Skip to main content
. 2018 Jun 1;18(6):1764. doi: 10.3390/s18061764

Table 1.

The results of discriminant models using full spectra of three different sample sets.

Sample Models Parameters * Calibration Accuracy (%) Prediction Accuracy (%)
Set 1 PLS-DA 16 100.00 90.91
SVM (256, 0.3229) 79.42 81.82
KNN 4 66.17 59.09
SIMCA (10, 10) 80.88 95.95
Set 2 PLS-DA 6 96.67 96.67
SVM (256, 1.7411) 100.00 100.00
KNN 4 91.11 100.00
SIMCA (10, 10) 90.00 90.00
Set 3 PLS-DA 15 100.00 100.00
SVM (48.5029, 1.7411) 98.89 100.00
KNN 3 93.33 93.33
SIMCA (9, 9) 95.56 100.00

* The parameters indicate the parameters of each model; the parameters for partial least squares-discriminant analysis (PLS-DA), support vector machine (SVM), k-nearest neighbors (KNN), and soft independent modeling of class analogies (SIMCA) are the optimal number of latent variables, (C, g), the number of nearest neighbors, and number of principal components (PCs) of each class, respectively.