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Abstract: It is well known that in a Kalman filtering framework, all sensor observations or measurements
contribute toward improving the accuracy of state estimation, but, as observations become older,
their impact toward improving estimations becomes smaller to the point that they offer no practical
benefit. In this paper, we provide an practical technique for determining the merit of an old observation
using system parameters. We demonstrate that the benefit provided by an old observation decreases
exponentially with the number of observations captured and processed after it. To quantify the merit
of an old observation, we use the filter gain for the delayed observation, found by re-processing all
past measurements between the delayed observation and the current time estimate, a high cost task.
We demonstrate the value of the proposed technique to system designers using both nearly-constant
position (random walk) and nearly-constant velocity (discrete white-noise acceleration, DWNA)
cases. In these cases, the merit (that is, gain) of an old observation can be computed in closed-form
without iteration. The analysis technique incorporates the state transition function, the observation
function, the state transition noise, and the observation noise to quantify the merit of an old observation.
Numerical simulations demonstrate the accuracy of these predictions even when measurements arrive
randomly according to a Poisson distribution. Simulations confirm that our approach correctly predicts
which observations increase estimation accuracy based on their delay by comparing a single-step
out-of-sequence Kalman filter with a selective version that drops out-of-sequence observations.
This approach may be used in system design to evaluate feasibility of a multi-agent target tracking
system, and when selecting system parameters including sensor rates and network latencies.

Keywords: Kalman filter; out-of-sequence observation; delayed measurements; selective filtering;
delayed Kalman gain

1. Introduction

In many estimation applications, sensor observations or measurements are received out-of-
sequence (OOS); that is, the observations arrive at the filter in a different order than they were
measured. A few examples include missile guidance with delayed measurements [1], multiple
unmanned vehicles [2,3], teleoperation systems [4], and networked control systems [5]. Although
standard filtering techniques (such as the Kalman filter) cannot be used directly when data arrive
out-of-sequence, several techniques for incorporating these delayed observations have been developed.
When a delayed observation arrives at a filter, an out-of-sequence filter can use that observation to
improve the accuracy of the estimate.
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There are a few reasons why it may be beneficial to simply drop some of the delayed estimates
instead of processing them with the OOS filter. First, optimal out-of-sequence filters must re-process
all previous estimates to find the current estimate. The more an OOS observation has been delayed,
the longer it will take to process. Second, approximate OOS filters (those whose runtime is constant
with respect to how delayed an observation is) provide no guarantee that the delayed observation will
actually improve the performance. In fact, as our simulations show, delayed observations can actually
hurt their performance! For these filters, dropping a delayed observation not only reduces processing
time, it also has the potential to improve the accuracy of the filter’s estimate.

1.1. Prior Work

Out-of-sequence observations can be incorporated optimally with the costly approach of
re-processing all newer observations every time a delayed observation arrives. This requires storing all
observations received in chronological order. In some cases, this is the only way to achieve this optimal
result [6]. In other cases, additional assumptions can be made which simplify the out-of-sequence
tracking problem [6]. For example, an algorithm proposed in [7,8] incorporates a single out-of-sequence
observation optimally, assuming that the measurement time and covariance of the observation are
known in advance. Even if nothing is known about the observation before it arrives, it can still be
optimally fused using the A1 algorithm of [9], as long as the out-of-sequence observation arrives
within the last sampling period (The last sampling period is the time between the second-most and
most recently measured observations that have arrived at a filtering center).

Some out-of-sequence filters save processing time by providing an approximate rather than
optimal estimate based on the out-of-sequence observations. The B1 and C1 algorithms from from [9]
are examples of these. Several tradeoffs between the complexity of both storage and computation
and the accuracy of the algorithm are explored in [6], including a linearly constrained optimal
estimate while storing only the latest state estimate with its covariance. Three new algorithms for the
general out-of-sequence filtering problem are presented in [10]. For summaries of the current literature
regarding filtering techniques with time delayed measurements, see [10–14].

While all out-of-sequence observations can theoretically be used to improve estimation accuracy
with an optimal OOS filter, if a measurement is old enough it will have an insignificant contribution to
the estimate of the current state. Under certain conditions, it has been demonstrated experimentally
that observations may have no practical contribution to state estimation accuracy after as few as two
to five time-steps [15,16]. In such cases, it is computationally more efficient to discard observations
that would provide no practical contribution. Then, one may ask what factors determine whether
an observation should be discarded. A variety of experiments have demonstrated that increasing
randomness in an object’s motion, decreasing observation noise, and increasing the amount of delay of
an observation all decrease its contribution to estimation accuracy [15–17]. The experiments of [15]
suggest that the impact of an observation decreases exponentially with its delay, but it is still obscure
why the decrease would be exponential when the motion and measurement uncertainties increase
only linearly or quadratically.

The experiments in [15,16] suggest that we should focus our attention on the ratio of an object’s
motion, relative to the observations that are made of it. (This dimensionless quantity is known as the
maneuvering index [6,9,18,19]). These experiments show that the maneuvering index plays a critical
role in determining the value of an out-of-sequence observation. To improve the estimation accuracy
and stability of an OOS filter, OOS observations can be dropped if they will not contribute to the
estimate. Tasoulis et al. propose an automatic technique for determining whether to keep an observation
based on a hypothesis test comparing covariances fusing all measurements with maximum lag l and
lag l + 1 [15]. The measurement is only fused if there is a significant improvement in the covariance
according to a predetermined significance level. In [20], an approach is presented to determine which
observations to incorporate to minimize tracking error within an average processing- time constraint.
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1.2. Problem Statement

In summary, out-of-sequence observations are known to be of limited value if they have been
delayed by too long. Dropping some old observations improves computational efficiency while
maintaining nearly-optimal performance [15–17].

However, how do we determine when an observation has been delayed too long? Is there a way
that we can gain some intuition about when we should drop an observation and when we should
keep it? It is known that the value of an observation increases as the measurement time decreases,
as its own observation noise decreases, as the target’s motion becomes more predictable, and as the
other measurements’ observation noise increases. However, is there a way to incorporate these into
a closed-form expression to estimate the impact an observation has on the accuracy of the current
estimate? In this paper, we make a step toward this goal.

Our goal in this paper is to go beyond proposing yet another selective filter with an ad-hoc
heuristic. We desire to provide a practical way of thinking about selective filtering that will help to
explain why delayed observations behave the way they do.

1.3. Contributions

In particular, we would like to convince the reader that the usefulness (or merit) of a delayed
observation decays exponentially with time. Traditionally, filters operate by correcting the current
prediction of the state based on the error in the prediction of the observation (We explain the notation
used here in Section 2.1), i.e., x̂ = x̂p + K(y− Hx̂p).

This allows us to reduce the problem to the estimation of an appropriate gain, K. Furthermore,
the gain applied to a delayed observation by an ideal filter decreases exponentially with time as
we demonstrate in Section 2. For the case where the maneuverability index is very low λ � 1,
the magnitude of the gain K is proportional to (1 − λ)Td/∆T , where λ is the maneuvering index
discussed previously in Section 1.1, Td is the time delay of the observation, and ∆T is the mean time
between observations. That is, the gain decreases exponentially with the time since the observation
(measured in terms of how many measurements have been received since that time) and increases as
the maneuverability decreases.

Unless an out-of-sequence approach models this exponentially-decaying nature of K (whether
explicitly or implicity), its performance will be hurt by old observations. As we demonstrate in
Section 4, for an approximate filters, incorporating some delayed observations and dropping others
can achieve better the estimation accuracy than would be achieved by incorporating either all or none
of the delayed observations.

The key contributions of this paper are:

• We propose using the gain given by a simple optimal OOS filter to the delayed observation to
estimate the merit of a past observation.

• For the case where the maneuverability index is very low λ � 1, this gain is proportional
to (1− λ)Td/∆T .

• We propose that observations where the ratio of the merit to a new observation is below a fixed
threshold be dropped. For a very low maneuverability target moving according to a random walk,
this merit leads to a threshold of Td = ∆TP

λ , that is, a threshold that increases linearly with the
mean sampling rate and decreases linearly with the maneuverability of the target.

• Through synthetic simulations, we demonstrate that the proposed technique provides a good
estimate of when observations no longer have merit across the full practical spectrum of the
maneuverability index.

Although we provide an approximation of the ideal Kalman gain, we are not proposing a new
OOS algorithm here. We intend this approach to be used with an existing OOS filters, although it can
be used with any OOS filter available. This approach complements existing approaches by providing
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an alternative perspective on the weight/gain that an old observation should be given, but it does not
provide a technique for estimating the full matrix gain, only a bound on the elements within that matrix.

1.4. Assumptions

This work is focused on a Kalman filter that is operating in steady-state. During the initial
stages, when the estimate covariances are still high, it could be desirable to incorporate more
delayed observations or even all of them. An assumption we make in the derivation of the delayed
gain (in Section 2) is that only a single observation has been delayed. During the simulations
(in Section 4) we delay all observations randomly and discuss the impact this has on the derivation.
Our simplest results apply in the case where λ� 1. A similar assumption is made in [20]. This case is
particularly interesting for OOS filters, because the less maneuverable a target is, the more valuable
out-of-sequence measurements become. Nevertheless, this approach does not require this assumption
to be made—it can be applied for any value of the parameter λ.

2. The Delayed Kalman Gain

In this section, we propose a Kalman gain be used as a metric of the merit of a delayed observation.
In particular, we use the gain that would be given to an observation if we applied the optimal but
costly approach of re-processing all newer observations every time a delayed observation arrived
(The “newer observations” here are all the observations measured after the OOS measurement which
arrived before it). Although the delayed Kalman gain cannot be computed exactly in practice without
storing and reprocessing all measurements [6], we can obtain a good estimate of its magnitude using a
formula that we present later in this section.

2.1. Preliminaries

For a nearly-constant velocity model, the maneuvering index (or tracking index) is defined as
λ = σQ∆T2/σR, where ∆T is the time between observations, σQ is the standard deviation of the
process noise, and σR is the standard deviation of the measurement noise. Although the form of the
maneuvering index depends on the modeling assumptions, it always includes the ratio σQ/σR [6,9,21].

We use a classic state transition and observation model:

xn+1 = Fxn + wn wn ∼ N (0, Q)

yn = Hxn + vn vn ∼ N (0, R)

where F is the state transition matrix, H is the observation matrix, w and v are uncorrelated Gaussian
vectors with zero mean and covariances Q and R, respectively, xn is the state at the nth time-step,
and yn is the observation at time n. (When all subscripts in an equation are the same, we omit them for
simplicity.) Given this formulation, the Kalman prediction and update steps are

x̂p
n = Fx̂n−1

Pp
n = FPn−1FT + Q

x̂n = x̂p
n + Kn(yn − Hx̂p

n)

Kn = Pp
n HT(HPp

n HT + R)−1

Pn = (I − KnH)Pp
n

where P is the covariance of the estimate x̂ and Kn is the Kalman gain. We use a super-script p to
denote the predictions (e.g., x̂p) and the absence of superscript p to denote the updated estimates that
include the most recent observations (e.g., x̂).

In the remainder of the paper, we refer only to the estimates of the state, x̂, and not the state’s true
value, x. In the sections that follow, we represent x̂ by x, and x̂p by xp.
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2.2. The Output of the Kalman Filter as Weighted Sum of Observations

The estimate produced by the linear Kalman filter is a linear combination of the observations
y1, . . . , yn with weights (or gains) determined by the system parameters. We can see this by expanding
the recursive formulas for the estimated states, both predicted xp and updated x,

xp
n = Fxn−1

x = Ky + (I − KH)xp,

to obtain

xn = Knyn + (I − KnH)FKn−1yn−1 + (I − KnH)F(I − Kn−1H)FKn−2yn−2 + . . . . (1)

= Knyn +
n−1

∑
j=1

{
j−1

∏
i=0

[
(I − Kn−i H)F

]
Kn−jyn−j

}
(2)

where n > 0 and we assume the initial state estimate x0 = 0. The estimate for step n takes the
form of a linear combination of the inputs yn, yn−1, . . . , y1 where term yn−j is weighted by matrix

∏
j−1
i=0((I − Kn−i H)F)Kn−j.

2.3. Steady-State Kalman Gain

To understand how the weight, ∏
j−1
i=0((I − Kn−i H)F)Kn−j, changes as the number of observations

j increases, we focus on the situation where Q and R are constant, as the Kn’s will converge to a limiting
value K. (In Section 3, we show numerically that this is also a good approximation when Q changes
because observations are made non-periodically.) In order to find this value, it is necessary to solve the
discrete algebraic Riccati equation (DARE),

Cp = F(Cp − CpHT(HCp HT + R)−1HCp)FT + Q, (3)

where Cp is the steady-state covariance of the prediction.
In general, the solutions to the DARE correspond to the roots of a polynomial, and thus cannot be

expressed in a closed form for a sufficiently high order system (e.g., [22,23]). Nevertheless, for many
applications, the DAREs have analytic solutions, and we look at two examples in the following sections.

The expanded state estimate (2) simplifies considerably when substituting the value of K after
convergence for all the Kn’s, to

xn =
n−1

∑
j=0

((I − KH)F)jKyn−j =
n−1

∑
j=0

Kn,jyn−j (4)

where Kn,j is the effective gain of the Kalman filter for all past observations. The effective gain Kn,j
is usually smaller than the original gain Kn−j applied to an observation because it is reduced by
the down-weighting factor ((I − KH)F)j. In other words, although the ideal Kalman filtering may
originally apply a high gain to an observation when it is first made, it is multiplied by gains that reduce
its magnitude with each successive observation that is measured after it.

The simple linear combination (4) includes the gains that the ideal Kalman filter gives to all
observations when the filter is in steady-state. This is also the gain that the optimal but costly buffered
and re-filtered approach gives to a delayed observation. From (4), the gain for a delayed observation is

Kn,j = ((I − KH)F)jK
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where the observation is delayed by j time-steps. Given only the time-delay of an observation, Td,
we can compute the number of time-steps j = Td/∆T between when the observation was made and
our most recent estimate time, and estimate the time-delayed gain

Kn(Td) = ((I − KH)F)Td/∆TK, (5)

where ∆T is the time between observations. This gain, Kn(Td) is the metric that we propose for the
merit of a delayed observation. We recommend selecting delayed observations whose Kn(Td) value is
greater than some threshold, and rejecting the rest.

In general, Kn(Td) is a matrix quantity, and requires the solution to the discrete algebraic Riccati
equation. In Sections 2.5 and 2.6, we examine this gain for random walks and nearly-constant-velocity
walks. Based on the decaying exponential bound for the function(s) making up the closed-form
solution for Kn(Td) in these cases, we suggest how to select a time-delay threshold to decide whether
to select a delayed observation to be included into an out-of-sequence filter. Although the general
Kn(Td) cannot always be found analytically, it is still bounded by a decaying exponential envelope,
as examined in the next section.

2.4. Exponential Behavior of the Time Delayed Gain Kn(Td)

The time-delayed gain Kn(Td) = ((I − KH)F)Td/∆TK has norms bounded by a decaying
exponential function because the magnitude of all eigenvalues µ of (I − KH)F, is less than one
(|µ| < 1), for all systems where (F, H) is observable and (F, Q) is reachable. As a result, the impact
of a time-delayed observation will decrease exponentially as the delay time increases. Numerical
methods can be used to determine the eigenvalues of (I − KH)F, and the largest eigenvalue (the one
with magnitude closest to unity) will play the dominant role in determining the maximum delay time.

The time-delayed gain Kn(Td) provides insights into the merit of a time-delayed observation based
on the system parameters F, Q, H, and R as well as the delay time, Td. In the general case, these variables
are hidden in the solution to the DARE, but in many practical cases, there are closed-form solutions
that provide further insights, as we shall show in the remainder of this section. In the general
case, Kn(Td) can be used to decide which time-delayed observations are worth incorporating using
an out-of-sequence filter.

2.5. Scalar Case

In many practical cases, it is possible to find a closed-form solution to the discrete algebraic Riccati
equation (DARE). In the scalar case, when f = 1 and h = 1, the limiting value of the steady-state gain
k (sometimes known as α) is given by [18]

k =
1
2
(−λ2 +

√
λ4 + 4λ2) (6)

where λ = σQ
√

∆T/σR is the maneuvering index for a continuous random walk (also known as
a Brownian motion or Wiener process), σQ is the standard deviation of the state transition noise
(in physical dimensions [length]/sqrt([time])), and σR is the standard deviation of the observation noise
(in physical dimensions [length]). All other lower-case variables are the one-dimensional counterparts
of the capitalized full-matrix versions.

With this k, we can compute the gain of the delayed observation using the scalar form of (5)

kn(Td) = (1− k)Td/∆Tk (7)

Supposing that we only want to keep observations with a minimum gain of kmin, we can compute
the maximum delay time to be

Td = ∆T
log(kmin/k)
log(1− k)

(8)
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We use this equation in the experiments (in Section 4) to decide when to simply drop an old
observation, saving computing time with only minor change in estimation performance.

When the motion model is very good (that is, when σQ � σR and therefore the maneuvering
index is small, λ� 1), the approximations k ≈ λ applies, and kn(Td) = (1− λ)Td/∆Tk. This knowledge
of the low maneuvering index is significant for system design. For example, suppose that we choose to
keep observations where kmin/k ≥ 0.6, and suppose that the maneuvering index is λ = 0.1. Then we
will keep all observations whose maximum delay is T ≥ Td = ∆T log 0.6

log(1−0.1) = ∆T 4.85, or about
five time-steps.

2.6. Discrete White-Noise Acceleration (DWNA) Case

The DARE can also be solved in a closed-form for the common system models used to
estimate positions and velocities, often called the constant velocity, the nearly-constant velocity,

or the discrete white-noise acceleration model. In this model, H = [1 0], F =

[
1 ∆T
0 1

]
,

Q =

[
∆T4/4 ∆T3/2
∆T3/2 ∆T2

]
σ2

Q, and R = σ2
R. The steady-state Kalman gain is a function of the

maneuvering index λ = σQ∆T2/σR, ([19,21]),

K =

[
α

β/∆T

]
(9)

where
α =

1
8
(−λ2 − 8λ + (λ + 4)

√
λ2 + 8λ) (10)

and
β =

1
4
(λ2 + 4λ− λ

√
λ2 + 8λ) (11)

The general form, Kn(Td) = ((I − KH)F)Td/∆TK reduces to

Kn(Td) =

[
1− α ∆T(1− α)

−β/∆T 1− β

]j [
α

β/∆T

]
(12)

The matrix (I − KH)F has eigenvalues

1− α + β

2
± 1

2

√
(α + β)2 − 4β (13)

and as stated in Section 2.4, both eigenvalues have magnitude less than 1, and the matrix gain has
a decaying exponential envelope.

The random-walk and position-and-velocity cases are easily extended to multiple dimensions.
As long as there is no mixing between the dimensions, the formulas from these sections can be applied
to each dimension independently.

3. Numerical Validation

In many applications where observations are delayed, the observations are also made asynchronously.
To validate the gain formulas provided in the previous section when observations are not made

according to a fixed schedule, we compute these gains numerically in a scenario where observations
occur according to a Poisson process. Our simulation uses a Kalman filter that maintains the delayed
gain k j,l and predicted delayed gain kp

j,l of all observations. We computed these gains using Algorithm 1.
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Algorithm 1 Computation of ideal Kalman filter gains on Poisson-distributed sequence. The gains do
not depend on the actual measurements, so there is no need to include them in the calculations.

kp
1,1 = 1

for j from 1 to n
k j,0 = cp

j /(h2cp
j + σ2

R)

cj = (1− k jh)c
p
j

k j,l = (1− k jh)k
p
j,l , l ∈ 1, . . . , j

cp
n+1 = cn + ∆Tnσ2

Q
kp

j+1,l = k j,l+1, l ∈ 0, . . . , j
end

This algorithm tracks the gain (or weight) of each observation on the current estimate. The estimate
xn can be expressed as xn = ∑n−1

l=0 kn,lyn−l + kn,nx0 where kn,l is the gain of the observation
delayed by l time-steps on the estimate at time n, and the prediction xp

n can be expressed as
xp

n = ∑n−1
l=0 kp

n,lyn−l+kp
n,nx0, where kp

n,l is the gain of the observation delayed by l time-steps on the
prediction at time n. This code is used to experimentally calculate the true delayed gains that would
have been applied to an estimate. Because the gains do not depend on the actual observations, there is
no need to compute the observations.

When the observations are uniformly spaced, our filter computes the delayed Kalman gain kn(Td)

exactly. When observations are not uniformly spaced, the state transition noise ∆Tnσ2
Q will change

from time-step to time-step, and k and kn(Td) will never converge exactly.
To apply (7) to Poisson-distributed observations, we simply compute the expected number of

observations j that would have arrived in the time period T since the observation came in:

j ≈ T/∆TP

where the rate parameter of the Poisson distribution is 1/∆TP. In this case, the average time between
observations will be ∆TP in the place of a fixed time ∆T.

Figures 1 and 2 illustrate the result of experiments comparing Kn(Td) computed with a fixed
∆T with the actual gains computed for varying ∆T when observations arrive according to a Poisson
distribution. Figure 1 illustrates a situation in which the process noise is significantly lower than the
observation noise (σQ � σR). In this situation, we can use a simpler form of k to get a very good
approximation of the weight of each observation. The figure shows the result of four example runs in
this situation.

When σQ is closer to σR, the approximation is still fairly accurate. We examined this in the
experimental runs illustrated in Figure 2. We show the result of numerous runs. Because of variations
in the timing introduced by the Poisson distribution, the delayed Kalman gain is not always the same.
Nevertheless, Kn(Td) as computed in (5) with a fixed ∆T gives a good approximation of the actual
gain given to delayed observations when they are processed in-order.

Because Kn(Td) gives a good estimate of the gain applied to an old observation even when
observations are not measured periodically, it can be applied to a wide variety of systems when
determining the cut-off time threshold for out-of-sequence observations.

Figure 3 shows the result of a similar experiment using a discrete white-noise acceleration model
instead of a random walk.
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4. Simulations and Discussion

4.1. Nearly-Constant Position (Random Walk)

The gain Kn(Td) not only provides intuition into the exponentially-decreasing value of a time-
delayed observation but also can be used to set the time-delayed threshold, for example, using (8) from
Section 2.5.

In this section, we run a series of experiments demonstrating that the threshold given by (8)
accurately predicts which delayed observations contribute to an out-of-sequence filter’s performance.

We use a simple Kalman filter (KF) implementation that drops stale observations, an
out-of-sequence filter (Bar-Shalom et al.’s Al1 [24]), and a selective Al1 (SAl1) under a variety of
operating conditions. For each run, we first produced N random steps of of a Poisson process with
rate parameter 1/∆TP. At each event in the Poisson process, we simulated a linear Markov process
where the noise added between the steps is proportional to the time elapsed (w ∼ N (0, ∆t σ2

Q)).
We then simulated observations delayed according to an exponential distribution with mean ∆TD.
The observations have Gaussian noise with covariance r added to them.

We processed these observations with the three filters mentioned above. The KF drops all late
observations, the Al1 incorporates all observations, and the SAl1 selectively incorporates observations
based on the threshold Tstale (Algorithm 2). The SAl1 filter incorporates an observation if its time
delay satisfies Td = te − tm < Tstale, where te is the time of the most recent estimate, and tm is
the measurement time of the delayed observation. When the SAl1 incorporates out-of-sequence
measurements, it uses the Al1 technique.

Algorithm 2 A selective filter uses an existing out-of-sequence filter to incorporate observations that
are newer than a fixed threshold.
field Td
field oosFilter
field lastEstTime
function init(Td):

f ield.Td = Td
end
function update(time,observation):

if time− lastEstTime < Td:
oosFilter.update(time, observation)
lastEstTime = time

end
end

We compare the estimates produced by each of the filters at each of the N time-steps with the true
state at the filter’s estimate time. The three filters use exactly the same estimate time—the maximum
measurement time of the observations currently received. When an out-of-sequence measurement
comes in, all the filters keep their current estimate time instead of going back to the measurement
time of the out-of-sequence observation. They either update their estimate by incorporating the
out-of-sequence observation, or simply keep their previous estimate if they choose to drop the
out-of-sequence observation. For each experiment, we performed ten runs of 5000 steps and computed
the root mean square error (RMSE) of each method for each run. When computing the RMSE error,
we compared the estimates with the true states at the same time.

Using (8) with a kmin/k value of 0.6, we compute the threshold for keeping the observations
shown in each figure. The value of 0.6 was selected experimentally, and shows a good match across
the wide range of maneuvering indexes used here.

Figure 4 illustrates the results of these experiments. In each case, the value of the cut-off time Tstale
accurately predicts the threshold where the performance of the SAl1 filter meets the performance of
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the Al1 filter, even though this threshold changes by two orders of magnitude across the examples
considered. This illustrates that the time-delayed gain we propose accurately determines the threshold
for selecting the most useful delayed observations.
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Figure 4. Performance of selective out-of-sequence filters as a function of the cut-off time Tstale.
The vertical line represents the theoretical cut-off Td computed using (8) with a kmin/k value of 0.6.
(a) σQ = 0.5, σR = 50, ∆TD = 50; (b) σQ = 5, σR = 50, ∆TD = 4; (c) σQ = 50, σR = 50, ∆TD = 0.75. In all
runs, f = 1, h = 1, ∆TP = 0.2.

Figures 5 and 6 illustrate the same experiments as Figure 4, but take the experiments further by
examining the performance of the algorithm as the mean observation delay ∆TD varies across several
orders of magnitude. Each curve in the figure represents a run of the experiment with a different value
for ∆TD. The two figures show the same curves at different time-scales.

Figures 5 and 6 show that the points at which the performance of the SAl1 first reaches the
mid-point between the performance of the KF that drops all observations and the SAl1 that improves
all observations is fairly consistent despite significant change in the mean delay ∆TD. It also shows
that point where the SAl1 first reaches the performance of the Al1 is consistent as well.

The key thing to observe in these figures is the difference in the horizontal (time) axis between
parts a, b, c, and d of the figure. Despite the maneuverability changing over three orders of magnitude,
the predicted Td is within less than one order of magnitude of the point where the SAl1 first reaches
the performance of the Al1. This ranges from dozens of time steps in Figure 5a to less than 1 time step
in Figure 5d.
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Figure 5. Performance of selective out-of-sequence filters as a function of the cut-off time Tstale for
a wide range of ∆TD viewing a narrow time-scale. The vertical line represents the theoretical cut-off
Td computed using (8) with a kmin/k value of 0.6. (a) σQ = 0.5, σR = 50; (b) σQ = 5, σR = 50;
(c) σQ = 50, σR = 50; (d) σQ = 500, σR = 50. In all runs, f = 1, h = 1, ∆TP = 0.2.

Figure 6 illustrates that the cut-off threshold to achieve minimum error (marked with a circle (◦)
in the figure) often increases as the mean delay ∆TP increases. This could seem odd, as the proposed
threshold Td is not a function of ∆TP. However, as ∆TP surpasses Td, many observations are never
incorporated by the filter because they have been delayed by more than ∆TP when they arrive. One of
the assumptions we made in the derivation of ∆TP is that only one observation has been delayed,
and that all the observations that were made after it have already been incorporated into the filter. When
many of the observations are discarded because they come later than Td, it changes the steady-state
gain of the Kalman filter. As a result, if many observations are being discarded, the cut-off point should
be determined based on the mean time between observations that are actually used rather than all
those that are made. If the mean delay ∆TD increases, the number of observations that are actually
used decreases, increasing the mean time between measurements ∆TP and the optimal cutoff Td.

Similarly, when ∆TP is significantly lower than Td, it can be observed that the performance of
the SAl1 reaches the performance of the Al1 at a time less than Td. This is to be expected because all
observations have less delay than Td and should all be incorporated.
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Figure 6. Performance of selective out-of-sequence filters as a function of the cut-off time Tstale for
a wide range of ∆TD viewing a narrow time-scale. The vertical line represents the theoretical cut-off
Td computed using (8) with a kmin/k value of 0.6. (a) σQ = 0.5, σR = 50; (b) σQ = 5, σR = 50;
(c) σQ = 50, σR = 50; (d) σQ = 500, σR = 50. In all runs, f = 1, h = 1, ∆TP = 0.2.

4.2. Arrowhead Path

The white Gaussian process model, while convenient, is not a realistic model for predicting target
motion. To investigate selective filtering when a target is following a nonlinear trajectory, we performed
an experiment with the target following a deterministic non-linear path. The path is the arrowhead
given by the parametric equations

x(t) =

[
ρ sin(ωt + sin ωt)

ρ cos(ωt + cos ωt− cos 1)

]
(14)

with radius ρ = 100 m, nominal speed s = 5 m/s, and angular speed ω = s/ρ = 0.05 rad/s (Illustrated
as the red/light-gray line with dots in Figure 7).

For tracking, we used a random walk model (without a velocity component), with the two spatial
dimensions decoupled. To determine the model noise, we measured the actual standard deviation of
the motion noise along each dimension, and used the maximum noise, with rounding. This resulted
in a process noise model variance of q = 20 m2/s. To generate the position observations, we added
Gaussian noise with variance r = 2000 m2. We used a regular time-step of ∆TP = 1 s (not a Poisson
process), and added delay to the observations according to an exponential distribution with mean
delay ∆TD = 5 s. With a kmin/k value of 0.6, and from (8), the time threshold to keep a stale observation
is Tstale = 5.11, as illustrated by the vertical line in Figure 8. As in the previous section, we averaged
the performance of the filter over 30 runs of 10,000 steps.
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Figure 8. Performance of selective out-of-sequence filters for Arrowhead Path.

In these experiments, we are using an approximate out-of-sequence filter, the Al1 filter, rather
than the expensive approach of buffering and re-processing observations when a delayed observation
arrives. The Al1 filter is significantly faster than the buffered approach, but it does not guarantee
an optimal result. Unlike the ideal Kalman filter, a delayed observation can actually hurt the
performance of the Al1 filter.

We see how delayed observations can hurt a filter without optimal guarantees in Figure 8 where
the selective Al1 (SAl1) filter has better performance at T = Tstale than the Al1 filter incorporating all
observations. Figure 9 shows how the Al1 filter lags more as it comes around the eastern end of the
track (where the horizontal position reaches its maximum), because it is suboptimally incorporating
older observations that the SAl1 does not. Increasing the threshold beyond Tstale actually hurts the
performance of the SAl1 filter as it too incorporates older observations suboptimally. Contributing to
the problem is the fact that the Kalman filter makes an assumption that the motion steps are random
and uncorrelated when they are in fact deterministic and highly correlated.

Despite the invalid assumptions of the tracking model, our approach gives a good rough estimate
of how much delay observations can have and still contribute significantly to estimation accuracy.
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Figure 9. Performance of SAl1 filter compared with Al1 filter.

4.3. Extension to Nonlinear Filter

To investigate our approach in more general cases, we implemented an extended Kalman filter
(EKF) for tracking a target that is following the arrowhead trajectory as follows

xk+1
yk+1
vk+1
θk+1

 =


xk + ∆vk cos(θk)

yk + ∆vk sin(θk)

vk
θk

+ ωk (15)

zk = Cxk + νk (16)

where xk =
[

xk yk vk θk

]T
is the state vector at k, z is the observation vector, (xk, yk) is the

location of the target, vk and θk are, respectively, the speed and heading of the target, ωk ∼ N (0, Qk)

is a zero mean Gaussian random vector with covariance Qk, representing the system disturbance,
and νk ∼ N (0, Rk) is a zero mean Gaussian random vector with covariance Rk, representing the
measurement noise. We assume that all states are completely measurable, i.e., C = In, where In is the
n× n identity matrix.

In this experiment, we have designed the EKF to drop delayed measurements if the delay time is
greater than Td. Otherwise, the EKF recursively processes them. For example, Td = 0 means the filter
does not process any delayed observations and Td = ∞ means the filter processes all measurements,
and therefore, the state estimates become identical to the case with no delay.

The root mean square error (RMSE) between the true paths and estimated trajectories with respect
to the maximum delay (Td) is shown in Figure 10a. The solid blue line is the average of 30 runs and the
gray band indicates 1 standard deviation from the average. As it is expected, the RMSE exponentially
approaches the minimum RMSE where we incorporate all delayed measurements. On the other hand,
the computational time (Figure 10b) increases almost linearly, which indicates that there is not much
merit to incorporate very old observations. It is evident that there is no closed-form solution like (5)
in this case because the model is not linear time-invariant. Consequently, it is difficult to analytically
find Tstale. However, this experiment shows that there is limited improvement on state estimates after
Td > 5 and it would be safe to set the threshold time to be Tstale = ∼5 s, which corresponds to our
analysis with the linear counterpart discussed in Section 4.2.
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Figure 10. Performance of Extended Kalman fileter. (a) (RMSE) between the true paths and estimated
trajectories with respect to the maximum delay; (b) Computational time with repect to the maximum
delay. The gray bands indicate 1 standard deviation from the mean.

5. Conclusions

This paper introduces a measure of the merit of a delayed observation based on the gain given
by the ideal filter that reprocesses all newer observations every time a delayed observation arrives.
We have demonstrated that this gain is a realistic estimate even when random measurement times
perturb the system, and have demonstrated that this metric provides a simple and effective way to
decide which observations to keep in a selective out-of-sequence filter.

It is useful to know when a delayed observation will not improve performance. The maximum
delay time can be used to set the size of buffers if recent observations are stored to improve accuracy.
The maximum observation delay can be used to decide whether an out-of-sequence filter will improve
performance or not. Finally, the formulas provided in this paper can be used throughout the design
of a tracking system system to predict how system parameters such as measurement delay, network
latency, target speed, sensor accuracy, or sensing rate will impact system performance.

We believe that the intuition provided by this our approach is fundamental to the design of
out-of-sequence filters. It provides critical intuition as to why some old observations do not improve
performance, and others do. We hope that it will help shape the development of future OOS filters,
whether they are selective or not.

Although the derivations in this paper have used linear systems, we have demonstrated that the
theory here also lends intuition to the design of nonlinear variations on the Kalman filter such as the
Extended Kalman Filter (EKF), Unscented Filter and, more generally, any Sigma-Point Kalman Filter
(SPKF). As systems become more and more non-linear, the analysis above will become more and more
of an approximation. Nevertheless, we expect that for many non-linear systems, the delayed Kalman
gain is still exponentially decreasing. Investigating to what extent this is true in general nonlinear
systems is the plan for our future work.
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