at
62 bp

D98E � �

017 S629T, S664T T439V, T691A K584N C¡T at 407 bp, C¡T
at 298 bp, G¡T at
62 bp

D98E � V430b

CC25
001 D149E Q629P K6N � � � �
002 D149E Q629P K6N � � � �
003 D149E Q629P K6N � � � �
005 D149E Q629P K6N � � � �
006 D149E G142C, Q629P,

S679T
K6N, D644G � � � �

008 D149E Q629P K6N, F24L � � � �
023 D149E Q629P K6N � � � �

CC30
007 � N81S � � � � F54L
027 � � � C¡T at 171 bp � � V609D
030 � � � C¡T at 171 bp � � G208S, S403I

CC45
018 D480E, S664T E269Q S225A, L201F, M376V,

D599E
G¡T at 62 bp Y208F, V381F,

R430I
� Q56b

CC97
019 H499Y, S571G � S634F � � � A210S

CC101
015 D593E A591T � � E218K � Q258b

020 D593E A591T � � E218K � Q293b

021 D593E T117C, A591T � � E218K K259I Q642b

025 D593E A591T � � E218K � E486K

CC398
026 F405L, D480E, D662N,

S664T
D270E, D489E,

T439V,
T691A

D684N A¡G at 371 bp, G¡A
at 265 bp, A¡G at
72 bp

� � D231Tn

aThe isolates are grouped according to their lineage and/or AA substitutions. AA substitutions in the transglycosylase and transpeptidase domain of the PBPs are in
italics and bold, respectively. The methicillin-sensitive Staphylococcus aureus strains ATCC 25923, ATCC 9144, NCTC8325, and MSSA476 were used as references for
the pbp1, pbp2, pbp3, pbp4 (including its promoter), yjbH, and gdpP genes. The AA substitutions A405V and Q629P in PBP2, affecting �-lactam resistance, were
described previously (7, 9, 21). The AA substitutions Y336C, T371I, and H499Y in PBP1 and S364F in PBP3 were detected previously in MRLM strains (9). Some AA
substitutions in GdpP (D105N and P392S) are also present in MRSA CC5 reference strains (N315, Mu3, and Mu50). Tn, insertion of a putative IS30 family transposase;
�, absence of mutations or amino acid substitutions.

bStop codon.
cAbsence of amino acid.
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Accession number(s). The pbp1, pbp2, pbp3, pbp4, yjbH, and gdpP sequences
generated in this study were deposited in GenBank under accession numbers
MF070915 to MF071106 (see the supplemental material).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AAC
.00091-18.
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