Skip to main content
. 2018 Jun 11;18(6):1905. doi: 10.3390/s18061905
Algorithm 1 G-means algorithm.
  • 1:

    Input:X the set of data and α confidence level = 90% (Gaussian)  

  • 2:

    Output: The new set of centers C (using K-means++ [40])  

  • 3:

    Given C the initial set of centers  

  • 4:

    Ckmeans(C,X)  

  • 5:

    Let{xi|class(xi)=j} be the set of the data assigned to center cj  

  • 6:

    Check if each {xi|class(xi)=j} follow a Gaussian distribution (at confidence level α)  

  • 7:

    if The data follow a Gaussian distribution then  

  • 8:

        Keep cj  

  • 9:

    else

  • 10:

        replace cj with two centers (using K-means++ [40]).  

  • 11:

    end if 

  • 12:

    Repeat from step 5 until no more centers are added.