Table 1.
Ref. No. | Signals | Features | Classifiers | Emotion Parameters | Stimuli | No. of Subjects | Accuracy in % |
---|---|---|---|---|---|---|---|
[11] | EMG ECG EDA RSP |
Statistical, Energy, Sub band Spectrum, Entropy | Linear Discriminant Analysis | Joy, Anger, Sad, Pleasure | Music | 3 , MITdatabase | 95 (Subject-Dependent) 70 (Subject-Independent) |
[14] | EDA HR ST |
No specific features stated | KNN, Discriminant Function Analysis, Marquardt backpropagation | Sadness, Anger, Fear, Surprise, Frustration, Amusement | Movies | 14 | 91.7 (Subject-Dependent) |
[18] | EMG EDA BVP ECG RSP |
Running mean Running standard deviation Slope | NN | Arousal, Valance | IAPS (Visual Affective Picture System) | 1 | 96.58 Arousal 89.93 Valence (Subject-Dependent) |
[12] | ECG | Fast Fourier | Tabu Search | Joy, Sadness | Movies | 154 | 86 (Subject-Independent) |
[20] | EDA HR |
No specific features stated | fuzzy logic | Stress | Hyperventilation Talk preparation |
80 | 99.5 (Subject-Independent) |
[19] | BVP EMG ST EDA RSP |
Statistical Features | SVM, Fisher LDA | Amusement, Contentment, Disgust, Fear, Sad, Neutral | IAPS | 10 | 90 (Subject-Dependent) |
[9] | EMG EDA ECG BVP ST RSP SPEECH |
Statistical Features, BRV, Zero-crossing, MFCCs | KNN | Arousal, Valance | Quiz dataset | 3 | 92 (Subject-Dependent) 55 (Sub Independent) |
[21] | EDA HR EMG |
No specific features stated | HMM | Arousal, Valance | Robot Actions | 36 | 81 (Subject-Dependent) 66 (Subject-Independent) |
[13] | EDA ECG ST |
Statistical Features average power SCL SCR | CNN | Arousal, Valance | Movies | 10 | 82.35 (Subject-Independent) |
EMG: Electromyography; ECG: Electrocardiography; EDA: Electrodermal Activity; RSP: Respiration; ST: Skin Temperature; EEG: Electroencephalogram; BVP: Blood Volume Pulse; HR: Heart Rate; KNN: k-nearest neighbors algorithm; SVM: Support vector machine; HMM: Hidden Markov Model; ANN: Artificial Neural Network; CNN: Cellular Neural Network.